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List of Notations

⟨S⟩ Linear subspace generated by a subset S in a vector space

C∞(Σ,M) Space of smooth maps Σ →M

hom(E,F ) Bundle morphisms between vector bundles E and F

Op(A) An arbitrary, unspecified open set containing A

D A distribution on a manifold M

Ω Curvature 2-form associated to D

ΩK Curvature 2-form associated to the distribution K

ξ A contact structure on a manifold

Ξ A holomorphic contact structure on a complex manifold

D A differential operator

Lu Linearization of D, at a function u

ΓX Space of local sections of a fiber bundle X

X(r) The rth jet bundle associated to a fiber bundle X

R A differential relation in the jet bundle X(r) for some r ≥ 0

ΓR Space of sections of X(r) taking values in R

SolR Space of sections of X, whose rth-jet prolongation belongs to ΓR

R̃ An extension relation associated to R

DHor An operator C∞(Σ,M) → Ω1(TΣ, TM/D)

DCont An operator C∞(Σ,M) → Ω1(K,TM/D), where K ⊂ TΣ

For notations used in Chapter 5, we refer to Table 5.1 on Page 118.
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Chapter 1

Introduction

A distribution D on a manifold M is a smooth subbundle of the tangent bundle TM . The rank

of the vector bundle is defined as the rank of the distribution. A distribution is generally viewed

as a smooth assignment of vector subspaces Dx ⊂ TxM to the points x ∈M .

For a given distribution D on a manifold M , we can consider the vector fields on M , which

are sections of D. We say D is involutive if the Lie bracket of any two local sections of D is

again a section of the same kind. In other words the vector fields in D are closed under the Lie

bracket operation. By the Frobenius Theorem, a distribution is involutive precisely when it is

integrable, that is, through each point of the manifold M , there is an (immersed) submanifold

L, such that the tangent space TxL equals Dx at each point x ∈ L. Thus, the dimension of

the integral submanifolds is the same as the rank of D.

The non-integrable distributions are not only plentiful but they also exhibit rich structures.

Here we are particularly interested in bracket generating distributions which lie at the polar

opposite end to involutive distributions. Explicitly, a distribution D is said to be bracket gener-

ating if the successive Lie bracket operations on vector fields in D generate the whole tangent

bundle. These distributions have received a wide attention because of their close connection to

physical questions related to constrained motion ([Car10, BCG+91, Mon02]).

Chow ([Cho39]) proved that if D is bracket generating then any two points of M can be

joined by a smooth curve which is tangent to D at each point, in contrast with the involutive

distributions where two points can be joined by such a curve if and only if they lie on the same

integral submanifold. Furthermore, Ge ([Ge93]) established that any continuous curve joining

two points can actually be C0-approximated by a curve which is everywhere tangent to D.

An immediate question that arises next is what could be the maximum possible dimension

k of a submanifold (immersed or embedded) through each point of M , which is everywhere

tangent to D? Any such submanifold is called horizontal to the given distribution D. More

3



4 Chapter 1. Introduction

generally, we may have the ambitious goal of classifying D-horizontal immersions and embed-

dings up to homotopy. This question has been well-studied in many instances and the answer

to this is usually given in the language of h-principle.

Among all the bracket-generating distributions, the contact structures have been studied

most extensively ([Gei08]). These are corank 1 distributions on odd-dimensional manifolds,

which are maximally non-integrable. In other words, a contact structure ξ is locally given by a

1-form α such that, α∧ (dα)n is non-vanishing, where the dimension of the manifold is 2n+1.

It can be easily seen that the maximal dimension of a horizontal submanifold of ξ as above is

n. These are called Legendrians. Locally, there are plenty of n-dimensional horizontal (Legen-

drian) submanifolds. Globally, Legendrian immersions and (loose) Legendrian embeddings are

completely understood in terms of h-Principle ([Gro86, Duc84, Mur12]). Beyond the corank 1

situation, very few cases are completely known. Engel structures, which are certain rank 2 dis-

tribution on 4-dimensional manifolds ([Eng89]), have been studied in depth in the recent years,

and the question of existence and classification of horizontal loops in a given Engel structure has

been solved ([Ada10, CdP18]). Horizontal immersions on product of contact manifolds have

also been studied in [D’A94].

The contact and Engel distributions mentioned above have several interesting proper-

ties. The simplest invariant for distribution germs is given by a pair of integers (n, r) where

n = dimM and r = rank D. The germs of contact and Engel structures are generic in their

respective classes and they also happen to be stable. These distributions admits local fram-

ing which generates finite dimensional nilpotent lie algebras. The only other generic class of

distributions generating finite dimensional Lie algebras are the even contact structures and the

1-dimensional distributions. All of them lie in the range r(n − r) ≤ n ([Mon93]). But in the

range r(n− r) > n, the study of a generic distribution becomes difficult due to the presence of

function moduli.

The contact distributions are the simplest kind of strongly bracket generating distribution.

A distribution D is called strongly bracket generating if every non-vanishing vector field along

D, about a point x ∈ M , Lie bracket generates the tangent space TxM . Strongly bracket

generating distributions are also referred to as fat distributions in the literature. In fact, in

corank 1, fat distributions are the same as the contact ones. The germs of fat distributions in

higher corank, are far from being generic ([Ray68]). However, they are interesting in their own

right and have been well-studied ([Ge93, Mon02]).

The notion of contact structures can be extended verbatim to complex manifolds. These are

complex, corank 1-subbundles of the holomorphic tangent bundle T (1,0)M of a complex manifold
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M , with dimCM = 2n+ 1, given locally by holomorphic 1-forms α satisfying α ∧ (dα)n ̸= 0.

The h-principle for holomorphic Legendrian embeddings of an open Riemann surface into certain

holomorphic contact manifolds has been studied in [FL18b, FL18a]. If one forgets the complex

structure of a given holomorphic contact distribution, one gets a corank 2-distribution on a

manifold of real dimension 4n+ 2, which enjoys the fatness property ([Mon02]). There is also

a quaternionic analogue of contact structures but defined from a different point of view.

In this thesis we focus on fat distributions of corank > 1. We look at some specific classes

of fat distributions in corank > 1 and study horizontal immersions and other classes of maps

into them. Let us briefly mention the contents of the chapters and the main theorems proved

therein.

Chapter 2

In this chapter we discuss the preliminaries of distributions and introduce the notion of its

curvature form. Given any distribution D, we can consider the quotient map λ : TM → TM/D

as a TM/D-valued 1-form on M. It then induces a TM/D-valued 2-form Ω : Λ2D → TM/D

defined as follows:

Ω(X,Y ) = −λ([X,Y ]), for all X,Y ∈ ΓD

Ω is called the curvature form of the distribution D; it plays a crucial role in the classification

of horizontal immersions and other classes of maps into D.

We also give a brief review of the sheaf techniques in the theory of h-principle, followed by the

Nash-Gromov Implicit Function Theorem for smooth differential operators and its implications

in sheaf theory. Differential equations or inequalities governing space of sections of a fibre-

bundle can be realized by a subset R in an appropriate jet space. A section of the jet bundle

having its image in R is called a formal solution of the differential relation. h-principle means

that a formal solution can be homotoped to a solution of the given relation, in other words,

presence of h-principle reduces a differential problem to an algebraic one.

Chapter 3

In this chapter, we revisit homotopy classification of K-contact immersions ([Gro86]) and, in

particular, that of horizontal immersions in a general distribution ([Gro86, Gro96]) following

the h-principle theory. Given a distribution D on M and a distribution K on Σ, an immersion

u : Σ → K is called K-contact if the derivative map du : TΣ → TM maps K into D. In

particular, forK = TΣ, theK-contact immersions are nothing but the D-horizontal immersions.

It is easy to see that a K-contact immersion must necessarily pull-back the curvature form Ω
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of D onto the curvature form ΩK of K in an appropriate sense. If K = TΣ then ΩK = 0 and

the curvature condition reduces to the isotropy condition.

K-contact maps can be seen as solutions to a first order partial differential equations asso-

ciated to a differential operator D defined on the space of smooth maps C∞(Σ,M) and taking

values in TM/D-valued 1-forms on Σ. The operator is known to be infinitesimally invertible

on an open subset of C∞(Σ,M) consisting of Ω-regular immersions, which are defined by an

open condition on the 1-jet space. This brings us to the Nash-Gromov implicit function the-

orem discussed in Chapter 2. The role of Ω in regularity is not always explicit; indeed, if the

distribution D is contact or Quaternionic contact then every immersion is Ω-regular.

Complete h-principle can be obtained for Ω-regular K-contact immersions provided Σ is

an open manifold. Explicitly, every formal Ω-regular K-contact immersion satisfying the cur-

vature condition can be homotoped to a genuine Ω-regular K-contact immersion. However,

to obtain h-principle on a general Σ one requires certain extensibility criteria to be satisfied.

This is referred to as overregularity condition in [Gro96] by Gromov. Our goal here is to give a

detailed exposition on the homotopy classification of K-contact overregular immersions based

on the Nash-Moser Implicit Function Theorem and the general theory of h-principle discussed

in Chapter 2.

Chapter 4

The K-contact immersions in a contact manifold (M,D) are automatically Ω-regular. They

are known to satisfy the C0-dense h-principle ([Gro86]). Moreover, if K is also contact then

we have the following existence result due to Gromov.

Theorem ([Gro86]). If ξ is the standard contact structure on R2n+1 and K is a cotrivializable

contact structure on a manifold Σ, then an arbitrary map Σ →M can be C0-approximated by

a isocontact immersion (Σ,K) → (R2n+1, ξ), provided 2n+ 1 ≥ 3 dimΣ.

The special case of horizontal immersions into contact structures was also studied by

Duchamp in [Duc84].

In this chapter we consider certain fat distributions of corank p > 1, and obtain some new

results as a consequence of the h-principle proved in the previous chapter. The detailed proof

rests upon the internal structure of the distribution D.

Though fat distributions are not generic we have a good hold on them for the following

reason. For every 1-form α annihilating D, the restriction of the 2-form dα to the distribution

is nondegenerate. Therefore, we can represent the curvature form locally by a p-tuple of non-

degenerate 2-forms at each point. This gives an equivalent characterization of Ω-regularity,
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which is easily tractable. We introduce a new invariant on the class of fat corank 2 distributions

called ‘degree’ and look at the degree 2 distributions. This is the real analogue of holomorphic

contact structures.

We obtain the following h-principle for horizontal immersions into degree 2 fat distributions.

Theorem ([BD20],Theorem 4.2.1, Theorem 4.2.4). Suppose thatD is a degree 2 fat distribution

on a manifoldM . Then D-horizontal Ω-regular immersions Σ → (M,D) satisfy the h-principle,

provided rkD ≥ 4 dimΣ + 4. Consequently, there exists a regular horizontal immersion Σ →

(M,D), provided rkD ≥ max{4 dimΣ + 4, 5 dimΣ + 2}.

Similar results have been proved for horizontal immersions in Quaternionic contact manifolds

as well.

Theorem (Theorem 4.2.14, Theorem 4.2.17). Suppose D is a quaternionic contact structure

on M . Then D-horizontal immersions Σ → (M,D) satisfy the h-principle, provided rkD ≥

4 dimΣ + 4. Consequently, there exists a D-horizontal immersion Σ → (M,D), provided

rkD ≥ max{4 dimΣ + 4, 5 dimΣ− 3}.

We also prove the h-principle and existence of isocontact immersions in degree 2 fat distri-

butions.

Theorem (Theorem 4.2.23, Theorem 4.2.26). Suppose D is a degree 2 fat distribution on M

andK is a contact structure on Σ. ThenK-isocontact immersions (Σ,K) → (M,D) satisfy the

h-principle, provided rkD ≥ 2 rkK + 4. Furthermore, there exists a K-isocontact immersion

(Σ,K) → (M,D), provided the following conditions holds :

� rkD ≥ max{2 rkK + 4, 3 rkK − 2}, and

� one of the following two conditions holds true,

– both K and D are cotrivial

– H2(Σ) = 0

Chapter 5

In this chapter, we study partially horizontal immersions, introduced by Gromov in [Gro96].

An immersion u : Σ → (M,D) is called m-horizontal if the inverse image of D under the

derivative map du : TΣ → TM is a rank m distribution on Σ. In particular, if m = dimΣ,

then the m-horizontal immersions are precisely the D-horizontal ones. On the other hand, when



8 Chapter 1. Introduction

m = dimΣ − corkD, the induced distribution on Σ has the same corank as that of D and

m-horizontal immersions are simply the immersions that are transverse to D.

We study m-horizontal immersions in generality following the ideas outlined in [Gro96] and

obtain the following results.

Theorem (Theorem 5.2.3). Let D be a corank p distribution on M . Then, transverse immer-

sions Σ → (M,D) satisfy the h-principle, provided dimM > dimΣ.

Theorem (Theorem 5.2.5, Corollary 5.2.7). Suppose D is a corank p fat distribution onM . For

m = dimΣ−(p−1), them-horizontal immersions Σ → (M,D) satisfy the h-principle, provided

rkD > 2m. Furthermore, if D is cotrivial and Σ admits a cotrivial subbundle of corank (p−1),

then there exists an m-horizontal immersion Σ → (M,D), provided dimM ≥ 3 dimΣ− p+1.

Theorem (Theorem 5.2.8). Let D be a quaternionic contact structure onM . Form = dimΣ−

1, the m-horizontal immersions Σ → (M,D) satisfy the h-principle, provided rkD ≥ 4m+ 4.

Chapter 6

In this chapter we return to the horizontal immersion problem for a corank 2 fat distribution D

on a 6 dimensional manifold. Any such distribution is automatically a degree 2 fat distribution.

But the results of Chapter 4 do not give h-principle for immersed horizontal loops in D due to

dimension restriction.

However, this does not rule out the possibility of getting h-principle for horizontal immersions

when dimD ≥ 4 dimΣ, since the system is underdetermined. The result of [AFL17] also

supports this claim for holomorphic contact structures.

Theorem ([AFL17]). Let Ξ be the standard holomorphic contact structure on C2n+1 and Σ be

a connected, open Riemann surface. Then, the space of holomorphic Legendrian embeddings

Σ → C2n+1 is weak homotopy equivalent to the space of continuous maps Σ → S4n−1

The real distribution D underlying a holomorphic contact distribution is fat. Moreover,

there are 1-forms λ1, λ2 defining D such that ker dλ1 = ker dλ2 is generated by a pair of vector

fields Z1, Z2, which further satisfy λi(Zj) = δij and [Z1, Z2] = 0. We shall refer to such vector

fields as Reeb-like vector fields.

Using the implicit function theorem due to Hamilton ([Ham82]) we prove the following.

Theorem ([Bho20],Corollary 6.4.4). Suppose D is a fat distribution on a R6, which admits

(local) Reeb-like vector fields. Then horizontal immersions Σ → (M,D) satisfy the local h-

principle.
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By solving the algebraic problem we get the main result of this chapter.

Theorem ([Bho20],Theorem 6.4.5). A distribution D as in the above theorem, admits germs

of horizontal submanifolds of dimension 2.

The existence of 2-dimensional horizontal germs suggests that we may get h-principle for

horizontal loops in D, possibly with a new regularity condition.





Chapter 2

Preliminaries : Distributions and

h-Principles

In the first half of this chapter we shall recall the preliminaries of distributions on a manifold

and recall some results that are pertinent to our work in this thesis. The second half of this

chapter is devoted to the sheaf-theoretic and the analytic theory of h-principle introduced by

Gromov in [Gro86].

2.1 Distributions

All manifolds and maps, unless mentioned otherwise, are considered to be smooth. The back-

ground material for this section can be found in [Mon02, BCG+91, Gei08].

Definition 2.1.1. A distribution D on a manifold M is a smooth sub-bundle of the tangent

bundle TM . The rank of the distribution is defined as the rank of D as a subbundle and corank

of D is the integer dimM − rkD.

A vector field on M will be referred to as a vector field in D if it is a section of D. In short,

we shall write X ∈ D to mean that X is a vector field taking values in D; that is, X(x) ∈ Dx

for every x ∈M . The space of smooth sections of D will be denoted by Γ(D).

For any two local sections X,Y ∈ D we have the local field given by their Lie bracket

[X,Y ]. We can define a sheaf [D,D] by prescribing its stalk as follows :

[D,D]x =
{
[X,Y ]x

∣∣∣ X,Y ∈ D are local sections about x
}

Though [D,D]x ⊂ TxM is a linear subspace, dim[D,D]x need not be constant in x and hence

the [D,D] is not, in general, a distribution. Observe that, given any two sheaves E ,F of vector

11



12 Chapter 2. Preliminaries : Distributions and h-Principles

fields, we may similarly define the sheaf [E ,F ] by taking Lie brackets of local sections of E and

F respectively. Hence, we may recursively define the sheaves Di for all i ≥ 1 :

Di+1 = Di + [D,Di], D1 = D

In this thesis, we will only consider the distributions D ⊂ TM for which each Di is again a

distribution. As we shall see, many interesting examples are of this type.

Definition 2.1.2. A distribution D ⊂ TM is called involutive if we have [D,D] ⊂ D.

This leads to the notion of integrability.

Integrable Distribution

Let us begin with the definition.

Definition 2.1.3. A distribution D ⊂ TM is called integrable if through each point x0 ∈ M ,

there is an immersed submanifold N ⊂M such that, TxN = Dx for all x ∈ N .

Clearly, any rank 1 distribution is involutive and through each point of M there exists an

integral curve to the 1-dimensional distribution. In fact, these two concepts are equivalent by a

famous theorem due to Frobenius.

Theorem 2.1.4. A distribution D ⊂ TM is integrable if and only if D is involutive.

An involutive (or integrable) distribution defines a foliation F on M , by partitioning the

manifold into integral submanifolds which are referred to as the leaves of the foliation. Indeed,

an integrable distribution is precisely the tangent distributions TF of some foliation F on M .

Non-Integrable Distribution

A distribution D ⊂ TM is non-integrable (or nonholonomic) if D is not involutive, that is if

we have [D,D] ̸⊂ D. It turns out that a generic distribution is not only non-integrable, but

furthermore they are bracket-generating.

Definition 2.1.5. A distribution D ⊂ TM is called bracket-generating if successive Lie brackets

of (local) sections of D span the tangent bundle TM .

Thus, if D ⊂ TM is bracket generating, then for each x ∈M , there exists a positive integer

r(x), depending on x, such that

Dr(x)|x = TxM
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If r(x) = r for all x, then TM = Dr and we say that D is (r− 1)-step bracket generating. We

shall discuss below some important classes of bracket generating distributions.

Definition 2.1.6. A contact structure ξ ⊂ TM is a corank 1 distribution on a manifold of

dimension 2n+1, such that ξ is locally given as ξ =
loc.

kerα for some (local) 1-form α ∈ Ω1(M),

satisfying the nondegeneracy condition,

α ∧ (dα)n ̸= 0,

which is equivalent to saying that the 2-form dα|ξ is nondegenerate. The 1-form α is called a

contact form and the pair (M, ξ) is called a contact manifold.

Every odd-dimensional Euclidean manifold R2n+1 has a canonical contact structure defined

by the 1-form

α = dz −
n∑
i=1

yidx
i,

where {z, xi, yi, 1 ≤ i ≤ n} is any global coordinates system on R2n+1. It follows from the

Darboux theorem that any contact structure locally looks like this.

Theorem 2.1.7. Given any contact structure ξ ⊂ TM on a manifold M of dimension 2n+ 1,

we have that around each x ∈M there exists some coordinate neighborhood (U, z, yi, x
i), such

that

ξ|U = ker
(
dz −

∑
i

yidx
i
)

Any such choice of neighborhood as above is known as a Darboux neighborhood. Using

this we can then get a local framing for the contact structure as,

ξ|U =
〈
∂yi , ∂xi − yidz; 1 ≤ i ≤ n

〉
Observe that the local frame {∂y1 , . . . , ∂yn} is involutive.

Another interesting class of bracket generating distribution is given by the Engel structures.

Definition 2.1.8. An Engel distribution is a rank 2 distribution D on a 4-dimensional manifold

M such that, D2 = D + [D,D] is rank 3 distribution and D3 = D2 + [D,D2] is all of TM .
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In particular, an Engel distribution is 2-step bracket-generating. The standard Engel struc-

ture on R4 is given as the common kernel of two 1-forms,

α = dz − ydx, and β = dw − zdx,

where {x, y, z, w} are canonical coordinates on R4. We see that, D = kerα ∩ kerβ admits a

global frame,

D =
〈
∂y, ∂x + y∂z + z∂w

〉
Similar to the contact structures, the Engel distributions also have canonical representations.

Theorem 2.1.9. Given any Engel structure D ⊂ TM on a 4-dimensional manifold M , we have

that around each x ∈M there exists some coordinate neighborhood (U, x, y, z, w), such that

D|U = ker
(
dz − ydx

)
∩ ker

(
dw − zdx

)
Contact and Engel structures have many similar properties. In this connection, let us mention

a striking result by Montgomery.

Theorem 2.1.10 ([Mon93]). A generic distribution of rank r on a manifold of dimension n,

satisfying

r(n− r) > n

does not admit any local frame, which Lie bracket generates a finite dimensional Lie algebra.

To understand how this relates to contact and Engel structures, we observe that there are

only three possible solutions of r(n− r) ≤ n.

� r = 1 : We have the line fields. Since these are clearly involutive, any Lie algebra

generated by a local frame is 1-dimensional.

� r = n−1 : When n is an odd number, a generic distribution germ is a contact distribution.

From the discussion above, we have certain local frame fields, which Lie bracket generates

an n-dimensional Lie algebra, known as the (real) Heisenberg algebra.

When n is an even number, we have an analogous distribution, known as the even contact

structure, which exhibits very similar properties.

� r = 2 and n = 4: Any generic distribution germ of this type is an Engel structure. Again

looking back at the local frame given above, we see that this frame Lie bracket generates

a 4-dimensional Lie algebra, known as the Engel algebra.
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In the range r(n − r) > n, there are infinitely many non-isomorphic distribution germs

of rank r on n-dimensional manifolds. This makes it considerably difficult to study a generic

distribution of higher corank.

Horizontal Curves and Loops

Given a distribution D ⊂ TM , we ask whether any two points a, b ∈ M with a ̸= b, can be

joined by a path γ which is everywhere tangential to D. This question can be rephrased as a

boundary value problem for smooth functions γ : [0, 1] →M :

γ̇(t) ∈ Dγ(t), ∀t ∈ [0, 1], such that γ(0) = a, γ(1) = b.

Any curve satisfying the above differential condition is called a D-horizontal curve.

If D ⊂ TM is integrable, then the answer to the question is in the negative. Indeed, any

horizontal path in an integrable distribution is restricted to some leaf of the underlying foliation.

Thus for a pair of points residing in different leaves, there is no horizontal path joining them.

On the other hand, for a bracket-generating distribution we essentially get that any tangent

direction on M can be obtained as a successive Lie brackets of vectors in D. Consequently, we

get a positive answer for bracket-generating distributions in the form of Chow’s theorem.

Theorem 2.1.11 ([Cho39]). Suppose D ⊂ TM is a bracket generating distribution on a

connected manifoldM . Then, for any two points a, b ∈M there is a smooth D-horizontal path

joining them.

Chow’s theorem has many interesting implications. Let a, b be two fixed points onM . Given

a distribution D ⊂ TM , let Ωa,b(D) denote the space of all smooth D-horizontal paths in M

joining a and b. That is,

Ωa,b(D) =
{
γ : [0, 1] →M

∣∣∣ γ(0) = a, γ(1) = b, γ̇(t) ∈ D|γ(t)
}

Chow’s theorem says that Ωa,b(D) ̸= ∅ if D is bracket-generating. The following result of Ge

shows that Ωa,b(D), in fact, contains plenty of curves.

Theorem 2.1.12 ([Ge93]). If D is bracket-generating, then Ωa,b(D) is weakly homotopy equiv-

alent to the space Ωa,b of all smooth paths in M joining a to b. In fact the inclusion map,

Ωa,b(D) ↪→ Ωa,b
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induces isomorphism in each of the homotopy groups. In particular, any smooth path joining

a, b is path-homotopic to a D-horizontal path.

The paths in the above theorem are not immersed. So now we may modify the question as

follows : does there exists a smooth immersion (or an embedding), joining two points, or more

generally, whether there are closed horizontal immersed curves? We do have positive answer

for contact and Engel structures.

Theorem 2.1.13 ([EM02]). Given a contact structure ξ ⊂ TM , the ξ-horizontal immersions

S1 →M satisfy the complete h-principle.

Here h-principle means that the problem of finding an immersion S1 →M can be reduced

to an algebraic problem. We recall the formal definition of h-principle in the next section of

this chapter.

In fact any embedded closed loop in R3, also known as knots, can be C0-approximated by

an embedded horizontal loop, where we consider the standard contact structure on R3 ([Gei08,

pg. 101]). However the embedded Legendrian loops do not abide by the h-principle even in

the simplest possible case of S1 → R3, with the standard contact structure. Indeed, there are

infinitely many topologically trivial embeddings of loops, i.e unknots, which are not homotopic

in the space of horizontal embeddings ([EF09]).

Now let us look at our other prominent example, that is an Engel structure D ⊂ TM . In

case of Engel structures, complete h-principle does not hold due to the presence of some rigid

curves. An Engel structure contains a line field W given by

W =
{
W ∈ D2

∣∣∣ [W,D2] ⊂ D2
}

Locally, with respect to a choice of standard Darboux chart (Theorem 2.1.9), this line field is

given by ∂w. The rigid curves are integral curves of this line field. Up to reparametrization,

there is a unique D-horizontal curve γ, joining two points in the same leaf of W and satisfying

∂wγ ̸= 0 ([BH93]). This exhibits a certain (local) rigidity of the D-horizontal curves. In fact

rigid curves are singular points for the horizontality operator.

The existence of rigid curves in the Engel structure, impairs the possibility of getting any

h-principle for D-horizontal loops. But we can restrict ourselves to a class of regular curves.

These are D-horizontal immersions γ : S1 →M which are not everywhere tangential to W; in

other words γ is transverse to W at some point. Then we have the following theorem.
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Theorem 2.1.14 ([CdP18]). The h-principle holds for D-horizontal embeddings S1 → M

which are not everywhere tangent to W.

Horizontal Maps

Definition 2.1.15. Given a distribution D ⊂ TM on M and a manifold Σ, any smooth

immersion u : Σ →M is called D-horizontal if the derivative map du maps into D, i.e, if

Im duσ ⊂ Du(σ), for each σ ∈ Σ

Question. Given a distribution D, what is the maximum dimension of a D-horizontal subman-

ifold passing through a point in M?

The question of existence of horizontal immersions of higher dimensional manifolds is inti-

mately related to the curvature form of a distribution.

Curvature of a Distribution

Given a distribution D ⊂ TM we have the natural quotient map,

λ : TM → TM/D,

so that D = kerλ. We can treat λ as a TM/D-valued 1-form on the manifold M . We shall

denote the space of TM/D valued 1-forms on M by

Ω1(TM, TM/D) = Γhom(TM, TM/D)

Choosing a local trivialization of the bundle TM/D over some open set U ⊂ M , we can

write TM/D|U = ⟨e1, . . . , ep⟩, where p = rkTM/D = corkD and {ei} are some sections of

the bundle TM/D over U . Then we may write, λ =
∑p

s=1 λ
s ⊗ es, where λ

s are local 1-forms

defined on U . We have, D|U =
⋂p
s=1 kerλ

s. Clearly, choosing a different trivialization, we will

end up with a different set of 1-forms defining D. Unless necessary, we will denote λ =
loc.

(λs)

without referring to the trivialization.

Let ωs = dλs|D, s = 1, . . . , p. Then, for any pair of local vector fields X,Y ∈ D,

ωs(X,Y ) = dλs(X,Y ) = Xλs(Y )− Y λs(X)− λs([X,Y ]) = −λs([X,Y ])



18 Chapter 2. Preliminaries : Distributions and h-Principles

Definition 2.1.16. Given a distribution D on M , the curvature form Ω of D is defined as

follows:

Ω(X,Y ) = −[X,Y ] mod D = −λ([X,Y ])

where X,Y are local sections of D.

It is clear that D is involutive if and only if Ω = 0. Thus the curvature measures the defect

of D from being integrable.

From the discussion above, we see that for any choice of trivialization λ =
loc.

(λs) we have,

Ω =
loc.

(ωs) where ωs = dλs|D. Let us first make the following observation.

Proposition 2.1.17. The curvature form Ω is C∞(M)-linear.

Proof. Suppose X,Y ∈ D are some local sections. For any f, g ∈ C∞(M) we have,

[fX, gY ] = fX(g)Y + g[fX, Y ] = fX(g)Y − gY (f)X + fg[X,Y ]

which implies

Ω(fX, gY ) = −[fX, gY ] mod D = −fg[X,Y ] mod D = fgΩ(X,Y )

This proves the claim.

Hence, the curvature form Ω of D can be equivalently defined as a TM/D valued 2-form

on D,

Ω : Λ2D → TM/D,

given by,

Ω(X,Y ) = −λ([X̃, Ỹ ]x), X, Y ∈ Dx, x ∈M,

where X̃, Ỹ are arbitrary local sections of D extending X,Y respectively.

Let us also discuss how to get the curvature 2-form Ω from the quotient map λ : TM →

TM/D directly.

Proposition 2.1.18. If D = kerλ then the curvature form of D is given as, Ω = d∇λ|D, for

any choice of connection ∇ on TM/D.

Proof. Fix some connection ∇ on the bundle TM/D. Then we have the TM/D-valued 2-form

d∇λ defined as,

d∇λ(X,Y ) = ∇Xλ(Y )−∇Y λ(X)− λ([X,Y ])
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for (local) vector fields X,Y . Now if we restrict to D, i.e, if we have local sections X,Y ∈ D =

kerλ, we see,

d∇λ(X,Y ) = −λ([X,Y ]) = −[X,Y ] mod D = Ω(X,Y )

Hence we have, Ω = d∇λ|D.

Dual Curvature

Given a distribution D ⊂ TM , we can define a subbundle Ann(D) of the cotangent bundle

T ∗M , called the annihilator bundle of D, as follows :

Ann(D)x =
{
α ∈ T ∗xM

∣∣∣ α vanishes over Dx}, for x ∈M

There is a canonical bundle isomorphism,

Ann(D) ∼= (TM/D)∗,

induced by the nondegenerate pairing Ann(D) × TM/D → R, defined by, (α,X mod D) 7→

α(X). Using this identification, we can dualize the bundle map Ω : Λ2D → TM/D and get

the dual curvature map,

ω : Ann(D) → Λ2D∗.

Explicitly, we have,

ω(α) = dα|D, for any local secion α ∈ Ann(D).

Hence, any choice of (local) frames {λ1, . . . , λp} of Ann(D), defines a representation of Ω as

Ω =
loc.

(
ω(λs)

)
.

Observation. If D is 1-step bracket generating, then Ω is an epimorphism and hence ω is

an injective bundle map. Therefore, the components of the curvature form Ω are linearly

independent. And conversely.

Suppose that D =
⋂p
s=1 kerλ

s for some global 1-forms λs ∈ Ω1(M). If u : Σ → M is a

D-horizontal immersion, then dux maps into D and hence λs ◦ dux = 0 for all s. Therefore, u

satisfies the following system of equations :

u∗λs = 0, s = 1, . . . , p
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Taking exterior derivative on both sides, we get

u∗ωs = 0, s = 1, . . . , p

where ωs = dλs|D. Hence, every horizontal immersion u satisfies

u∗Ω = 0,

where Ω is the curvature form of D. We shall refer to this as the isotropy condition or curvature

condition.

This relation imposes certain obstruction to the existence of smooth horizontal immersions.

For example, if ξ = kerα is a contact distribution on M , then dα restricts to a symplectic form

on ξ. Since any horizontal immersion Σ →M is dα-isotropic, we must have dimΣ ≤ 1
2 rank ξ.

Legendrian Immersions and h-Principle

Definition 2.1.19. Given a contact structure ξ ⊂ TM on a manifold M , a ξ-horizontal im-

mersion Σ ⊂M is called a Legendrian immersion if dimΣ = 1
2 rk ξ.

Example 2.1.20. Given any manifoldM , there is a standard contact structure ξ on the first jet

space J1(M,R) = T ∗M×R given as, ξ = ker
(
dz−π∗λ

)
, where λ is the tautological 1-form on

the cotangent bundle, z is the coordinate along R and π : J1(M,R) → T ∗M is the projection

map. Now, for any smooth map f : M → R, the 1-jet prolongation j1f : M → J1(M,R) is a

Legendrian embedding. Indeed,

(j1f )
∗(dz − π∗λ

)
= d(z ◦ j1f )− (π ◦ j1f )∗λ = df − (df)∗λ = df − df = 0

We have a generalization of Theorem 2.1.13.

Theorem 2.1.21 ([Duc84]). Legendrian immersions satisfy the complete h-principle. In partic-

ular, any formal Legendrian immersion can be homotoped to a genuine Legendrian immersion.

A formal Legendrian immersion is by definition a bundle map F : TΣ → TM , satisfying

the following algebraic conditions :

� F is a bundle monomorphism, with ImF ⊂ ξ, and

� F ∗Ω = 0, where Ω is the curvature form of ξ.



2.2. h-Principle 21

The above h-principle does not extend to Legendrian embeddings. However a special class

of Legendrian embeddings, called “loose Legendrian embeddings”, are amenable to homotopy

classification.

Theorem 2.1.22 ([Mur12]). Loose Legendrian embeddings in a contact manifold of dimension

≥ 5 satisfy the complete h-principle.

Isocontact Immersions

Definition 2.1.23. Given contact structures ξ ⊂ TM and K ⊂ TΣ on the manifolds M and

Σ respectively, an immersion u : Σ →M is called isocontact if K = du−1(ξ).

We have the following theorem by Gromov.

Theorem 2.1.24. [Gro86, pg. 339] Given the standard contact structure ξ on R2n+1 and a

cotrivializable contact structureK on Σ, with dimΣ = 2m+1, an arbitrary map Σ →M admits

a fine C0-approximation by isocontact immersions (Σ,K) → (R2m+1, ξ), provided n ≥ 3m+1

holds.

Isocontact immersions and more generally embeddings in arbitrary contact structures also

abide by the h-principle ([Dat97, EM02]).

In this thesis we consider certain class of bracket generating distributions of corank > 1

and one of our goal is to study the existence of horizontal and isocontact immersions for such

distributions. This leads us to the general theory of h-principle.

2.2 h-Principle

We shall first recall the basic terminology and then briefly review the sheaf theoretic and analytic

techniques of the theory of h-principle following [Gro86].

2.2.1 Sheaf Theoretic Techniques in h-Principle

The goal of h-principle is to solve a differential system by homotoping a formal solution to

a genuine solution. Now, any differential system can be understood as a certain system of

algebraic equations or inequalities defined on the jet bundles of sections of some fibration. Let

us formalize these notions.

Throughout this section p : X → V will denote a smooth fiber bundle and the r-jet bundle

of sections of X will be denoted by p(r) : X(r) → V .
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Definition 2.2.1. An rth-order partial differential relation (or simply a relation) for sections of

p : X → V is a subset R ⊂ X(r) in the r-jet space X(r). An open subset of the jet space X(r)

will be referred to as an open relation.

We shall denote the space of sections of p : X → V and p(r) : X(r) → V by Γ(X) and

Γ(X(r)) respectively. The space Γ(X) will be endowed with the C∞-compact open topology

while the space Γ(X(r)) will have the C0-compact-open topology. There is a canonical r-jet

map,

j(r) : Γ(X) → Γ(X(r)),

which takes a section f to its r-jet prolongation jrf . A section of the r-jet bundle is said to be

a holonomic section if it lies in the image of jr.

For any relation R, we shall now introduce some subspaces of Γ(X) and Γ(X(r)).

Definition 2.2.2. A smooth section of X is said to be a solution of R if its r-jet prolongation

has its image in R. A continuous section of X(r) whose image is contained in R is called a

formal solution of R.

We shall denote,

� SolR as the space of solutions of R.

� ΓR as the space of formal solutions of R.

The r-jet map, jr : SolR → ΓR identifies the solution space SolR with the holonomic sections

of R.

Definition 2.2.3. A relation R ⊂ X(r) is said to satisfy the ordinary h-principle if any formal

solution of R can be homotoped to a holonomic section while keeping the homotopy completely

within ΓR; in other words if,

π0(j
r) : π0

(
SolR

)
→ π0

(
ΓR
)

is surjective.

Hence, h-principle reduces an analytical problem to an algebraic problem. We say R ⊂ X(r)

satisfies the parametric or complete h-principle if the map jr is a weak homotopy equivalence,

i.e, if the map,

πi(j
r) : πi

(
SolR

)
→ πi

(
ΓR
)
,
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is an isomorphism for each i ≥ 0. Therefore, the parametric h-principle completely classifies

the solution space of R.

Definition 2.2.4. A relation R ⊂ X(r) is said to satisfy the C0-dense h-principle if,

� the usual h-principle holds for R, and

� for any F0 ∈ ΓR with base map f0 = bsF0 and for any arbitrary neighborhood U of

Im f0 in X, we can choose the homotopy Ft ∈ ΓR joining F0 to a holonomic F1 = jrf1

in such a way, that the base map ft = bsFt satisfies Im ft ⊂ U for all t ∈ [0, 1].

Given any relation R we now define two topological sheaves: The sheaf of solutions of R

and the sheaf of sections of R, which will be often referred to as SolR and ΓR, respectively.

Before going any further, we recall some general theory of topological sheaves and define

some concepts which will be used later. Recall that a topological sheaf Φ over a smooth

manifold V , assigns

� to each open subset U ⊂ V a topological space Φ(U), and

� to each pair of open sets (U,U ′), with U ′ ⊂ U ⊂ V , a continuous map (known as the

restriction map) Φ(U) → Φ(U ′).

For an arbitrary subset C of V , we define Φ(C) as the direct limit,

Φ(C) = lim
C⊂U

U ⊂ V is open

Φ(U)

Thus, an element of Φ(C) can be represented by an element of Φ(U), where U is some open

set containing C. Keeping up with the definition of direct limits, this open set is not kept fixed

and for notational convenience we denote this by Op(C). In a similar fashion, we define Op(v)

for any v ∈ V as some arbitrarily small (and not fixed) open neighborhood of v. We shall

not consider the direct limit topology on Φ(C), rather we shall work with the weaker notion of

quasi-topological structures ([Gro86, pg. 36]) on them, which is sufficient for our purpose. In

particular, by a ‘continuous’ map f : Q→ Φ(C), we shall mean that there is an open subset U

containing C such that fq ∈ Φ(U), for all q ∈ Q.

Definition 2.2.5. A sheaf homomorphism α : Φ → Ψ is called a local weak homotopy equiv-

alence, if the induced map αv : Φv → Ψv at the stalk level is a weak homotopy equivalence

for each v ∈ V . The map α is a weak homotopy equivalence if αU : Φ(U) → Ψ(U) is a weak

homotopy equivalence for any open U ⊂ V .
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For our purpose it is enough to consider sheaves that arise in connection with space of

sections of a fibration in which case the morphisms assigned to a pair of open sets are the

obvious restriction maps. More specifically, we shall be interested in the sheaves Φ = SolR

and Ψ = ΓR, associated to some relation R.

Flexible and Micro-flexible Sheaves

A (topological) sheaf Φ on V is said to be flexible if for every pair of compact sets (B,A),

with A ⊂ B, the restriction map Φ(B) → Φ(A) is a Serre fibration. Flexibility is an important

property of a sheaf as apparent from the theorem below.

Theorem 2.2.6 (Homomorphism Theorem). [Gro86, pg. 77] Let α : Φ → Ψ be a sheaf

homomorphism between two flexible sheaves. Then α is a weak homotopy equivalence if α is a

local weak homotopy equivalence.

Now let us look at the sheaves Φ = SolR and Ψ = ΓR, for some relationR ⊂ X(r). It turns

out that Ψ is always flexible. Moreover, for many relations, the r-jet map jr : SolR → ΓR is

easily seen to be a local weak homotopy equivalence. Hence, the h-principle for R would follow

if we can prove that the solution sheaf is flexible. However, the solution sheaf Φ = SolR fails

to be flexible in general and it is not easy to get around it. A property called microflexibility,

which is weaker than flexibility, comes to the rescue.

A continuous map p : X → Y is called a micro-fibration, if for an arbitrary polyhedron P

and for any commutative diagram,

P × {0} X

P × [0, 1] Y

f̃0

p

f

there exists an ε > 0 and a continuous map F : P × [0, ε] → Y such that

p ◦ F = f |P×[0,ε] and F |P×0 = f̃0.

Note that if ε can be chosen to be 1 then p is a fibration.

Definition 2.2.7. A topological sheaf Φ is called microflexible if the restriction map Φ(B) →

Φ(A) is a microfibration for each pair of compact sets (B,A), with A ⊂ B ⊂ V .

Example 2.2.8. It is easy to see that every open relation is locally integrable (i.e, every jet in

R extends to a local holonomic section of R) and hence the solution sheaf is microflexible.
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Solution sheaves of many non-open relations are also microflexible, e.g., we shall see later in

this section that the sheaf of ‘regular’ solutions of a partial differential equation is microflexible

if the associated differential operator is ‘infinitesimally invertible’.

The passage from microflexibility to flexibility depends on the local symmetry of the relation

under consideration.

Action of the Pseudogroup Diff(V )

Let Diff(V ) denote the pseudogroup of local diffeomorphisms of a manifold V and Γ be the

sheaf of sections of a fiber bundle over V . A pair of elements (φ, f) ∈ Diff(V )×Γ is said to be

compatible if f is defined on the image of φ. By an action of Diff(V ) on Γ we mean a partial

map ψ : Diff(V )×Γ → Γ, defined only on compatible pairs and having all the properties of an

ordinary action. In other words, if φ : U → U ′ is a diffeomorphism between two open subsets

of V and f ∈ Γ(U ′) then the element ψ(φ, f), denoted by φ.f , belongs to Γ(U). We can

similarly define an action of a sub-pseudogroups of Diff(V )on Γ.

The simplest example of a Diff(V )-action is seen on the space of C∞-maps between two

manifolds, C∞(V,W ), which is given by (φ, f) 7→ f◦φ, where f ∈ C∞(V,W ) and φ ∈ Diff(V ).

A subsheaf Φ of Γ is said to be Diff(V )-invariant if φ : U → U ′ maps Φ(U ′) into Φ(U),

under an action described as above. If Φ is the solution sheaf of some relation R then an action

on Φ induces an action on ΓR.

Consider the product manifold V × R and let π : V × R → V be the canonical projection

map. Define Diff(V × R, π) to be the space of all fiber-preserving (local) diffeomorphisms of

V × R; in other words, f ∈ Diff(V × R, π) if π ◦ f = π.

Theorem 2.2.9 (Flexibility Theorem). [Gro86, pg. 78] Suppose Φ is a microflexible sheaf over

the manifold V × R and Φ is Diff(V × R, π)-invariant. Then the restriction sheaf Φ|V×0 is a

flexible sheaf over V = V × 0.

Note that V × 0 ⊂ V × R is a closed subset. Thus a section of Φ|V over some open set

U ⊂ V is understood as a section defined over an arbitrary open neighborhood of U × 0 in

V × R. An immediate consequence of the flexibility theorem is the following h-principle ‘near’

V .

Theorem 2.2.10. Let R be a relation defined for sections over V × R. Suppose, the solution

sheaf Φ of R is microflexible and Diff(V × R, π)-invariant. If R satisfies the local parametric

h-principle then it satisfies the parametric h-principle near V × 0.

This leads us into Gromov’s famous h-principle theorem on open manifolds.
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Theorem 2.2.11. [Gro86, pg. 79] Any Diff(V )-invariant, open relation R, over an open

manifold V , satisfies the parametric h-principle.

Remark 2.2.12. It is easy to note that the openness condition on R in the above theorem can

be relaxed by the following two conditions: (a) the solution sheaf of R is microflexible, and (b)

R satisfies the local parametric h-principle.

On the other hand, the openness condition on V in Theorem 2.2.11 may not be relaxed and

there are easy counter-examples where the h-principle fails. However, this theorem is a crucial

step towards getting an analogous result for certain relations on closed manifolds.

h-Principle For Closed Manifolds

In order to deal with relations R over closed manifolds V , the idea is to embed the manifold in

question in the open manifold Ṽ = V ×R and transform the problem in hand to an h-principle

problem of an auxiliary relation R̃ on Ṽ . This is where the flexibility theorem plays a crucial

role.

Let us first formally introduce the notion of an extension of a relation. For simplicity we

shall assume that the fiber bundles X → V are natural bundles ([Gro86, pg. 145]), so that

there is a natural action of Diff(V ) on the space of sections Γ(X).

Definition 2.2.13. LetR ⊂ X(r) be a relation. By an extension we mean a bundle X̃ → Ṽ over

the manifold Ṽ = V × R, along with a relation R̃ ⊂ X̃(r), such that the following conditions

are satisfied.

1. There is a fiber-preserving morphism,

ev : ΓX̃|V×0 → ΓX,

such that the induced map,

ev∗ : X̃
(r)|V×0 → X(r)

jrx 7→ jrev(x)

maps R|V×0 into R.

2. There is an open cover O of Σ by contractible coordinate charts, closed under finite

(nonempty) intersections, such that,

ev|O : ΓR̃|O×0 → ΓR|O
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is surjective for each O ∈ O. This will be referred to as the ‘local surjectivity’ of the

extension.

Notation : If R has an extension R̃ then we adopt the following notations for the sheaves.

Φ̃ = Sol R̃ and Ψ̃ = ΓR̃.

To keep the notation light, we shall denote the induced sheaf morphisms Φ̃|V×0 → Φ and

Ψ̃|V×0 → Ψ by ev as well. The map ev and the covering O will not be mentioned explicitly,

unless necessary.

Remark 2.2.14. We should point out that this notion of extension is in the similar vein of

[dP76], where the author considered open relations only.

As an application of the flexibility theorem we now get the following.

Theorem 2.2.15. Let R be an rth-order relation over V , which admits an extension R̃ over

Ṽ = V × R, such that,

1. Φ̃|V×0 is flexible, and

2. R̃ satisfies the local h-principle.

Suppose further that,

3. for each compact set C ⊂ O ∈ O and for each solution u ∈ SolR|OpC , the jet map

jr : ev−1(u) → ev−1(F = jru)

in the following diagram,

ev−1(u) Φ̃|OpC×0 Φ|OpC u

ev−1(F ) ΓR̃|OpC×0 ΓR|OpC F = jru

jr

ev

ev

induces surjective map on the set of path components.

Then the relation R satisfies the C0-dense h-principle.

Let us give a proof of this h-principle, which is essentially done via a cell-wise induction.

We fix the extension R̃ of the relation R, along with the open cover O of Σ, so that the map

ev : Ψ̃|O×0 → Ψ|O is surjective on sections for each O ∈ O.
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Next we fix a triangulation {∆α} on V , so that each simplex ∆α satisfies,

∆α ⊂ Oα for some Oα ∈ O.

For any simplex ∆ = ∆α we denote,

O∆ =
⋂

∆⊂∆β
Oβ

Since any ∆ is contained in at most finitely many simplices, the intersection is finite and thus

O∆ ∈ O. Let us also fix some convention about arbitrarily small open sets.

Convention about Op(·) and Õp(·) For any subset A ⊂ V , Op(A) will denote an unspeci-

fied open neighborhood of A, which may change in the course of the proof of Theorem 2.2.15.

Similarly, ÕpA will denote an arbitrary open neighborhood of A in Op(A) × R. Furthermore,

we will also assume that Op∆ ⊂ O∆ and Op ∂∆ ⊂ O∆, for any cell ∆ of the triangulation.

The following lemma is the base case for the induction involved in the proof.

Lemma 2.2.16. Fix some 0-simplex v ∈ Σ. Given any F ∈ Ψ, there exists a C0-small homotopy

Ft ∈ Ψ and open sets V1, V2 satisfying,

v ⊂ V1 ⊂ V̄1 ⊂ V2 ⊂ V̄2 ⊂ Ov,

where V̄i is the closure of Vi, such that,

� F0 = F

� F1 is holonomic on V1

� Ft is constant and equals F on {v} ∪ (V \ V2).

Proof. Since R̃ is an extension of R, we get some arbitrary lift F̃ ∈ Ψ̃|v of F ∈ Ψ|v, along

the sheaf map ev : Ψ̃|V×0 → Ψ. Then from the hypothesis (3) applied to the compact set

C = {v}, we get a path G̃t ∈ Ψ̃|v joining F̃ to a holonomic section G̃1, such that G̃t|v = F̃ |v

is fixed. Set, F vt = ev(G̃t). Then F
v
t |v = F |v and F v1 is holonomic on Op(v).

We now need to extend this homotopy to all over Σ. Fix open sets V1, V2, with v ⊂ V1 ⊂

V̄1 ⊂ V2 ⊂ V̄2 ⊂ Ov. Next get a cutoff function ρ : V → [0, 1], which is identically 1 on V̄1 and
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supp ρ ⊂ V2. Define,

Ft(σ) =


F vρ(σ)t(σ), if σ ∈ V̄2

F (σ), if σ ∈ V \ V2

It is then easy to see that Ft is the required homotopy. The homotopy can be made arbitrarily

C0-small by choosing the open set Ov sufficiently small.

The next lemma is the crux of the proof, i.e, the induction step. Note that we are considering

top-dimensional simplices of V as well.

Lemma 2.2.17. Suppose∆ ⊂ V is some i+1-cell, for i ≥ 0. Given F ∈ Ψ such that F |Op ∂∆ is

holonomic. Then there exists a C0-small homotopy Ft ∈ Ψ and open sets V1, V2,W1 satisfying,

∆ ⊂ V1 ⊂ V̄1 ⊂ V2 ⊂ V̄2 ⊂ O∆ and ∂∆ ⊂W1 ⊂ W̄1 ⊂ V1 ∩Op ∂∆ ⊂ O∆,

such that,

� F0 = F

� F1 is holonomic on V1

� Ft is constant and equals F on W1 ∪
(
V \ V2

)
.

Proof. Since R̃ is an extension, we first obtain some arbitrary lift F̃ ∈ Ψ̃|∆ of F |Op∆ ∈ Ψ|∆,

along the map ev. This is possible since the simplex ∆ is contained in some O ∈ O. Now, as

we are given that F |Op ∂∆ is holonomic, using the hypothesis (3) for the compact set C = ∂∆,

we obtain a homotopy

G̃∂∆t ∈ Ψ̃|∂∆

joining F̃ |Op ∂∆ to a holonomic section G̃∂∆1 ∈ Ψ̃|∂∆. Let us denote,

G̃∂∆1 = jrũ∂∆ ,

for some regular solution ũ∂∆ : Õp∂∆ → M . Furthermore, under the map ev : Ψ̃|∂∆ → Ψ|∂∆
we have that ev(Gt) = F |Op ∂∆ is constant.

Next, recall that the sheaf Ψ̃|∆ is flexible. Consider the diagram,

0 Ψ̃|∆

I Ψ̃|∂∆

F̃

G∂∆t
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We then have a homotopy lift G̃∆
t : [0, 1] → Ψ̃|∆, which is fixed on Õp∂∆. In particular we

have,

G̃∆
1 |Õp∂∆ = G̃∂∆1 = jrũ∂∆ .

Now we consider the map of fibrations as follows.

η−1
(
ũ∂∆

)
Φ̃|∆ Φ̃|∂∆ ũ∂∆

χ−1
(
G̃∆

1 |Õp∂∆

)
Ψ̃|∆ Ψ̃|∂∆ jr

ũ∂∆
= G̃∆

1 |Õp∂∆

J

η

J J

χ

Here η is indeed a fibration, as Φ̃|V is assumed to be flexible. Now the rightmost and the middle

J = jr are local weak homotopy equivalences by the hypothesis (2). Hence they are in fact

weak homotopy equivalences by an application of the homomorphism theorem (Theorem 2.2.6).

By the 5-lemma argument, we then have,

J : η−1(ũ) → χ−1
(
jrũ∂∆

)
is a weak homotopy equivalence. Now,

G̃∆
1 ∈ χ−1(jrũ∂∆)

Hence we have a path

H̃t ∈ χ−1(jrũ∂∆)

joining G̃∆
1 to some holonomic section H̃1 = jr

û∆
, where û∆ : Õp∆ →M is a regular solution.

In particular, this homotopy is fixed on Õp∂∆. We have the concatenated homotopy,

F̃t : F̃ ∼G̃∆
t
G̃∆

1 ∼H̃t
jr
f̂∆
.

Set F∆
t = ev(F̃t). Then, F

∆
0 = F |∆ and F∆

1 is holonomic on Op∆. Furthermore, as observed,

F∆
t is fixed on Op ∂∆.

Lastly, we need to extend F∆
t to all of V , keeping it F outside Op∆. Fix open sets,

∆ ⊂ V1 ⊂ V̄1 ⊂ V2 ⊂ V̄2 ⊂ Op∆ and ∂∆ ⊂ W1 ⊂ W̄1 ⊂ V1 ∩ Op ∂∆. Next get a cutoff

function ρ : V → [0, 1] which is identically 1 on V̄1 and supp ρ ⊂ V2. Define,

Ft(σ) =


F∆
ρ(σ)t(σ), if σ ∈ V̄2

F (σ), if σ ∈ V \ V2
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It is easy to see that Ft is the required homotopy. The homotopy can be made arbitrarily

C0-small by choosing the open set O∆ sufficiently small.

We may now proceed to prove the h-principle.

Proof of Theorem 2.2.15 . We show that for a given F ∈ Ψ, there is a homotopy Ft ∈ Ψ such

that F0 = F and F1 is a holonomic section. The proof is done by a cell-wise induction.

Step 0 : For each 0-simplex v ∈ V , using Lemma 2.2.16, we get a homotopy F vt ∈ Ψ, which

is holonomic on Op(v) and is identically F on V \Op(v). But then all these homotopies

patch together nicely and we have a homotopy F 0
t ∈ Ψ such that F 0

0 = F and F 0
1

is holonomic on OpV (0), neighborhood of the 0-skeleton V (0). Clearly, F 0
t = F on

V \OpV (0).

Step 1 : For each 1-simplex ∆ of V , using Lemma 2.2.17, we get a homotopy F∆
t ∈ Ψ|∆

such that F∆
1 is holonomic on Op(∆). Also, F∆

t = F 0
1 on Op ∂∆ ∪

(
Σ \Op∆

)
. Hence

all these homotopies patch together nicely and we get, F 1
t ∈ Ψ such that F 1

0 = F 0
1 and

F 1
1 is holonomic on OpV (1), neighborhood of the 1-skeleton V (1). Clearly, F 1

t = F 1
1 on

Σ \OpV (1)

Step i+ 1 : Suppose we have F i1 ∈ Ψ which is holonomic on OpV (i). For each i+1-simplex

∆, using Lemma 2.2.17, we get a homotopy F∆
t ∈ Ψ such that F∆

1 is holonomic on Op∆.

Also, F∆
t = F i1 on Op ∂∆ ∪

(
Σ \ Op∆

)
. Hence all these homotopies patch together

nicely and we get, F i+1
t ∈ Ψ such that F i+1

t = F i1 and F i+1
1 is holonomic on OpV (i+1),

neighborhood of the i+ 1-skeleton V (i+1). Clearly, F i+1
t = F i1 on V \OpV (i+1).

The induction stops once we have performed step k where k = dimV . We end up with a

sequence of homotopies in Ψ. Concatenating all of them we have the homotopy,

Ft : F ∼F 0
t
F 0
1 ∼F 1

t
F 1
1 ∼ · · · ∼Fk−1

t
F k−11 ∼Fkt

F k1 .

Clearly Ft ∈ Ψ is the desired homotopy joining F to a holonomic section F1 = F k1 ∈ Ψ.

Since at each stage the homotopy can be chosen to be arbitrarily C0-small and since there are

finitely many stages, we see that Ft can be made arbitrary C0-small as well. This concludes

the proof.

Remark 2.2.18. Note that the setup of Theorem 2.2.15 requires the extension relation R̃ to

be defined over the manifold Ṽ = V × R, even though in the course of the proof we are only

using the fact that we have local lifts along ev : ΓR̃|O → ΓR over some contractible open set
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O ⊂ V . In fact, given a section F ∈ Ψ we require a good open cover of V , depending on F ,

say, O = {Oi}i∈Λ for some index set Λ, which has the following property : For each i ∈ Λ

there exists,

a natural bundle X̃i → Õi = Oi × R and a relation R̃i ⊂ X̃(r)

so that, (a) R̃i is an extension of R|Oi and (b) R̃i satisfies the hypothesis of Theorem 2.2.15

for the manifold Oi. Then the proof of Theorem 2.2.15 goes on without any change. Conse-

quently, R satisfies the C0-dense h-principle. We will apply the theorem in this general setup

in Chapter 5.

2.2.2 Differential Operators

In this section we shall see that solution sheaves of a large class of non-open relations, which ap-

pear in connection with differential equations, are microflexible and furthermore those relations

satisfy the local h-principle.

Definition 2.2.19. Let p : X → V be a smooth fibration and G → V be a smooth vector

bundle. A differential operator of order r is a map D : ΓX → ΓG given by a smooth bundle

morphism ∆ : X(r) → G which satisfies, D(x) = ∆ ◦ jrx for any (local) section x ∈ ΓX.

Therefore, we have the commuting diagram,

X(r) G

V

∆

D(x)jrx

The bundle map ∆ is known as the symbol of the operator D. For α ≥ 0, we define a

bundle map ∆(α) : X(r+α) → G(α) given by,

∆(α)(jr+αx (v)) = jrD(x)(v).

Unless mentioned otherwise, X → V will denote a smooth fibration, G → V will denote a

smooth vector bundle and D : ΓX → ΓG a smooth differential operator.

Linearization of a Differential Operator

Given a differential operator D : ΓX → ΓG, the derivative at a point should quantify the

infinitesimal change in the value of the operator for small perturbation of the source. First we

need to define the tangent space of ΓX at some “point” x ∈ ΓX.
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Tangent space of Γ(X) : We first consider the case X = M × N → M , so that we have

the identification ΓX = C∞(M,N). A curve in C∞(M,N) is a continuous map γ : [0, 1] →

C∞(M,N). By a smooth curve we mean that the homotopy f : M × [0, 1] → N defined by

f(x, t) = γt(x) is smooth. Differentiating f at t = 0, we get a vector field ξ along f0, given by

ξ = d
dt

∣∣
t=0

ft. In fact, we can identify the tangent space to C∞(M,N) by the section space of

the vector bundle f∗TM .

We carry out the same idea for the general case of a fiber bundle π : X → V as well. For

some x ∈ ΓX, consider a smooth family of sections {xt}t∈(−ϵ,ϵ) so that x0 = x. Now for any

fixed point v ∈ V , t 7→ xt(v) is a smooth curve in the fiber Xv = π−1(v). Hence, taking

derivative at t = 0, we have that ξ(v) = d
dt

∣∣
t=0

xt(v), which is a tangent vector to the fiber

π−1(v) of X, at v ∈ V . The tangent vectors to X which are tangential to the fibers are referred

to as vertical tangent vectors. The space of all vertical tangent vectors form a subbundle of

TX which will be denoted by T vertX. It is easy to note that T vertX = ker dπ. Clearly, ξ is

then a section to T vertX, defined along x : V → X. Thus we have the following identification

of the tangent space of Γ(X) at x ∈ ΓX as,

TxΓX = Γx∗(T vertX)

Now the linearization of D : ΓX → ΓG at some section x ∈ ΓX is a linear map between

their respective tangent spaces,

TxD : TxΓX → TD(x)ΓG.

We have identified, TxΓX = Γx∗T vertX. Since G is a vector bundle, ΓG is a vector bundle

as well and we may canonically identify TD(x)ΓG = ΓG. Now, for any ξ ∈ Γx∗T vertX, choose

some representative family of sections {xt}t∈(−ϵ,ϵ), such that x0 = x and ξ(v) = d
dt |t=0xt(v)

for v ∈ V . Then, the differential TxD : Γx∗T vertX → ΓG is given as,

TxD
(
ξ
)
= lim

t→0

1

t

(
D(xt)−D(x)

)
,

which is a linear differential operator of the same order as D. We will call TxD the linearization

of the operator D at x. The linearity here means R-linearity and not to be confused with

C∞(V )-linearity.

Remark 2.2.20. By choosing a suitable topology, we can make sure that the differential defined

above makes sense in an infinite dimensional manifold setup. For a rigorous treatment, one may
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look into the beautiful monograph by Palais ([Pal66]). In this thesis, we may safely work under

the assumption that most of the natural operations from finite dimensional differential topology

can be performed in the infinite dimensional setup as well.

Universal Inversion of a Linear Differential Operator

A differential operator L : ΓX → ΓG, where both X → V and G → V are vector bundles,

is called a linear differential operator if L(x + y) = L(x) + L(y) and L(λx) = λL(x) for all

x, y ∈ Γ(X) and λ ∈ R. Note that in this case both Γ(X) and Γ(G) are infinite-dimensional

vector spaces.

A linear differential operator L is underdetermined if we have rkX > rkG. Similarly, we

say L is overdetermined if rkX < rkG and is determined if rkX = rkG.

Observe that given two vector bundles X,G over V , any linear differential operator ΓX →

ΓG of order r, is determined by the symbol map X(r) → G. In fact, the space of linear

differential operators of order r can be identified with the space of sections ΓH, where H =

hom(X(r), G) is a bundle over V .

Let L : ΓX → ΓG be an under-determined linear differential operator of order r. A linear

differential operatorM : ΓG→ ΓX of some order s, is called a right inverse of L if L◦M = Id.

Let A ⊂ H(s) be an open subset of the jet bundle and A = SolA. Hence, A is an open

subspace in the space of all r-th order linear differential operators Γ(X) → Γ(G). By a universal

right inversion of the operators A, we mean a differential operator M : A × ΓG → ΓX such

that for any L ∈ A we have, L ◦M(L, ) = Id, i.e,

L
(
M(L, g)

)
= g, for any g ∈ ΓG

Similarly we can define a (universal) left inversion as well.

Infinitesimal Inversion of a Differential Operator

Definition 2.2.21. A differential operator D : ΓX → ΓG of order r, is said to be infinitesimally

invertible over a set A ⊂ ΓX if we have a family of differential operators Mx : ΓG →

Γx∗T vertX of order s, such that the following holds.

� There exists an open set A ⊂ X(d) such that A consists of precisely the C∞-solutions of

A, i.e., A = Sol(A).
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� The global operator M(x, g) = Mx(g) for x ∈ A and g ∈ ΓG is a differential operator

which has order d in x ∈ S and order s in g ∈ ΓG. This is defined by a smooth map

A⊕G(s) → T vertX.

� The operator Mx is a right inverse to Lx = TxD, i.e, we have

Lx
(
Mx(g)

)
= g, for x ∈ A and g ∈ ΓG

The number d is called the defect of the inversion and the class of maps, over which

inversion exists, will be often referred to as A-regular maps. Note that A is an open subset in

the fine C∞-topology. We have that M is an universal right inversion of order s for the family

{Lx | x ∈ A}.

Observation 2.2.22. Let us make a few observation about the definition.

� In contrast with the classical implicit function theorem in the finite dimensional case,

where we only ask for the surjectivity at one point, here we demand that TxD be (right)

invertible for all x which belongs to the open set of maps A. Indeed, it is crucial that the

set of maps is the solution space for an open relation A ⊂ X(d).

� The requirement thatM(x, g) =Mx(g) be a differential operator takes into account that

the family of right inverses {Mx} is smooth in x in a certain sense.

Now we can state the main theorem concerning infinitesimal inversion.

Theorem 2.2.23. [Gro86, pg. 117] Given that D : ΓX → ΓG is a smooth differential operator

of order r. Suppose D is infinitesimally invertible, with defect d and order s, over the set

A ⊂ ΓX. Then, for each x ∈ A, there exists a family of open sets Bx ⊂ ΓG and operators

D−1x : Bx → A such that the following holds.

� Neighborhood Property : Each Bx contains some open subset of the 0-section in ΓG.

Furthermore, the union B =
⋃
x∈A{x} × Bx ⊂ A× ΓG is an open subset.

� Normalization Property : D−1x (0) = x for each x ∈ A, where 0 represents the zero-

section.

� Inversion Property : For each x ∈ A and g ∈ Bx we have, i.e, for (x, g) ∈ B, we have

D
(
D−1x (g)

)
= D(x) + g.
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� Continuity Property : For any smooth g ∈ Bx, the section D−1x (g) is smooth. Further-

more the operator D−1 : B → A defined as D−1(x, g) = D−1x (g) is jointly continuous

� Locality Property : There exists some auxiliary metric on the manifold V , such that the

value of the section D−1x (g) : V → X at any v ∈ V depends only on the value of the

sections x, g on the unit ball Bv(1) of radius 1 around v. In other words,

(x, g)|Bv(1) = (x′, g′)|Bv(1) ⇒ D−1x (g)|v = D−1x′ (g
′)|v.

As a consequence, we get the following implicit function theorem.

Theorem 2.2.24 (Nash-Gromov Implicit Function Theorem). [Gro86, pg. 118] Suppose D :

ΓX → ΓG is a differential operator of order r, which is infinitesimally invertible over A =

Sol(A), where the inversion has order s and defect d. Set, s̄ = max{d, 2r + s}. Then for any

any x0 ∈ A, there exists a Cs+s̄+1-open neighborhood B0 ⊂ ΓG of the 0-section, such that for

any smooth g ∈ B0, there exists a smooth solution x ∈ A for the equation,

D(x) = D(x0) + g.

In particular D is an open map when restricted to A-regular maps.

Remark 2.2.25. Note the importance of the fine topology in the implicit function theorem.

We get that the open neighborhood B0 in the above is Cσ-small, where

σ = s+ s̄+ 1 = s+ 1 +max{d, 2r + s}.

In other words, the implicit function theorem states that for any x0 ∈ A, we are able to solve

the equation D(x) = g, whenever g is Cσ-close to D(x0).

The above theory of Differential operators was developed by Gromov based on the seminal

work of J. Nash on smooth isometric embedding ([Nas56]). Nash’s method of inversion was

really elegant, and it was expounded upon by J. Moser in [Mos61, Mos66]. In simple terms, the

inversion is obtained through an iterative process like Newton’s method of finding a solution of

an (nonlinear) equation, which incorporates certain smoothing operators so that the sequence

of approximate solutions do converge to a genuine smooth solution in the limit.
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Existence of Local Solutions

Let R ⊂ X(r) be an arbitrary relation. By a local solution of R around some v ∈ V , we mean

a local section x ∈ ΓX defined over some Op(v), so that jrx : Op(v) → R. A local section

x : Op(v) → X is called an infinitesimal solution to R at v ∈ V if jrx(v) ∈ R. Note that a local

solution is clearly an infinitesimal solution at each point of its domain of definition. On the

other hand, if R is an open relation, then shrinking Op(v) as necessary, we can make sure that

an infinitesimal solution of R at v is in fact a local solution. A relation R is locally integrable

if every jet in R extends to a local solution of R.

Let us now define these notions in the context of an r-th order differential operator D :

ΓX → ΓG. Fix some g ∈ ΓG.

Definition 2.2.26. A section x ∈ ΓX defined on Op(v), is called an infinitesimal solution to

the equation D(x) = g, of order α, at the point v ∈ V if

jαD(x)−g(v) = 0.

The section is a called a local solution, if D(x) = g holds on Op(v).

Note that the equation is defined on the (r + α)-jet space of section of X. Now for every

α ≥ 0, we define a relation Rα = Rα(D, g) as,

Rα =
{
jr+αx (v) ∈ X(r+α)

∣∣∣ x is an infinitesimal solution to D(x) = g of order α, at v ∈ V
}

Observe that the C∞-solutions of Rα are precisely the smooth solutions of the equation D(x) =

g. In particular, the relations Rα have the same set of C∞-solutions for all α ≥ 0.

Now assume that D is infinitesimally invertible over an open relation A ⊂ X(d). Then we

consider the relations Rα, for α ≥ d− r, as follows :

Rα = Rα(D, g,A) = Rα(D, g) ∩
(
pr+αd

)−1
(A) ⊂ Xr+α,

where pr+αd : X(r+α) → X(d) is the jet projection map.

The relations Rα are of primary interest to us. We note that C∞-solutions of Rα are

precisely the solutions of the equation D(x) = g which are A-regular as well. As before, the

solution spaces SolRα are all the same for α ≥ d− r. On the other hand, the space of sections

ΓRα are distinct, as the relations Rα are sitting inside different jet spaces. Let us now denote,

Φ = SolRα and Ψα = ΓRα, for α ≥ d− r
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We also have the jet map jr+α : Φ → Ψα for each α ≥ d− r. We then have the following.

Theorem 2.2.27. [Gro86, pg. 120] The sheaf Φ = Sol(Rα) of A-regular solutions to the

equation D(x) = g is microflexible for α ≥ d− r.

Theorem 2.2.28. [Gro86, pg. 119] jr+α : Φ → Ψα is a local weak homotopy equivalence

whenever we have,

α ≥ s+max{d, 2r + s}

The above discussion culminates in the following h-principle over open manifolds.

Theorem 2.2.29. Let V be an open manifold. Suppose D : ΓX → ΓG is a differential operator

of order r, which admits infinitesimal inversion over some A = SolA, so that the inversion is

of order s and defect d. For any fixed g ∈ ΓG, denote by Rα = Rα(D, g,A) the relation

of A-regular, α-infinitesimal solutions to the equation D(x) = g. Suppose the solution sheaf

Φ of Rα is Diff(V )-invariant. Then for α ≥ s + max{d, 2r + s}, the relation Rα abides by

the parametric h-principle. That is, the jet map jr+α : Sol(Rα) → ΓRα is a weak homotopy

equivalence.

The proof is immediate from Remark 2.2.12.

A Stronger Version of the Implicit Function Theorem

Let us look back at the jet prolongation map again. Specifically, observe that in Theorem 2.2.28,

as we deform a given infinitesimal solution jr+αx (v) ∈ Rα|v at some v ∈ V to a local solution

x1 over Op(v), we have no control over the value of the section xt(v) at the point v. Can we

get a local homotopy which is stationary at v?

More generally, we may also ask whether we can we get a solution to the differential equation

in a neighborhood of a submanifold V0, provided there is a C∞ map which solves Rα at all

points of V0. This is not totally unreasonable to expect, as this can be viewed as a Cauchy

initial value problem. Indeed, we have the following stronger version of Theorem 2.2.24.

Theorem 2.2.30. [Gro86, pg. 143] Let D : ΓX → ΓG be a differential operator of order

r, which is infinitesimally invertible over A = Sol(A), with inversion of defect d and order s.

Suppose x0 ∈ A, g0 = D(x0), and V0 ⊂ V is a closed submanifold V of positive codimension,

without boundary. If g ∈ Γ(G) is such that jαg0 = jαg on points of V0 for

α ≥ 2r + 3s+ s̄ = 2r + 3s+max{d, 2r + s},
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then there exists an x ∈ A satisfying D(x) = g on Op(V0) and

j2r+s−1x0 = j2r+s−1x , on points of V0.

Taking V0 to be a single point we get the following corollary.

Corollary 2.2.31. Every infinitesimal solution x0 of Rα at v ∈ V is homotopic to a local

solution x1 of Rα, given that

α ≥ 2r + 3s+max{d, 2r + s}.

Furthermore, the homotopy xt satisfies the condition j
2r+s−1
xt (v) = j2r+s−1x (v) for all t ∈ [0, 1].

In the next chapter, we shall see how the results of this section come into play in proving

the h-principle for horizontal and (iso)contact immersions.





Chapter 3

Revisiting h-Principle for K-Contact

Immersions

Unless mentioned otherwise,M will denote a smooth manifold, with a fixed corank p-distribution

D, having curvature form Ω. The goal of this chapter is to discuss the h-principle for horizontal

immersions and other classes of maps into (M,D). The results proven in this chapter are not

new and an outline of these results and their proofs can be found in [Gro86, EM02]. We shall

present here a detailed proof using the general theory of h-principle that have been discussed

in Chapter 2. The main result of this chapter is stated in Theorem 3.2.7.

3.1 K-contact Immersions

Recall that a smooth immersion u : Σ →M is D-horizontal if the differential du maps TΣ into

D. In other words, a horizontal map u satisfies the equation du−1(D) = TΣ. This viewpoint

gives rise to a natural generalization of horizontal maps where we fix a distribution K ⊂ TΣ

and ask for maps u : Σ → M such that du maps K into D. We are thus led into defining

K-contact maps.

Definition 3.1.1. [Gro86, pg. 338] Given a distributionK ⊂ TΣ, we say a map u : Σ → (M,D)

is K-contact, if we have that

du(Kσ) ⊂ Tu(σ)D, for each σ ∈ Σ

In other words, u is K-contact if K ⊂ du−1(D). If K = TΣ, then K-contact maps u : Σ →

(M,D) are precisely the D-horizontal maps.

41
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In what follows below, Σ will denote an arbitrary manifold and K will denote an arbitrary

distribution on it, unless mentioned otherwise.

Definition 3.1.2. A K-contact map u : (Σ,K) → (M,D) is called K-isocontact (or, simply

isocontact) if we have K = du−1(D).

Now observe that for any contact map u : (Σ,K) → (M,D), we have an induced bundle

map,

d̃u : TΣ/K −→ u∗TM/D

X mod K 7−→ du(X) mod D

which is well-defined since du(K) ⊂ D. In fact, we have the following commutative diagram,

TΣ TM

TΣ/K TM/D

du

µ λ

d̃u

where λ and µ are the quotient maps, defining D and K respectively. We now observe a

simple characterization ofK-isocontact immersions, which follows from easy dimension counting

argument.

Observation 3.1.3. A contact immersion u : (Σ,K) → (M,D) is isocontact if and only if the

bundle map d̃u is injective.

Hence, for an isocontact immersion (Σ,K) → (M,D) to exist, the following numerical

constraints must necessarily be satisfied,

rkK ≤ rkD and corkK ≤ corkD.

The Curvature Condition for (Iso)contact Maps

K-contactness automatically imposes a differential condition involving the curvatures of the

distributions.

Proposition 3.1.4. Given a K-contact map u : (Σ,K) → (M,D) we have the following

commutative diagram,

Λ2K Λ2D

TΣ/K TM/D

ΩK

du

ΩD

d̃u
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where ΩK ,ΩD are the curvature forms of K and D respectively. In other words we have,

u∗ΩD|K = d̃u ◦ ΩK

Proof. Let X,Y ∈ K|σ. Choose some local extensions X̃, Ỹ ∈ K of X,Y respectively, around

σ ∈ Σ. Let U be a trivializing neighborhood for the subbundle D around u(σ) ∈ M , so that

we may write, D|U =
⋂p
s=1 kerλ

s for some local 1-forms λs ∈ Ω1(U). Then, ΩD|U =
loc.

(
ωs
)
,

where ωs = dλs|D. Since u is K-contact, in particular, we have u∗λs|K = 0. Consequently,

u∗dλs(X,Y ) = d(u∗λs)(X,Y ) = −u∗λs
(
[X̃, Ỹ ]σ

)
On the other hand, from Definition 2.1.16 we have,

ΩK(X,Y ) = −[X̃, Ỹ ]σ mod Kσ

Hence for X,Y ∈ Kσ as above,

d̃u ◦ ΩK(X,Y ) = d̃u
(
− [X̃, Ỹ ]σ mod Kσ

)
= −u∗[X̃, Ỹ ] mod Du(σ)

=

(
λs
(
− u∗[X̃, Ỹ ]

))
=
(
u∗λs

(
− [X̃, Ỹ ]σ

))
=
(
u∗dλs(X,Y )

)
=
(
u∗ωs(X,Y )

)
= u∗ΩD(X,Y )

Since X,Y ∈ Kσ is arbitrary, we have proved the claim.

If K = TΣ, then ΩK = ΩTΣ = 0 and hence for a horizontal immersion u : Σ →M we get

back the isotropy condition, namely,

u∗ΩD = d̃u ◦ ΩTΣ = 0.

Contact Immersion Operator

We shall now see that the (iso)contact immersions (Σ,K) → (M,D) appear as the solutions

of certain first order partial differential equation. For simplicity, let us assume that D =⋂p
s=1 kerλ

s for global 1-forms λs ∈ Ω1(M). It is easy to note that for any map u : Σ →M ,

du(K) ⊂ D ⇔ u∗λs|K = 0 for each 1 ≤ s ≤ p



44 Chapter 3. Revisiting h-Principle for K-Contact Immersions

Now, consider the operator,

DCont : C∞(Σ,M) → Γhom(K,Rp)

u 7→
(
u∗λs|K

)
so that u is K-contact if and only if DCont(u) = 0.

Fixing some coordinates {xi} any {yµ} respectively on Σ andM , we may write, λs =
loc.

λsµdy
µ

and then we have,

u∗λs = u∗
(
λsµdy

µ
)
=
(
λsµ ◦ u

)
∂iu

µdxi

We see that DCont is indeed a first order differential operator in the sense of Definition 2.2.19

and it is determined by the bundle map ∆ : J1(Σ,M) → hom(K,Rp) given by,

∆
(
j1u(x)

)
=

(
X 7→

(
(λsµ ◦ u)(x)∂iuµdxi(X)

)p
s=1

)
, where X ∈ Kx.

In other words, if (x, y, F : TxΣ → TyM) ∈ J1(Σ,M)|(x,y), then we have

∆(x, y, F ) =
(
x, (F ∗λs|Kx)

)
.

Linearization of DCont

We shall denote the linearization operator of DCont at a map u : Σ → M by LCont
u . Since

TuC
∞(Σ,M) = Γu∗TM , we have that

LCont
u = TuD

Cont : Γu∗TM → Γhom(K,Rp).

Suppose ξ ∈ Γu∗TM . Let ut : Op(σ) →M be a smooth family of maps such that u0 = u on

Op(σ) and ξ(σ) = d
dt |t=0ut(σ). Then the linearization operator is given as,

LCont
u (ξ)(X) =

d

dt

∣∣∣
t=0

DCont(ut)(X) =
d

dt

∣∣∣
t=0

u∗tλ
s(X), for local section X of K.

By the Cartan formula,

d

dt

∣∣∣
t=0

u∗tλ
s(X) = u∗0

(
dλs(ξ, u∗X) + d

(
λs(ξ)

)
(X)

)
.
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We shall write down the operator LCont
u succinctly as,

LCont
u (ξ) =

(
ιξdλ

s + d
(
ιξλ

s
))∣∣∣

K
.

Note that since ξ ∈ Γu∗TM is a vector field along the map u : Σ →M , the contraction ιξdλ
s

is interpreted as a 1-form on TΣ, defined by the formula,

(
ιξdλ

s
)
σ
(X) = (dλs)u(σ)(ξσ, duσ(X)), for X ∈ TσΣ.

Similarly we interpret, ιξλ
s|σ = λs|u(σ)(ξσ) for σ ∈ Σ.

Infinitesimal Inversion of DCont

Having identified the linearization operator LCont
u : Γu∗TM → Γhom(K,Rp), we restrict it to

the subspace Γu∗D. Note that for any ξ ∈ Γu∗D we have, ιξλ
s = 0 and thus the restricted

linearization operator has the following simple description :

LCont
u : Γu∗D → Γhom(K,Rp)

ξ 7→
(
ιξdλ

s
)∣∣∣
K

=
(
X 7→ dλs(ξ, u∗X)

)
Observe that LCont

u is, in fact, C∞(Σ)-linear and hence is given by a bundle map, u∗D →

hom(K,Rp). If this bundle map is an epimorphism, then it has a right inverse, also given by

a bundle map; in other words, we have a 0th-order inversion for the differential operator LCont
u .

In fact, by using a Riemannian metric on M , we can get a continuous family of right inverses,

over the set of maps,

A =
{
u : Σ →M

∣∣∣ u is an immersion and LCont
u is a bundle epimorphism

}
.

Observe that A is precisely the solution space of the relation A ⊂ J1(Σ,M) consisting of tuples

(σ, y, F : TσΣ → TyM), such that,

� F is injective, and

� the linear map,

Dy → hom(K,Rp)

ξ 7→
(
X 7→ dλs(ξ, FX)

)
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is surjective.

If we wish to study K-isocontact immersions, then in the light of Observation 3.1.3, F must

also satisfy,

� rk(λs ◦ F ) ≥ corkK

Clearly, A is an open relation, and as we have already noted, the operator DCont is infinitesimally

invertible over A = Sol(A).

A smooth solution u of A (that is, u ∈ A) will be referred to as a (dλs)-regular immersion.

In general, (dλs)-regularity depends on our choice of defining 1-forms λs for D. But it turns

out that the space of (dλs)-regular, K-contact immersions (Σ,K) → (M,D), is independent

of any such choice. Suppose u : Σ → M is a K-contact immersion. In particular, we have

that, du(K) ⊂ D. Then from Definition 2.1.16 it is clear that

LCont
u (ξ) = u∗

(
ιξΩ
)∣∣
K
,

where Ω is the curvature 2-form of D.

Definition 3.1.5. A K-contact immersion u : (Σ,K) → (M,D) is called Ω-regular if the

bundle map,

LCont
u : u∗D → hom(K,u∗TM/D)

ξ 7→ ιξΩ|K

is an epimorphism.

Remark 3.1.6. In simple terms, Ω-regularity of aK-contact immersion u : Σ →M is equivalent

to the solvability of the following algebraic system in local vector fields ξ ∈ ΓD :

Ω(ξ, u∗Xi) = Gi, 1 ≤ i ≤ rkK,

where Gi are arbitrary smooth functions on Σ. Here (Xi) is some choice of local frame of K.

In particular, if K = TΣ, then for every σ ∈ Σ, the subspace Im duσ is Ω-isotropic in Du(σ).

Therefore, in order to solve the algebraic system for arbitrary Gi, we must have ([Gro96, pg.

251]),

rkD − dimΣ ≥ corkD × dimΣ.
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When D ⊂ TM is not cotrivial

For a general distribution D ⊂ TM , we may write D = kerλ, where the quotient map λ :

TM → TM/D is treated as a TM/D-valued 1-form. Then for any map u : Σ →M , we have

that u∗λ is a u∗TM/D-valued 1-form on Σ. We wish to study the operator u 7→ u∗λ|K , whose

zeroes are precisely the K-contact maps (Σ,K) → (M,D).

Consider the space of maps, B = C∞(Σ,M). For each u ∈ B, we have the infinite

dimensional vector space,

Eu = Γhom(K,u∗TM/D).

Let E → B be an infinite-dimensional vector bundle over B, having Eu as the fibre over u ∈ B.

The operator u 7→ u∗λ|K can then be viewed as a section of this bundle. Next, we fix a

connection ∇ on TM/D. This enables us to get a parallel transport on E → B. Recall that,

TuB = Γu∗TM , and the vertical tangent space at u∗λ|K is isomorphic to Eu. We can then

define the linearization operator at u ∈ B as,

LCont
u : Γu∗TM → Γhom(K,u∗TM/D)

ξ 7→
(
ιξd∇λ+ dιξλ

)
|K

As before, we restrict LCont
u to the subspace Γu∗D to get the operator

LCont
u : Γu∗D → Γhom(K,u∗TM/D)

ξ 7→ ιξd∇λ|K

which is C∞(Σ)-linear, and hence is given by a bundle map, u∗D → hom(K,u∗TM/D). We

say an immersion u ∈ B is d∇λ-regular if the bundle map defined by the operator LCont
u is

surjective. We do not distinguish between notations for the operator and the bundle map.

The notion of d∇λ-regularity depends very much on the choice of the connection ∇ on

TM/D. But if u : (Σ,K) → (M,D) isK-contact, then as a consequence of Proposition 2.1.18,

the d∇λ-regularity is equivalent to Ω-regularity, and hence the notion is independent of the

choice of connection.

The relation RCont

We now define a first order relation in J1(Σ,M).

Definition 3.1.7. Given subbundles K ⊂ TΣ and D ⊂ TM , we define RCont ⊂ J1(Σ,M) as

the first order relation consisting of 1-jets (x, y, F : TxΣ → TyM) satisfying the following :
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1. F (Kx) ⊂ Dy

2. F is injective and Ω-regular

3. F abides by the curvature condition,

F ∗Ω|Kx = F̃ ◦ ΩKx ,

where and ΩK is the curvature form of K.

We also have a subrelation RIsoCont ⊂ RCont which further satisfies,

4. The induced map F̃ : TΣ/K|x → TM/D|y is injective.

As a special case, for K = TΣ, we shall denote the corresponding relation RCont as RHor.

We shall refer to a section of RCont as a formal Ω-regular, K-contact immersion (Σ,K) →

(M,D). We shall be needing the following lemma later, in the proof of Lemma 3.2.6.

Lemma 3.1.8. The following holds true for the relation RCont.

1. For each (x, y) ∈ Σ×M , the subset RCont
(x,y) is a submanifold of J1

(x,y)(Σ,M)

2. RCont is a submanifold of J1(Σ,M)

3. The projection map p = p10 : J
1(Σ,M) → J0(Σ,M) restricts to a submersion on RCont

Proof. Note that J1(Σ,M) and hom(K,TM/D) are both vector bundles overs J0(Σ,M) =

Σ×M . Consider the bundle map,

Ξ1 : J
1(Σ,M) hom(K,TM/D)

J0(Σ,M)

defined over (x, y) ∈ J0(Σ,M) = Σ×M by,

Ξ1|(x,y) : J1
(x,y)(Σ,M) → hom(Kx, TM/D|y)(

x, y, F
)
7→ F ∗λ|Kx = λ ◦ F |Kx
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From the commutative diagram,

Kx TyM

TM/D|y

F |Kx

Ξ1(F )
λ

it is immediate that Ξ1|(x,y) is in fact surjective, since λ is an epimorphism. Consequently, Ξ1

is a bundle epimorphism; ker Ξ1 is a sub-bundle over J0(Σ,M), given as,

ker Ξ1|(x,y) =
{
(x, y, F )

∣∣ F (Kx) ⊂ Dy

}
.

Let us now consider a fiber-preserving map, Ξ2 : ker Ξ1 → hom(Λ2K,TM/D), over

J0(Σ,M), given by,

Ξ2|(x,y) : ker Ξ1|(x,y) → hom
(
Λ2Kx, TM/D|y

)
F 7→ F ∗Ω|Kx − F̃ ◦ ΩKx :=

(
X ∧ Y 7→ Ω(FX,FY )− F̃ ◦ ΩKx(X,Y )

)
where F̃ : TΣ/K|x → TM/D|y is the induced map and ΩK : Λ2K → TΣ/K is the curvature

2-form. Note that the relation RCont is then given as,

RCont
(x,y) = Ξ2|−1(x,y)(0) ∩ {Ω-regular injective linear maps TxΣ → TyM}.

In order to prove that RCont
(x,y) is a manifold, we shall show that each point is a regular point of

the map Ξ2|(x,y,).

The derivative of Ξ2|(x,y) at some (x, y, F ) ∈ ker Ξ1|(x,y) is given by,

d(x,y,F )Ξ2|(x,y) : ker Ξ1|(x,y) → hom
(
Λ2TxΣ, TM/D|y

)
G 7→

(
X ∧ Y 7→ Ω(FX,GY ) + Ω(GX,FY )− G̃ ◦ ΩKx(X,Y )

)
We then have the diagram,

ker Ξ1|(x,y) hom(Kx,Dy) hom
(
Kx, hom(Kx, TM/D|y)

)

hom(TΣ/K|x, TM/D|y) hom
(
Λ2Kx, TM/D|y

)
G 7→G|Kx

G
7→
G̃

ΩF

A

◦ ΩKx

(∗)
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where, ΩF (G)(X)(Y ) = Ω(FX,GY )andA is the skew-symmetrization map given by, A(F )(X,Y ) =

F (X)(Y )− F (Y )(X), for X,Y ∈ Kx. Indeed,

(A ◦ ΩF (G))(X ∧ Y ) = ΩF (G)(X)(Y )− ΩF (G)(Y )(X)

= Ω(FX,GY )− Ω(FY,GX)

= Ω(FX,GY ) + Ω(GX,FY )

and hence we see that,

dFΞ2(G) = A ◦ ΩF
(
G|Kx

)
− G̃ ◦ ΩKx .

Now suppose (x, y, F ) ∈ ker Ξ1|(x,y) is such that F : TσΣ → TyM is injective and Ω-regular,

i.e,

Ω̃ : Dy → hom(Kx, TM/D|y)

ξ 7→ F ∗ιξΩ|Kx =
(
X 7→ Ω(ξ, FX)

)
is surjective and F̃ is injective. Applying the hom(Kx, ) functor we then have that the map ΩF

is surjective. But then from the diagram (∗) above, it follows that for Ω-regular F , dFΞ2|(x,y) is

surjective. Indeed, given any P : Λ2Kx → TM/D|y, we can arbitrarily fix some injective linear

map G2 : TΣ/K|x → TM/D|y and then solve A◦ΩF (G1) = P +G1 ◦ΩKx for G1 : Kx → Dy.

Then we may get G : TxΣ → TyM so that G̃ = G2 and hence dFΞ2(G) = P . Consequently

RCont
(x,y) is a submanifold of J1

(x,y)(Σ,M).

Recall, Ξ1 : hom(TΣ, TM) → hom(K,TM/D) is an epimorphism, over the manifold

J0(Σ,M) = Σ×M and ker Ξ1 =
{
(x, y, F )

∣∣F (Kx) ⊂ Dy

}
is a subbundle of hom(TΣ, TM).

Now,

Ξ2 : ker Ξ1 → hom(Λ2K,TM/D)

is a fiber-preserving map, so that Ξ2 restricted to each fiber over (x, y) ∈ J0(Σ,M) is regular

at each point of RCont
(x,y). Since,

RCont = Ξ−12

(
0
)
∩RΩ

where 0 = 0Σ×M ↪→ hom(Λ2K,TM/D) is the 0-section and RΩ is the space of Ω-regular

linear maps, we have that Ξ2 is a submersion at Ω-regular points. Consequently, RCont is a

submanifold.
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Lastly, we have the commutative diagram,

RCont ⊂ ker Ξ1 hom(Λ2K,TM/D)

J0(Σ,M)

Ξ2

p10|RCont
π

Since Ξ2 is a submersion at the Ω-regular points in Ξ−12 (0), we have p10|RCont is a submersion.

3.2 A 1-jet h-Principle for Regular K-contact Immersions

We have seen that the operator DCont is infinitesimally invertible, in the sense of Defini-

tion 2.2.21, on A ⊂ J1(Σ,M), the space of d∇λ-regular K-contact immersions; clearly, the

inversion is of order 0 and defect 1. Following the discussion in the last chapter, we define the

relations RCont
α = RCont

α (DCont,A, 0) ⊂ Jα+1(Σ,M) for the operator DCont. Jets in RCont
α are

represented by Ω-regular, infinitesimal solutions of DCont, of order α (Definition 2.2.26). The

relations RCont
α have the same solution space for all α ≥ 0, namely, the space of Ω-regular,

K-contact immersions Σ → M . Let us denote this sheaf of solutions as ΦCont = Sol(RCont
α )

for any α ≥ 0. Now by appealing to the discussion in section 2.2.2, we conclude the following :

� The relations RCont
α satisfy the local h-principle for α ≥ 2, i.e, the jet map

jα+1 : ΦCont → ΓRCont
α

is a local weak homotopy equivalence, by Theorem 2.2.28.

� The solution sheaf ΦCont is microflexible, by Theorem 2.2.27.

Therefore, in order to conclude the existence of local K-contact immersions, we need at least

a formal solution of RCont
2 , which is a relation of order 3. We shall now identify the image of

RCont
α under pα+1

1 : Jα+1(Σ,M) → J1(Σ,M), which will enable us to state the local h-principle

in terms of the 1-jet map.

It is immediate from Definition 3.1.7 that RCont is a subrelation of RCont
0 . Note that

Sol(RCont) = Sol(RCont
α ), for all α ≥ 0

The following lemma relates RCont
α with RCont for α ≥ 1.
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Lemma 3.2.1. For any α ≥ 1, the jet projection map p = pα+1
1 : Jα+1(Σ,M) → J1(Σ,M)

maps the relation RCont
α surjectively onto RCont. Furthermore, for each (x, y) ∈ Σ ×M , the

map p : RCont
α |(x,y) → RCont|(x,y) is a fiber bundle with contractible fiber and any section of

RCont defined over a contractible chart in Σ can be lifted to RCont
α along p.

We postpone the proof of the above lemma to section 3.3. As a direct consequence, we get

the following corollary.

Corollary 3.2.2. For any α ≥ 1, the sheaf map p : ΓRCont
α → ΓRCont induced by the jet

projection map p = pα+1
1 is a weak homotopy equivalence.

Proof. It is immediate from Lemma 3.2.1, that p : ΓRCont
α → ΓRCont is a surjective sheaf

map with contractible fiber. Consequently, the sheaf map is a local weak homotopy equiva-

lence. Now both the sheaves are flexible. Hence an application of the homomorphism theorem

(Theorem 2.2.6) gives us that p is indeed a weak homotopy equivalence.

Corollary 3.2.2, in conjunction with the earlier observation then implies that the relation

RCont satisfies the local parametric h-principle. The same is true for RIsoCont ⊂ RCont and for

RHor as well (Definition 3.1.7). At this point, we have an intermediate result for Ω-regular,

D-horizontal immersions Σ →M , for Σ open.

Theorem 3.2.3. If Σ is an open manifold, then the relation RHor satisfies the parametric

h-principle.

Proof. Let ΦHor denote the sheaf of Ω-regular, D-horizontal immersions, i.e, ΦHor = Sol(RHor).

It is easily seen to be invariant under the natural action of Diff(Σ) on C∞(Σ,M). Indeed, for

any horizontal u and any diffeomorphism ζ, u◦ζ is clearly horizontal. Furthermore, Ω-regularity

is preserved, as it is apparent from the commutative diagram,

u∗D hom(TΣ, u∗TM/D)

hom(TΣ, u∗TM/D)

(dζ)∗∼=

Now, we have already observed that ΦHor is a microflexible sheaf and j3 : ΦHor → ΓRHor
2

is a local weak homotopy equivalence. Hence, it follows from Remark 2.2.12 that j3 is a weak

homotopy equivalence. Now by Corollary 3.2.2, we have that p31 : ΓRHor
α → ΓRHor is a weak

equivalence as well. Hence,

j1 = p31 ◦ j3 : ΦHor → ΓRHor
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is a weak homotopy equivalence. Thus, the relation RHor satisfies the parametric h-principle

on open manifolds.

Extension h-principle

As before, Σ is a manifold with a given distribution K ⊂ TΣ. Let Σ̃ = Σ× R be the product

manifold with the natural fibering π : Σ×R → Σ. Consider the distribution K̃ = dπ−1(K) on

Σ̃ so that corank of K̃ is the same as that of K.

We can now define an operator D̃Cont for the pair (Σ̃, K̃), as we did in the case of (Σ,K). Let

us denote the associated relations on Σ̃ by R̃Cont
α , α ≥ 0, and R̃Cont ⊂ R̃Cont

0 . Let Φ̃Cont be the

sheaf of Ω-regular, K̃-contact immersions. As noted earlier, Φ̃Cont = Sol(R̃Cont
α ) = Sol(R̃Cont).

Note that the derivative of any fibre-preserving local diffeomorphism φ of Σ × R takes

K̃ isomorphically onto itself. Therefore, if u is K̃-contact then so is u ◦ φ, for any φ ∈

Diff(Σ×R, π). Also Ω-regularity is Diff(Σ×R, π)-invariant as well. This implies that the sheaf

Φ̃Cont is invariant under the natural Diff(Σ× R, π) action on Σ× R.

Theorem 3.2.4. [Gro86, pg. 339] The first order relation R̃Cont satisfies the parametric h-

principle near Σ× {0}.

Proof. We have the following :

� The sheaf Φ̃Cont = Sol R̃Cont = Sol R̃Cont
α is microflexible by Theorem 2.2.27

� The map j1 : Φ̃Cont → ΓR̃Cont is a local weak homotopy equivalence, as argued in the

proof of Theorem 3.2.3.

� The solution sheaf Φ̃Cont is invariant under the action of Diff(Σ̃, π)

Hence an application of Theorem 2.2.10 gives us that the map j1 : Φ̃Cont|Σ → ΓR̃Cont|Σ is a

weak homotopy equivalence. In other words, we have the parametric h-principle for R̃Cont near

Σ× 0.

Observe that Σ̃ is an open manifold and it admits a deformation retraction into an arbitrary

small neighborhood of Σ × 0, by an action of Diff(Σ̃, π). Hence, pullback of any K̃-contact,

Ω-regular immersion near Σ×0, by a deformation retraction gives a global K̃-contact, Ω-regular

immersion on Σ̃. Consequently, we get the following.

Corollary 3.2.5. Ω-regular K̃-contact immersions (Σ̃, K̃) → (M,D) satisfy the parametric

h-principle. In fact, R̃Cont satisfies the h-principle over Σ̃ = Σ× R.
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We put forward the relation R̃Cont ⊂ J1(Σ̃,M) as a suitable candidate for an exten-

sion of the relation RCont (see Definition 2.2.13). Note that the natural restriction mor-

phism C∞(Σ̃,M) → C∞(Σ,M), taking ũ 7→ ũ|Σ×0, gives rise to a map in the jet level,

ev : J1(Σ̃,M)|Σ → J1(Σ,M), given by,

(
(x, t), y, F : T(x,t)Σ̃ → TyM

)
7→
(
x, y, F |TxΣ

)
Now if ũ is K̃-contact, let u = ũ|Σ; then for any (σ, 0) ∈ Σ× 0 we have dσu = d(σ,0)ũ|TσΣ⊕0

and hence,

dσu(Kσ) = d(σ,0)ũ|TσΣ
(
K̃(σ,0) ∩ TσΣ

)
⊂ Dũ(σ,0) = Du(σ)

Thus, u is then K-contact. It follows that we have induced sheaf maps,

ev : Sol R̃Cont|Σ×0 → SolRCont, ev : ΓR̃Cont|Σ×0 → ΓRCont

The next lemma justifies the hypothesis (3) of Theorem 2.2.15.

Lemma 3.2.6. Let O ⊂ Σ be a coordinate chart and C ⊂ O is a compact subset. Suppose

that U ⊂ M is an open subset such that D|U is trivial. Then, given any Ω-regular K-contact

immersion u : OpC → U ⊂M , the 1-jet map

j1 : ev−1(u) → ev−1(F = j1u)

induces a surjective map between the set of path components. Furthermore, the homotopy can

be kept C0-small.

Proof. We have the commutative diagram

ev−1(u) Φ̃Cont|C×0 ΦCont|C u

ev−1(F ) Ψ̃Cont|C×0 ΨCont|C F = j1u

j1

with the sheaves,

ΦCont = SolRCont, ΨCont = ΓRCont, Φ̃Cont = Sol R̃Cont, Ψ̃Cont = ΓR̃Cont.

Fix some neighborhood V of C, with C ⊂ V ⊂ O, over which u is defined and then fix an

arbitrarily small open neighborhood Uϵ of u(V ). The proof now proceeds in a few steps.
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Step 1 Given an arbitrary extension F̃ of F along ev, we construct a regular solution ū on

ÕpC, so that j1ū|OpC = F̃ |OpC .

Step 2 We get an homotopy between j1ū and F̃ , in the affine bundle J1(W,Uϵ), which is

constant on points of C.

Step 3 Using Lemma 3.1.8, we then push the homotopy obtained in Step 2 inside the relation

R̃Cont, thus completing the proof.

Proof of Step 1 : Suppose F̃ ∈ Ψ̃Cont|C×0 is some arbitrary extension of F . Using Lemma 3.2.1,

we then get an arbitrary lift F̂ ∈ ΓR̃Cont
α |C of F̃ , for α sufficiently large (in fact, α ≥ 4 will

suffice). The formal maps are represented in the following diagram.

R̃Cont
α |Σ

R̃Cont|Σ

Σ RCont

pα+1
1

ev

F̂

F̃

F

We can now define a map û : Õp(C) → Uϵ so that jα+1
û (p, 0) = F̂ (p, 0), by applying a Taylor

series argument. In particular, we have û|C×0 = u and û is regular on points of Op(C) × 0.

Since C is a compact set and regularity is an open condition, we have that û is regular on

some open set W satisfying, C ⊂W ⊂ W̄ ⊂ Õp(C). We also have û is a regular infinitesimal

solution, along the set W0 = (V × 0) ∩W ⊂ Õp(C), of order,

α ≥ 2.1 + 3.0 + max{1, 2.1 + 0} = 4,

for the equation D̃ = 0, where D̃ = D̃Cont : v 7→ v∗λs|K̃ is defined over C∞(W,Uϵ). Now, from

Theorem 2.2.30, we can get an inversion D̃−1û , on W ; we have an Ω-regular map ū : V → Uϵ

such that, D̃(ū) = 0 and furthermore,

j1ū = j1û on points of W0.

In particular, j1ū(p, 0) = F̃ (p, 0) for (p, 0) ∈W0 and so u on OpC is extended to ū on W .
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Proof of Step 2 : Let us denote ũ = bs F̃ and define, vt(x, s) = ū(x, ts) for (x, s) ∈ W .

Note that,

v0(x, s) = ū(x, 0) = û(x, 0) = ũ(x, 0)

and so vt is a homotopy between the maps ū and π∗(ũ|OpC)|W , where π : Σ × R → Σ is

the projection. Now, with the help of some auxiliary choice of parallel transport on the vector

bundle J1(W,Uϵ), we can get isomorphisms,

φ(x, s) : J1
(x,0),ū(x,0)(W,Uϵ) → J1

(x,s),ū(x,s)(W,Uϵ), for (x, s) ∈W , for s sufficiently small,

so that φ(x, 0) = Id. We then define the homotopy,

Gt|(x,s) = (1− t) · φ(x, ts) ◦ F̃ |(x,0) + t · j1ū(x, ts) ∈ J1
(x,ts),ū(x,ts)(W,Uϵ).

Clearly Gt covers vt; we have

G0|(x,s) = φ(x, 0) ◦ F̃ |(x,0) = F̃ |(x,0) = F̃ |(x,s) and G1|(x,s) = j1ū(x, s).

Thus we have obtained a homotopy Gt between π∗(F̃ |OpC)|ÕpC and j1ū. Similar argument

produces a homotopy between F̃ and π∗(F̃ |OpC)|W as well. Concatenating the two homotopies,

we have a homotopy Ht between F̃ and j1ū, in the affine bundle J1(W,Uϵ) →W×Uϵ. However,

Ht need not lie in R̃Cont.

Proof of Step 3 : We now get an tubular neighborhood N ⊂ J1(W,Uϵ) of Im F̃ , which fiber-

wise deformation retracts onto R̃Cont ∩ N . Indeed, this follows from Lemma 3.1.8. Suppose

ρ : N → R̃Cont is such a retraction. Now, note that on points of C,

Ht|(x,0) = (1− t) · F̃ |(x,0) + t · j1ū(x, 0) = F̃ |(x,0).

Since C is compact, we may get a neighborhood W ′, satisfying C ⊂ W ′ ⊂ W , such that the

homotopy Ht|W ′ takes its values in the open neighborhood N of Im F̃ . Then composing with

the retraction ρ, we can push this homotopy inside the relation R̃Cont, obtaining a homotopy

F̃t ∈ Ψ̃|C joining F̃ to j1ū. Observe that the homotopy remains constant on points of C. In

particular we have that, ev(F̃t) = F on points of C. Since Uϵ is taken to be arbitrarily small,

the homotopy in the base maps are always kept C0-small. This concludes the proof.
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In the light of Lemma 3.2.6, we see that in order to achieve the h-principle for Ω-regular

K-contact immersions of an arbitrary manifold Σ, we only need to get a suitable extension of

the relation RCont. Then a direct application of Theorem 2.2.15 gives us the desired h-principle.

We now state the main theorem of this Chapter.

Theorem 3.2.7. If ev : R̃Cont|Σ×0 → RCont is locally surjective, i.e, if R̃Cont is an extension

of RCont, then RCont satisfies the C0-dense h-principle.

Proof. From the hypothesis we have that R̃Cont is an extension of RCont in the sense of Defi-

nition 2.2.13. Furthermore,

� Sol R̃Cont is microflexible by Theorem 2.2.27 and the sheaf is invariant under theDiff(Σ̃, π)

action. Hence the restricted sheaf Sol R̃Cont|Σ is flexible by Theorem 2.2.9.

� R̃Cont satisfies the local h-principle by Theorem 2.2.28 and Lemma 3.2.1.

Thus, the first two hypothesis of Theorem 2.2.15 are satisfied; Lemma 3.2.6 justifies the last

hypothesis. Hence RCont satisfies the C0-dense h-principle by a direct application of Theo-

rem 2.2.15.

Remark 3.2.8. The above theorem should be compared to the approximation theorem of

Gromov ([Gro96, pg. 258]) for ‘overregular maps’. Recall that Gromov defines overregular

maps, in the context of D-horizontal maps, as those formal Ω-regular, D-horizontal maps

F : TΣ → TM , covering some u : Σ → M , for which the subspace F (TxΣ) ⊂ Du(σ) is

contained in an Ω-regular, Ω-isotropic subspace. In other words, F is overregular if it admits

(point-wise) extension to formal Ω-regular maps Σ̃ → M . Gromov proceeds to state that :

“Overregular maps satisfy the C0-dense h-principle”.

In the next chapter, we shall turn our focus on to a special class of distribution D, known as

fat distributions. We shall see that the local extensibility property is satisfied in many interesting

situations. We end this chapter with the proof of Lemma 3.2.1.

3.3 Proof of Lemma 3.2.1

To simplify the notation, we assume that K = TΣ, i.e, we prove the statement for the relation

RHor. The argument for a general K is similar, albeit cumbersome. As the lemma is local in

nature, without loss of generality we assume that D is cotrivializable and hence suppose that

D =
⋂p
s=1 kerλ

s. We denote the tuples,

λ = (λs) ∈ Ω1(M,Rp) and dλ = (dλs) ∈ Ω2(M,Rp).
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We need to consider the three operators :

� u 7→ u∗λ,

� u 7→ u∗dλ,

� d : Ω1(Σ,Rp) → Ω2(Σ,Rp), the exterior derivative operator,

and their respective symbols :

� we have the bundle map, ∆λ : J1(Σ,M) → Ω1(Σ,Rp) so that ∆λ

(
j1u
)
= u∗λ =

(
u∗λs

)
.

Explicitly,

∆λ(x, y, F : TxΣ → TyM) =
(
x, F ◦ λ|y

)
.

� we have the bundle map, ∆dλ : J1(Σ,M) → Ω1(Σ,Rp) so that ∆dλ

(
j1u
)
= u∗dλ =(

u∗dλs
)
. Explicitly,

∆dλ(x, y, F : TxΣ → TyM) =
(
x, F ∗dλ|y

)
.

� we have the bundle map, ∆d : Ω
1(Σ,Rp)(1) → Ω2(Σ,M) so that∆d(j

1
α) = dα. Explicitly,

∆d

(
x, α, F : TxΣ → hom(TxΣ,Rp)

)
=
(
x, (X ∧ Y ) 7→ F (X)(Y )− F (Y )(X)

)
.

Jet Prolongation of Symbols : Recall that given some arbitrary rth-order operator D :

ΓX → ΓG represented by the bundle map ∆ : X(r) → G as, ∆(jru) = D(u), we have the α-jet

prolongation, ∆(α) : X(r+α) → G(α) defined as,

∆(α)(jr+α)u (x)) = jαD(u)(x)

We can immediately observe that the diagram,

X(r+α) G(α)

X(r+β) G(β)

∆(α)

pr+αr+β
pαβ

∆(β)

commutes for any α ≥ β. Indeed, we have,

pαβ ◦∆(α)
(
jr+αu (x)

)
= pαβ

(
jαDu(x)

)
= jβDx(x) = ∆(β)

(
jβ+ru (x)

)
= ∆(β) ◦ pr+αr+β

(
jr+αu (x)

)
We now observe the following interplay between the symbols of the operators introduced above.
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� We have the commutative diagram,

Jα+1(Σ,M) Ω1(Σ,Rp)(α)

Jα(Σ,M) Ω2(Σ,Rp)(α−1)

∆
(α)
λ

pα+1
α ∆

(α−1)
d

∆
(α−1)
dλ

Indeed, we observe,

∆
(α−1)
d ◦∆(α)

λ

(
jα+1
u (x)

)
= ∆

(α−1)
d

(
jαu∗λ(x)

)
= jα−1

d
(
u∗λ
)(x) = jα−1u∗dλ(x) = ∆

(α−1)
dλ

(
jαu (x)

)
,

and hence we get,

∆
(α−1)
d ◦∆(α)

λ = ∆
(α−1)
dλ ◦ pα+1

α .

� We have the two commutative diagrams,

Jα+1(Σ,M) Ω1(Σ,Rp)(α)

Jα(Σ,M) Ω1(Σ,Rp)(α−1)

∆
(α)
λ

pα+1
α

pαα−1

∆
(α−1)
λ

and

Jα+1(Σ,M) Ω2(Σ,Rp)(α)

Jα(Σ,M) Ω2(Σ,Rp)(α−1)

∆
(α)
dλ

pα+1
α

pαα−1

∆
(α−1)
dλ

Now let us fix Rdλ ⊂ J1(Σ,M) representing the (dλs)-regular immersions Σ →M , i.e,

Rdλ =
{
(x, y, F : TxΣ → TyM)

∣∣∣ F is injective and (dλs)-regular
}
.

Next recall that Rα ⊂ Jα+1(Σ,M) is given as,

Rα =
{
jα+1
u (x) ∈ Jα+1(Σ,M)|x

∣∣∣ jαu∗λ(x) = 0 and u is (dλs)-regular
}
.

Hence we can identify Rα as,

Rα = ker
(
∆

(α)
λ

)
∩
(
pα+1
1

)−1
(Rdλ) ⊂ Jα+1(Σ,M).

We denote a sub-relation,

R̄α = Rα ∩ ker
(
∆

(α)
dλ

)
⊂ Rα.

In particular, observe that R̄0 is then precisely RHor, i.e, the relation of Ω-regular, horizontal

immersions Σ →M .
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The proof of Lemma 3.2.1 follows from the next two results.

Sublemma 3.3.1. For any α ≥ 0, we have, R̄α = pα+2
α+1

(
Rα+1

)
and the fiber of pα+2

α+1 :

Rα+1|(x,y) → R̄α|(x,y) is affine for each (x, y) ∈ Σ ×M . Furthermore, any section of R̄α|O,

over some contractible charts O ⊂ Σ, can be lifted to a section of Rα+1|O along pα+2
α+1

Sublemma 3.3.2. For any α ≥ 0, the map pα+2
α+1 : R̄α+1|(x,y) → R̄α|(x,y) is surjective, with

affine fibers, for each (x, y) ∈ Σ×M . Furthermore, any section of R̄α|O over some contractible

chart O ⊂ Σ can be lifted to a section of R̄α+1|O along pα+2
α+1.

Assuming these, let us first give a proof of the jet lifting lemma.

Proof of Lemma 3.2.1. We have the following ladder-like schematic representation,

Jα+1(Σ,M) Jα(Σ,M) · · · J2(Σ,M) J1(Σ,M)

Rα Rα−1 · · · R1 R0

R̄α−1 RHor = R̄0

pα+1
α p21

p α+
1α

⊂ ⊂ ⊂ ⊂

lift using

full rank
of λ

(Sublem
m
a
3.3.1)

lift inductively to R̄α−1

using Ω-regularity (Sublemma 3.3.2)

For any α ≥ 1, we have,

pα+1
1 = pα1 ◦ pα+1

α = p21 ◦ · · · ◦ pα+1
α

From Sublemma 3.3.1 we have that pα+1
α maps Rα surjectively onto R̄α−1. Also, using Sub-

lemma 3.3.2 inductively, we have that pα1 : R̄α−1 → RHor is a surjection as well. Combining

the two, we have the claim.

Since at each step of the induction, we have contractible fiber, we see that the fiber of pα+1
1

is contractible as well. In fact, we are easily able to get lifts of sections over contractible charts

as well. This concludes the proof.

We now prove the above sublemmas.

Proof of Sublemma 3.3.1. We have the following commutative diagram,

Rα+1 Jα+2(Σ,M) Ω1(Σ,Rp)(α+1)

R̄α Jα+1(Σ,M) Ω1(Σ,Rp)(α) ⊕ Ω2(Σ,Rp)(α)

∆
(α+1)
λ

pα+2
α+1 pα+1

α ∆
(α)
d

∆
(α)
λ , ∆

(α)
dλ

(∗)
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Since we have Rα+1 ⊂ ker∆
(α+1)
λ , we get that,

pα+2
α+1(Rα+1) ⊂ ker∆

(α)
λ ∩ ker∆

(α)
dλ .

Also,

Rα+1 ⊂
(
pα+2
1

)−1
(Rdλ) ⇒ pα+2

α+1

(
Rα+1

)
⊂
(
pα+1
α

)−1
(Rdλ).

Hence we see that,
(
pα+2
α+1

)
(Rα+1) ⊂ R̄α.

Conversely, let us assume that we are given a jet,

(
x, y, Pi : Sym

i TxΣ → TyM, i = 1, . . . , α+ 1
)
∈ R̄α|(x,y).

We wish to find Q : Symα+2 TxΣ → TyM so that,

(x, y, Pi, Q) ∈ Rα+1|(x,y).

Recall that ∆λ(x, y, F : TxΣ → TyM) =
(
x, λ|y ◦ F : TxΣ → Rp

)
. Then we may write,

∆
(α+1)
λ

(
x, y, Pi, Q

)
=
(
x, λ ◦ F,Ri : Symi TxΣ → hom(TxΣ,Rp), i = 1, . . . , α+ 1

)
,

so that Rα+1 : Symα+1 TxΣ → hom(TxΣ,Rp) is the only symmetric tensor which involves Q.

In fact we observe that Rα+1 is given explicitly as,

Rα+1

(
X1, . . . , Xα+1

)
(Y ) = λ ◦Q

(
X1, . . . , Xα+1, Y

)
+ terms involving Pi

Now from the commutative diagram (∗) we have,

(
x, λ ◦ F,Ri i = 1, . . . , α

)
= pα+1

α ◦∆(α+1)
λ (x, y, Pi, Q)

= ∆
(α)
λ ◦ pα+2

α+1(x, y, Pi, Q)

= ∆
(α)
λ (x, y, Pi)

= 0

That is we get that, Ri = 0 for i = 1, . . . , α. We need to find Q so that Rα+1 = 0 as well. We

claim that the tensor,

R′α+1 :
(
X1, . . . , Xα+1, Y

)
7→ Rα+1(X1, . . . , Xα+1)(Y ),
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is symmetric.

Let us write∆
(α)
d (x, y, λ◦F,Ri) =

(
x, ω, Si : Sym

i TxΣ → hom(Λ2TxΣ,Rp), i = 1, . . . , α
)
,

we then get the pure α-jet as,

Sα(X1, . . . , Xα)(Y ∧ Z) = Rα+1(X1, . . . , Xα, Y )(Z)−Rα+1(X1, . . . , Xα, Z)(Y ).

Again going back to the commutative diagram (∗) we have,

∆
(α)
d

(
x, λ ◦ F,Ri

)
= ∆

(α)
d ◦∆(α+1)

λ (x, y, Pi, Q)

= ∆
(α)
dλ ◦ pα+2

α+1(x, y, Pi, Q)

= ∆
(α)
dλ (x, y, Pi)

= 0

and so in particular, Sα = 0. But then we readily have that R′α+1 is a symmetric tensor.

Let us now fix some basis {∂1, . . . , ∂k+1} of TxΣ so that, TxΣ = ⟨∂1, . . . , ∂k+1⟩, where

dimΣ = k + 1. Then we have the standard basis for the symmetric space Symα+2 TxΣ, so

that,

Symα+2 TxΣ =
〈
∂J = ∂j1 ⊙ · · · ⊙ ∂jα+2

∣∣∣ J = (1 ≤ j1 ≤ · · · ≤ jα+2 ≤ k + 1)
〉
.

Then for each tuple J = (j1, . . . , jα+2), we see that the only equation involving Q(∂J) is,

0 = Rα+1(∂1, . . . , ∂jα+1)(∂jα+2) = λ ◦Q(∂J) + terms with Pi.

This is an affine equation in Q(∂J) ∈ TyM , which admits solution since λ|y : TyM → Rp has

full rank. Thus we have solved Q.

This concludes the proof that pα+2
α+1(Rα+1) = R̄α. Since Q is solved from an affine system

of equation, it is immediate that the fiber
(
pα+2
α+1

)−1(
x, y, Pi

)
is affine in nature. In fact, we see

that the projection is an affine fiber bundle. Furthermore, since λ = (λs) has full rank at each

point, we are able to get lifts of sections over a fixed contractible chart O ⊂ Σ, where we may

choose some coordinate vector fields as the basis for TΣ|O.

Next we prove that pα+2
α+1(R̄α+1) = R̄α for any α ≥ 0.
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Proof of Sublemma 3.3.2. We have the following commutative diagram,

R̄α+1 Jα+2(Σ,M) Ω1(Σ,Rp)(α+1) ⊕ Ω2(Σ,Rp)(α+1)

R̄α Jα+1(Σ,M) Ω1(Σ,Rp)(α) ⊕ Ω2(Σ,Rp)(α)

∆
(α+1)
λ , ∆

(α+1)
dλ

pα+2
α+1 pα+1

αpα+1
α

∆
(α)
λ , ∆

(α)
dλ

(∗∗)

We have already proved that pα+2
α+1 maps Rα+1 surjectively onto R̄α; since R̄α+1 ⊂ Rα+1 we

have that pα+2
α+1 maps R̄α+1 into R̄α. We show the surjectivity.

Suppose σ =
(
x, y, Pi : Sym

i TxΣ → TyM, i = 1, . . . , α + 1
)
∈ R̄α|(x, y) is a given jet.

We need to find out Q : Symα+2 TxΣ → TyM such that, (x, y, Pi, Q) ∈ R̄α+1|(x,y). We have

seen that in order to find Q so that (x, y, Pi, Q) ∈ Rα+1|(x,y), we must solve the affine system,

λ ◦Q = terms with Pi.

which is indeed solvable since λ has full rank. Now in order to find (x, y, Pi, Q) ∈ R̄α+1 =

R̄α ∩ ker∆
(α+1)
dλ , we need to figure out the equations involved in ∆

(α+1)
dλ . Let us write,

∆
(α+1)
dλ (x, y, Pi, Q) =

(
x, P ∗1 dλ,Ri : Sym

i TxΣ → hom(Λ2TxΣ,Rp), i = 1, . . . , α+ 1
)
.

Then the pure α + 1-jet Rα+1 : Symα+1 TxΣ → hom(Λ2TxΣ,Rp) is the only expression that

involves Q. In fact we have that Rα+1 is given as,

Rα+1(X1, . . . , Xα+1)(Y ∧ Z) = dλ
(
Q(X1, . . . , Xα+1, Y ), P1(Z)

)
+ dλ

(
P1(Y ), Q(X1, . . . , Xα+1, Z)

)
+ terms involving Pi with i ≥ 2

Now looking at commutative diagram (∗∗), we have,

(x, y, P ∗1 dλ,Ri, i = 1, . . . , α) = p(α+1)
α ◦∆(α+1)

dλ (x, y, Pi, Q)

= ∆
(α)
dλ ◦ pα+2

α+1(x, y, Pi, Q)

= ∆
(α)
dλ (x, y, Pi)

= 0

That is we have, Ri = 0 for i = 1, . . . , α. In order to find Q such that Rα+1 = 0, let us fix

some basis {∂1, . . . , ∂k+1} of TxΣ, where dimΣ = k+ 1. Then we have the standard basis for
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the symmetric space Symα+2 TxΣ, so that,

Symα+2 TxΣ = Span
〈
∂J = ∂j1 ⊙ · · · ⊙ ∂jα+2

∣∣∣ J = (1 ≤ j1 ≤ · · · ≤ jα+2 ≤ k + 1)
〉
.

Now for any tuple J and for any 1 ≤ a < b ≤ k+ 1, we have the equation involving the tensor

Q given as,

0 = Rα+1(∂J)(∂a ∧ ∂b) = dλ
(
Q(∂J+a), P1(∂b

))
+ dλ

(
P1(∂a), Q(∂J+b

)
+ terms with Pi for i ≥ 2,

where J + a is the tuple obtained by ordering (j1, . . . , jα+2, a). Now observe that,

a < b⇒ J + a ≺ J + b,

where ≺ is the lexicographic ordering on the set of all ordered α+ 2 tuples. We then treat the

above equation as,

(
ιP1(∂a)dλ

)
◦Q(∂J+b) =

(
ιP1(∂b)dλ

)
◦Q(∂J+a) + terms with P1.

Thus we have identified the defining system of equations for the tensor Q given as,
λ ◦Q(∂I) = terms with Pi, for each α+ 2 tuple I

ιP1(∂a)dλ ◦Q(∂J+b) = ιP1(∂b)dλ ◦Q(∂I+a) + terms with Pi,

for each α+ 1-tuple J and 1 ≤ a < b ≤ k + 1

(†)

But this system can be solved for each Q(∂I) ∈ TyM in a triangular fashion, using the ordering

≺ on the basis, since we have that P1 : TxΣ → TyM is Ω-regular. Indeed, it follows from

Ω-regularity, that for any collection of independent vectors {v1, . . . , vr} in TxΣ, the collection

of 1-forms,

ιP1(vi)dλ
s|Dy , 1 ≤ i ≤ r, 1 ≤ s ≤ p,

are independent. As D is given as the kernel of λ1, . . . , λp, we see that this is equivalent to the

following non-vanishing condition:

( p∧
s=1

λs
)
∧

r∧
i=1

(
ιv1dλ

1 ∧ . . . ∧ ιvidλs
)
̸= 0.
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But then clearly, at each stage of the triangular system, we have a full rank affine system.

Consequently, the solution space for Q is contractible.

We have thus proved that pα+2
α+1 : R̄α+1|(x,y) → R̄α|(x,y) is indeed surjective, with con-

tractible fiber. In fact, the algorithmic nature of the solution shows that, if O ⊂ Σ is a

contractible chart, then we are able to obtain the lift of any section of R̄α|O to R̄α+1, along

pα+2
α+1. This concludes the proof.

Remark 3.3.3. In the above proof of Sublemma 3.3.2, the full strength of Ω-regularity of F has

not been utilized. Note that, with our choice of the ordered basis of TxΣ, the vector P1(∂k+1)

does not appear in the above triangular system (†). In fact, we can prove Lemma 3.2.1 only

under the milder assumption that ImF contains a codimension one Ω-regular subspace, which

in our case is the subspace ⟨F (∂1), . . . , F (∂k)⟩ ⊂ TxΣ. In Chapter 6, we shall come back to

this observation.





Chapter 4

K-contact and Horizontal Immersions

in Fat Distributions

This chapter concerns with h-principle and existence of K-contact maps into ‘degree 2’ fat

distributions and Quaternionic contact distributions for some specificK on the domain manifold.

The main results of this chapter are Theorem 4.2.4, Theorem 4.2.17 and Theorem 4.2.26, which

can be found in section 4.2. We first recall the preliminaries of fat distributions and introduce

an invariant, called ‘degree’, for corank 2 fat distributions.

4.1 Fat Distributions and their Degree

We have already come across a class of fat distributions, namely contact distributions. It is

also known that that holomorphic and quaternionic counterparts of contact structures are fat

as well. The primary goal of this section is to identify a class of C∞-distributions which are the

real analogue of holomorphic contact structures. But before delving into these, we discuss some

algebraic notions, which will become the backbone for the rest of this chapter. The terminology

introduced in this linear algebraic interlude will be made clear later in the chapter.

4.1.1 Distributions from a Purely Linear Algebraic Viewpoint

Unless mentioned otherwise, by a tuple (D,E,Ω) we will mean that D,E are real vector spaces

and Ω : Λ2D → E is a linear map, interpreted as an E-valued linear 2-form on D. Given

two such tuples (Di, Ei,Ωi) for i = 1, 2, we consider a morphism between them as a pair of

67
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monomorphisms (F,G) : (D1, E1) → (D2, E2) such that the following diagram is commutative.

Λ2D1 E1

Λ2D2 E2

Ω1

∧2F G

Ω2

In other words, F ∗Ω2 = G ◦ Ω1, where F
∗Ω2 = Ω2 ◦ ∧2F .

As a special case, consider the tuple (D′, E′,Ω′) such that E′ = 0 which implies that Ω′

is the 0 map. Then for a morphism (F,G) : (D′, E′,Ω′) → (D,E,Ω) we must have that,

F ∗Ω = G ◦ Ω′ = 0. This captures the isotropy condition for formal horizontal maps.

Dualizing the map Ω, we get the canonical map ω : E∗ → Λ2D∗. Now for any ordered

basis B = (e1, . . . , ep) of E, where p = dimE, we can associate skew-symmetric bilinear forms

ωi on D, defined by, ωi = ω(ei), where (ei) is the dual basis for E∗. Note that Ω then have a

representation Ω = ωiei. In particular, we see that the span

⟨ω1, . . . , ωp⟩

of these 2-forms on D is a well-defined subspace of Λ2D∗, that only depends on Ω.

Given a tuple (D,E,Ω), we have a linear map,

ΩV : D → hom(V,E)

x 7→ ιxΩ|V =
(
v 7→ Ω(x, v)

)
For any subspace V ⊂ D, we define Ω-dual of V by,

V Ω = kerΩV =
{
x ∈ D

∣∣∣ Ω(x, v) = 0, for all v ∈ V
}
.

In particular, for V = D, DΩ is the kernel of the two form Ω given as,

DΩ = kerΩ =
{
x ∈ D

∣∣∣ Ω(x, v) = 0, for all v ∈ D
}
.

Definition 4.1.1. Given a tuple (D,E,Ω) as above, a subspace V ⊂ D is called,

� Ω-regular if the linear map ΩV is surjective.

� Ω-isotropic if Ω(u, v) = 0 for all u, v ∈ V . Hence, V is Ω-isotropic if and only if

V ⊂ kerΩV .

A morphism (F,G) : (D′, E′,Ω′) → (D,E,Ω) is called Ω-regular if F (D′) ⊂ D is Ω-regular.
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Proposition 4.1.2. Given a tuple (D,E,Ω), a subspace V ⊂ D is Ω-regular if and only if

codimV Ω = dimE × dimV .

Proof. It follows from the first isomorphism theorem that the map ΩV is surjective if and

only if codimkerΩV = dimhom(V,E) = dimE × dimV . This completes the proof since

V Ω = kerΩV .

Fat Tuple

We now introduce the notion of a fat tuple, parallel to the notion of 1-fatness introduced in

[Gro96, pg. 255].

Definition 4.1.3. A tuple (D,E,Ω) is called fat if for every non-zero v ∈ D, the 1-dimensional

subspace ⟨v⟩ generated by v, is Ω-regular.

One immediate example of a fat tuple is given as (D,R, ω), where D is a symplectic vector

space, with a symplectic 2-from ω : Λ2D → R. We should note that if (D,E,Ω) is fat then

dimD must be even. In fact, if dimE ≥ 2, then dimD must be divisible by 4 (Theorem 4.1.22).

Let (D,E,Ω) be any tuple such that dimE = p. Choosing a basis (e1, . . . , ep) of E, we

may write,

Ω =
∑

ωiei.

If the tuple is fat, then it is easy to see that each ωi : Λ2D → R is a nondegenerate 2-form

on D. Furthermore, these 2-forms are linearly independent, i.e, for any linear combination∑p
i=1 ciω

i = 0, we must have ci = 0 for i = 1, . . . , p. Now for each 1 ≤ i, j ≤ p, we have an

automorphism Aij : D → D defined by,

ωi(x,Aijy) = ωj(x, y), for all x, y ∈ D.

We can easily observe that,

Aij = I−1
ωi

◦ Iωj ,

where, Iωi : D → D∗ is the isomorphism defined by Iωi(v) = ωi(v, ). We will refer to Aij

as the connecting automorphism for the pair of nondegenerate forms (ωi, ωj). We now make

some rather trivial observations.

Proposition 4.1.4. The automorphisms Aij satisfy the cocycle conditions, that is,

AijAjk = Aik, Aii = Id,
(
Aij
)−1

= Aji, for any 1 ≤ i, j, k ≤ p
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Recall that, for any V ⊂ D, the ωi-symplectic complement of V is defined as,

V ⊥i =
{
x ∈ D

∣∣ωi(x, y) = 0, for all y ∈ V
}
.

Therefore, the Ω-dual of a subspace V ⊂ D can be expressed as,

V Ω =

p⋂
s=1

V ⊥i .

We observe that, though the individual sets on the right-hand side depends on the choice of

a basis for E, their intersection is independent of the choice. Let us now observe how these

complements are related to each other.

Proposition 4.1.5. For any subspace V ⊂ D the following holds,

� V ⊥j =
(
AijV

)⊥i
� V ⊥i = Aij

(
V ⊥j

)
Proof. For V ⊂ D we have,

V ⊥j =
{
x ∈ D

∣∣ωj(x, y) = 0, ∀y ∈ V
}

=
{
x ∈ D

∣∣ωi(x,Aijy) = 0,∀y ∈ V
}

=
{
x ∈ D

∣∣ωi(x, z) = 0, ∀z ∈ AijV
}

=
(
AijV

)⊥i
Similar argument gives us V ⊥i = Aij

(
V ⊥j

)
.

The next proposition justifies why one should look at these automorphisms in the first place.

This was first observed in [Dat11] for the case p = 2.

Proposition 4.1.6. Let (D,E,Ω) be a fat tuple. A subspace V ⊂ D is Ω-regular, if and only

if, for any fixed i0, 1 ≤ i0 ≤ p, the sum

p∑
j=1

Ai0jV

is a direct sum for any representation Ω = (ωs).

Proof. With a fixed choice Ω = (ω1, . . . , ωp) we have, by Proposition 4.1.5, that,

V Ω =

p⋂
j=1

V ⊥j =

p⋂
j=1

(
Ai0j

)⊥i0 =
( p∑
j=1

Ai0jV
)⊥i0 , for some fixed 1 ≤ i0 ≤ p.
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Since ωi0 is nondegenerate, codimV Ω = dim
(∑

Ai0jV
)
. Now, by Proposition 4.1.2, V ⊂ D is

Ω-regular if and only if codimV Ω = dimE×dimV = pdimV . Clearly, dim
(∑p

j=1A
i0jV

)
=

p dimV precisely when the sum is a direct sum. Hence, the proof follows.

Since for a fat tuple (D,E,Ω) every 1-dimensional subspace of D is Ω-regular, we have the

following corollary.

Corollary 4.1.7. For any non-zero vector v ∈ D, and for any fixed i0, the vectors {Ai0jv, 1 ≤

j ≤ p} are linearly independent.

We now focus on the case when p = dimE = 2.

Degree of a Fat Tuple (D,E,Ω) with dimE = 2

In what follows below, (D,E,Ω) will denote a fat tuple, where dimE = 2. Any choice of

ordered basis B of E defines an ordered pair of 2-forms (ω1, ω2) on D, which represents Ω, in

turn defines the connecting automorphism A : D → D given by ω1(x,Ay) = ω2(x, y), for all

x, y ∈ D.

Observation 4.1.8. Since (D,E,Ω) is, in particular, fat and has dimE = 2, we have the

following.

1. A subspace V ⊂ D is Ω-regular if and only if V ∩AV = 0 (follows from Proposition 4.1.6).

2. For every 0 ̸= v ∈ D, the tuple of vectors {v,Av} are linearly independent (follows from

Corollary 4.1.7). In other words, A has no real eigenvalue.

3. V ⊥2 =
(
AV
)⊥1 and V ⊥1 = A

(
V ⊥2

)
(follows from Proposition 4.1.5).

Let L(Ω) be the set of all connecting automorphisms of the triple (D,E,Ω). Then,

Lemma 4.1.9. For any A,B ∈ L(Ω), B can be written as a polynomial in A and vice versa.

Proof. Suppose (ω1, ω2) and (ω̂1, ω̂2) be two representatives of Ω and A,B ∈ L(Ω) be the

respective connecting morphisms. We have already noted that,

⟨ω1, ω2⟩ = ⟨ω̂1, ω̂2⟩.

Hence we must have some

p q

r s

 ∈ Gl2(R), so that we may write,

ω̂1 = pω1 + qω2, ω̂2 = rω1 + sω2.
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We now relate A and B. For any x, y ∈ D we have,

ω̂1(x,By) = ω̂2(x, y)

⇒pω1(x,By) + qω2(x,By) = rω1(x, y) + sω2(x, y)

⇒ω1(x, pBy) + ω1(x, qABy) = ω1(x, ry) + ω1(x, sAy)

⇒ω1
(
x, (pB + qAB − rI + sA)y

)
= 0

Since this holds for every x, y ∈ D and since ω1 is nondegenerate, we get,

pB + qAB − rI + sA = 0 ⇒ (pI + qA)B = rI − sA.

As A has no real eigenvalue, we have that det(pI + qA) ̸= 0 and hence,

B = (pI + qA)−1(rI − sA).

But now we can write B as a polynomial in A. Indeed, any operator C must satisfy its

characteristic polynomial, say,

Cn + cn−1C
n−1 + . . .+ c1C + c0I = 0, where n = dimD

If C is nonsingular, then c0 ̸= 0 and C−1 is then written as a polynomial in C. Hence,

(pI + qA)−1 and therefore B can be written as a polynomial in A as well.

Proposition 4.1.10. For any A,B ∈ L(Ω), degµA = degµB, where µA and µB are minimal

polynomials of A and B respectively.

Proof. Recall that for any linear map T : D → D, the degree of the minimal polynomial is the

maximal integer d such that the vectors {v, Tv, . . . , T d−1v} are linearly independent for some

v ∈ V . Now suppose S =
∑k

i=1 aiT
i for some scalars ai ∈ R. Then for every v ∈ V we have

that,

Siv ∈ ⟨v, Tv, . . . , T d−1v⟩, for any i ≥ 0,

where d = degµT (X). But then dim⟨v, Sv, . . . , Siv⟩ is bounded above by d and hence

degµS(X) ≤ d = degµT (X). This observation with the preceding lemma completes the

proof.

We now associate a numerical invariant to a fat tuple with dimE = 2.
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Definition 4.1.11. Given a fat tuple (D,E,Ω) with dimE = 2, we define the degree of

(D,E,Ω) as the degree of the minimal polynomial of A, where A ∈ L(Ω).

Observation 4.1.12. We observe a few immediate properties of degree.

� If A : D → D is an automorphism, then the minimal polynomial µA must be non-zero.

Therefore, deg(Ω) is non-zero.

� The fatness condition on (D,E,Ω) implies that the operator A does not have any real

eigenvalue. Hence, the minimal polynomial cannot be of odd degree.

� Given a fixed nondegenerate 2-form ω on some vector space V , an operator T : V → V

is called skew-Hamiltonian (for ω) if we have that (x, y) 7→ ω(x, Ty) is again skew-

symmetric. In particular, we see that a connecting automorphism A between (ω1, ω2), is

skew-Hamiltonian, with respect to ω1. Hence, it follows that the degree of the minimal

polynomial of A is bounded above by 1
2 dimD ([Wat05]).

Proposition 4.1.13. Let (D,E,Ω) be a fat tuple with dimE = 2. Let V ⊂ D be any subspace.

Then for A,B ∈ L(Ω),

AV = V if and only if BV = V.

Proof. Suppose V ⊂ D satisfies V = AV . If B : D → D is any other connecting automorphism

then by Lemma 4.1.9, B can be written as a polynomial in A. That is we have, B = b0I +

b1A+ . . .+ blA
l for some scalars bi ∈ R. But then,

BV =
(∑

biA
i
)
V ⊂

∑
AiV ⊂ V ⇒ BV = V,

since B is an automorphism.

This leads to the following definition.

Definition 4.1.14. A subspace V ⊂ D is called invariant if V = AV for some connecting

automorphism A ∈ L(Ω).

Proposition 4.1.15. Suppose W ⊂ D is invariant. Then,

WΩ =W⊥1 ∩W⊥2 =W⊥1 =W⊥2 ,

for any representation (ω1, ω2) of Ω. Furthermore, codimWΩ = dimW .
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Proof. If A : D → D is a connecting morphism, then by Proposition 4.1.5, we have,

W⊥2 = (AW )⊥1 =W⊥1 ,

since W is invariant. It then follows that, WΩ = W⊥1 ∩W⊥2 = W⊥1 = W⊥2 . Since ωi is

nondegenerate, we have codimWΩ = codimW⊥i = dimW . This concludes the proof.

Let us now look at the special case when the degree of the fat tuple is 2.

Degree 2 Fat Tuple

The first immediate observation about a degree 2 fat tuple is the following.

Proposition 4.1.16. Let (D,E,Ω) be a corank 2 fat tuple of degree 2. Then we can choose a

representation Ω = (ω1, ω2) so that the relating automorphism B : D → D satisfies B2 = −I.

Proof. Let E = ⟨e1, ew⟩ and Ω = ω1e1 + ω2e2, so that A : D → D is the connecting

automorphism between for the pair (ω1, ω2). By the hypothesis, A satisfies A2 = λA+ µI for

some scalars λ, µ ∈ R, such that λ2 + 4µ < 0. Now define,

p = −λ
√

−1

λ2 + 4µ
, q = −2

√
−1

λ2 + 4µ
.

Then an easy computation shows that for pI + qA, we have (pI + qA)2 = −I. Next consider

the basis, {ê1, ê2} of E given by,

ê1 = qe1, ê2 = pe1 + e2.

We write, Ω = ω̂1ê1+ ω̂
2ê2 and denote the connecting automorphism B : D → D between the

pair ω̂1, ω̂2. Then we see that, B = pI + qA and hence B2 = −I.

Next, let us list a few interesting properties of a degree 2 fat tuple.

Proposition 4.1.17. Let (D,E,Ω) be a degree 2 fat tuple. Suppose Ω = (ω1, ω2) and A :

D → D is the connecting automorphism. Then we have the following :

1. For any V ⊂ D, the subspace V +AV is invariant.

2. For any V ⊂ D, we have V Ω = (V +AV )⊥1 = (V +AV )⊥2 = (V +AV )Ω.

3. For any V ⊂ D, the subspace V +AV is independent of the choice of A ∈ L(Ω). Indeed,

we have, V +AV = (V Ω)Ω.
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Proof. We have,

1. Since A has degree 2 minimal polynomial, let us assume that A2 = λA + µI for some

scalars λ, µ ∈ R. Now for any V ⊂ D we have,

A(V +AV ) = AV +A2V = AV + (λA+ µI)V ⊂ AV + λAV + µV ⊂ V +AV.

Since A is an automorphism, we have A(V +AV ) = V +AV . Thus V +AV is invariant.

2. Since for any V ⊂ D, V +AV is invariant, the claim follows by Proposition 4.1.15.

3. For any V ⊂ D we have,

(V Ω)Ω =
(
V Ω
)⊥1 ∩

(
V Ω
)⊥2

=
(
(V +AV )⊥1

)⊥1 ∩
(
(V +AV )⊥2

)⊥2

= (V +AV ) ∩ (V +AV )

= V +AV

The claim then follows.

The following proposition is interesting in its own right, as it characterizes invariant sub-

spaces in terms of Ω for degree 2 fat tuples. However we shall not have any occasion to use it.

Proposition 4.1.18. Let (D,E,Ω) be a degree 2 fat tuple. Then for any subspace V ⊂ D the

following hold :

1. V Ω is invariant.

2. V is invariant if and only V = V ΩΩ
.

Proof. We have,

1. For any V ⊂ D, we have V Ω = (V +AV )⊥1 = (V +AV )⊥2 , where A ∈ L(Ω). Hence,

AV Ω = A
(
(V +AV )⊥2

)
= (V +AV )⊥1 = V Ω.

Thus V Ω is invariant.

2. For any V ⊂ D, we have seen that (V Ω)Ω = V + AV . Then clearly, V is A-invariant if

and only if (V Ω)Ω = V .
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Thus, we may redefine the notion of invariance of a subset V ⊂ D, for a degree 2 fat tuple,

in view of Proposition 4.1.18(2).

The importance of the following proposition will be clear in the next sections.

Proposition 4.1.19 (Extension Property). Suppose (D,E,Ω) is a degree 2 fat tuple. For any

Ω-regular subspace V ⊂ D, and for any

τ ̸∈
(
V Ω
)Ω
,

we have that the subspace V ′ = V + ⟨τ⟩ is Ω-regular.

Proof. Let A ∈ L(Ω). Recall that V ⊂ D is Ω-regular if and only if V + AV is a direct sum.

Let τ ̸∈ (V Ω)Ω = V +AV and set, V ′ = V + ⟨τ⟩. We need to show that V ′ +AV ′ is a direct

sum. If not, then Aτ ∈ V +AV + ⟨τ⟩. This implies that,

(V +AV ) ∩ ⟨τ,Aτ⟩ = ⟨Aτ⟩.

But then ⟨Aτ⟩ is invariant, which contradicts that A has no real eigenvalue. Hence V ′ is

regular.

4.1.2 Fat Distributions

Definition 4.1.20. A distribution D ⊂ TM is called fat if for each x ∈ M , the tuple(
Dx, TM/D|x,Ω|x

)
is a fat tuple, as defined in Definition 4.1.3.

In other words, every 1-dimensional subspace ⟨v⟩ in Dx is Ω-regular, where Ω is the curvature

form of D.

Example 4.1.21. Using the local framing we can easily see that contact structures are corank 1

fat distributions (Theorem 2.1.7). The converse is true as well, i.e, every corank 1 fat distribution

is a contact structure.

Before discussing fat distributions of corank ≥ 2, let us first emphasize that fat distributions

are not quite plentiful, or generic, even though fatness is an open condition. The next theorem

gives us some numerical constraints for the existence of fat distributions.

Theorem 4.1.22 ([Ray68]). If D ⊂ TM is a fat distribution of rank n and corank p, then we

must have the following :

� n is even and n ≥ p+ 1.
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� If p ≥ 2, then 4 divides n.

� The n− 1-sphere Sn−1 admits p-many linearly independent vector fields.

Conversely, for any pair of integers (n, p) satisfying the above, there is a fat distribution D on

Rn+p of corank p.

Remark 4.1.23 (Constructing a Fat Distribution). The proof of the above theorem can be

found in [Mon02, pg. 71]. We discuss the converse statement which is of some interest in the

present thesis. Suppose there is a pair of integers (n, p) such that Sn−1 admits p-many linearly

independent vector fields. Then it is well-known (see [Hus94]) that there are p-many linear

maps Ja : Rn → Rn satisfying the Clifford relations, namely,

JaJb + JbJa = −2δa,bI, for 1 ≤ a, b ≤ p.

Now consider Rn+p = Rn × Rp with the coordinates {x1, . . . , xn, z1, . . . , zp} and define the

1-forms λa on Rn+p by,

λa = dza −
n∑

i,j=1

Jaijx
idxj , for a = 1, . . . , p,

where we have Jaij = Ja(∂xi , ∂xj ). It may be verified that D =
⋂p
s=1 kerλ

s is a fat distribution

on Rn+p of corank p.

We shall now discuss some properties of fat distributions. First, let us observe some equiv-

alent criterion for a distribution to be fat.

Proposition 4.1.24. Given a distribution D ⊂ TM , the following are equivalent.

1. D is a fat distribution

2. Any non-zero local section X ∈ D defined on a neighborhood of x ∈ M , Lie bracket

generates the tangent space TxM in 1-step, i.e,

TxM = Dx + [X,D]x, for any 0 ̸= X ∈ D about x ∈M .

3. For any nonvanishing α ∈ Ann(D) the 2-form ω(α) is nondegenerate, where ω is the

dual curvature map.

Proof. Let us first show that 1 ⇔ 2. Suppose D is fat. Then for any 0 ̸= X ∈ Dx, the

1-dimensional subspace ⟨X⟩ is Ω-regular, i.e, the map Dy ∋ Y 7→ Ω(X,Y ) ∈ TM/D|x is
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surjective. Recall that the curvature form Ω is given as,

Ω(X,Y ) = −[X̃, Ỹ ]x mod Dx, for local extensions X̃, Ỹ ∈ D of X,Y ∈ Dx respectively.

Now for any choice of extension X̃ ∈ D of X we have,

[X̃,D]x mod Dx = TM/D|x ⇒ Dx + [X̃,D]x = TxM.

That is, X̃ Lie bracket generates TxM in 1-step. The converse is true for the same reason.

Now we prove, 2 ⇔ 3. Recall that the dual curvature form of D is given by the map,

ω : Ann(D) → Λ2D∗

α 7→ dα|D

which is in fact a bundle map. For any X,Y ∈ Dx and α ∈ AnnDx, respectively choose some

arbitrary local extensions X̃, Ỹ ∈ D and α̃ ∈ AnnD about x. We then have,

ω(α)(X,Y ) = dα̃(X̃, Ỹ )|x = −α̃([X̃, Ỹ ])|x = −α([X̃, Ỹ ]|x).

Now assume that D is fat. If possible, suppose for some 0 ̸= α ∈ Ann(D) at the point x ∈M ,

the 2-from ω(α) is degenerate. Then, in particular, there exists a nonzero vector X ∈ Dx such

that ω(α)(X,Y ) = 0 for any Y ∈ Dx. But then we have,

0 = dα(X,Y ) = −α([X̃, Ỹ ]x), for local extension X̃, Ỹ ∈ D of X,Y about x,

and consequently we get,

[X̃,D]x ⊂ kerα ⇒ Dx + [X̃,D]x ⊂ kerα ⊊ TxM.

That is, the nonzero field X̃ ∈ D fails to bracket generate TM at the point x, which is a

contradiction. Hence ω(α) is nondegenerate. Since α ∈ AnnDx is arbitrary, this proves the

claim.

To prove the converse, if possible, suppose there is some local field 0 ̸= X ∈ D about x ∈M ,

which fails to bracket generate TxM . Then in particular we have that, Ex = Dx + [X,D]x ⊂

TxM has positive codimension. Then we can get a local 1-form 0 ̸= α ∈ Ann(D) such that
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αx vanishes over Ex. But then,

ω(α)(X,Y ) = dα(X,Y ) = −α([X,Y ]x) = 0, for any local section Y ∈ D about x.

This contradicts the fact that ω(α) is nondegenerate at x. Hence X bracket generates TM at

x. Since x ∈M is arbitrary, this concludes the proof.

Remark 4.1.25. In view of Proposition 4.1.24(2), fat distributions are also known as strongly

bracket generating distributions.

As a direct consequence of Proposition 4.1.24(3), we get the following.

Corollary 4.1.26. A corank 1 distribution ξ ⊂ TM on M is fat if and only if ξ is a contact

structure.

Holomorphic Contact Structure

This is a direct holomorphic analogue of the contact structure.

Definition 4.1.27. Given a complex manifoldM of (complex) dimension 2n+1, a holomorphic

contact structure is a corank 1 complex subbundle Ξ of the holomorphic tangent bundle T (1,0)M ,

which is locally given as the kernel of some holomorphic 1-form α satisfying α ∧ (dα)n ̸= 0.

The standard example of a holomorphic contact structure on C2n+1 is given as,

Ξ = ker
(
dz −

n∑
i=1

yidx
i
)
,

where {z, xi, yi} are the standard complex coordinates. Just as we saw in Theorem 2.1.7 for

the contact structures, we have a holomorphic Darboux theorem.

Theorem 4.1.28 ([AFL17]). Every holomorphic contact structure Ξ on a complex manifold of

dimension 2n+1, is locally (biholomorphically) equivalent to the standard holomorphic contact

structure on C2n+1.

Recall that the complex manifold M comes equipped with an integrable complex structure

J : TM → TM . The real tangent bundle TM is canonically isomorphic with the holomorphic

tangent bundle T (1,0)M ⊂ TMC = TM ⊗ C, by the map, X 7→ X + ιJX. Here ι is the

complex structure on the complex vector bundle TMC. Hence a holomorphic contact structure

Ξ on a complex manifold M , can be identified with a real corank 2 subbundle D ⊂ TM . In

other words, D is the underlying real bundle to Ξ.
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Corollary 4.1.29. The underlying real bundle D ⊂ TM of a holomorphic contact structure

Ξ ⊂ T (1,0)M on a complex manifold M is a corank 2 fat distribution.

Proof. By the complex Darboux theorem (Theorem 4.1.28), Ξ is locally given as the kernel of

the 1-form α = dz −
∑n

j=1 yjdxj , where {z, yj , xj} are some complex coordinates. Writing

z = z1 + ιz2 etc, we have a real coordinate system {z1, z2, xj1, xj2, yj1, yj2} on M . Writing,

α = α1 + ια2, where αi are (real) 1-forms on M , we then have,

α1 = dz1 −
n∑
j=1

(
yj1dxj1 − yj2dxj2

)
, α2 = dz2 −

n∑
j=1

(
yj2dxj1 + yj1dxj2

)
.

Then the underlying real bundle, D =
loc.

kerα1 ∩ kerα2 is further described as follows :

D =
loc.

〈
∂yj1 , ∂yj2 , ∂xj1 + yj1∂z1 + yj2∂z2 , ∂xj2 − yj2∂z1 + yj2∂z2

〉
.

Since TM =
loc.

D ⊕ ⟨∂z1 , ∂z2⟩, an easy computation shows that each vector in the above frame

Lie bracket generates TM in 1-step. Thus D is indeed a corank 2 fat distribution.

We now observe that,

Proposition 4.1.30. Let D be the underlying real distribution of a holomorphic contact struc-

ture Ξ on M and Ω be the curvature form of D. Then a D-horizontal immersion u : Σ → M

is Ω-regular if and only if u is a totally real immersion.

Let us recall the definition.

Definition 4.1.31. Given a complex manifold (M,J), where J : TM → TM is the almost

complex structure, a totally real submanifold is a real submanifold N ⊂ M such that TN ∩

J(TN) = 0. More generally, a smooth immersion u : Σ → M is said to be totally real

immersion if Im du ∩ J(Im du) = 0.

Proof of Proposition 4.1.30. Since Ξ is a complex vector bundle, the underlying real vector

bundle D must be J-invariant. Now, we have observed, D =
loc.

kerα1 ∩ kerα2, where

α1 = dz1 −
n∑
j=1

(
yj1dxj1 − yj2dxj2

)
, α2 = dz2 −

n∑
j=1

(
yj2dxj1 + yj1dxj2

)
.

An easy computation then gives us that, dα1(X, JY ) = −dα2(X,Y ) for any X,Y ∈ D.

Consequently we see that the connecting automorphism A : D → D for the tuple (ω1, ω2),

where ωi = dαi|D, is given as A = −J |D. Since D is fat by Corollary 4.1.29, the proof is

immediate from Observation 4.1.8 (1).
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Quaternionic Contact Structure

Quaternionic contact structures, as introduced by Biquard in [Biq99], are generalization of the

contact structures in the quaternionic setup. Before going into the definition, let us motivate

the nomenclature.

Unlike in the case of holomorphic contact structures, the quaternionic counterpart, cannot be

defined simply by replacing the base field with the Quaternions, as they are noncommutative.

In order to understand what could be a possible way to generalize, we look at the contact

structures from an algebraic point of view. Recall the real Heisenberg Lie algebra structure on

Cn ⊕ R, where the Lie bracket of two vectors in Cn is given by,

[(x1, . . . , xn), (y1, . . . , yn)] = Im
n∑
i=1

x̄iyi, for (xj), (yj) ∈ Cn

and [R,Cn] = 0. For a given contact structure ξ = kerα on a manifold of dimension 2n + 1,

we have that Ω = dα|ξ is a nondegenerate 2-form and we are able to get an almost complex

structure J : ξ → ξ, compatible with Ω, i.e, Ω(JX, JY ) = Ω(X,Y ) for all X,Y ∈ ξ. Then for

each x ∈M , the vector space ξx ⊕ TΣ/ξ|x, equipped with the Lie bracket,

[X,Y ] = Ω(X,Y ) and [X,Z] = 0 for X,Y ∈ ξx, Z ∈ TΣ/ξ|x

given by the curvature form, is isomorphic (as Lie algebras) to the Heisenberg algebra Cn ⊕R.

Now following this approach, we have the quaternionic Heisenberg Lie algebra, where the

underlying vector space is given to be, Hn ⊕ ImH, with the Lie bracket defined for a pair

of quaternionic vectors in this case. A corank 3 distribution D ⊂ TM on a manifold M of

dimension 4n+3 is called quaternionic contact if the vector space Dx⊕TxM/Dx, equipped with

the Lie bracket given by the curvature from, is isomorphic (as Lie algebras) to the quaternionic

Heisenberg Lie algebra Hn ⊕ ImH.

Remark 4.1.32. Given a distribution D ⊂ TM , this associated Lie algebra, Dx ⊕ TM/D|x,

defined via the the Lie bracket of vector fields, is known as the nilpotentization of the distribution

D at the point x ∈M ([Tan70, Mon02]).

Formally we define,

Definition 4.1.33. A quaternionic contact structure on a manifold M of dimension 4n+ 3 is

a corank 3 distribution D ⊂ TM , given locally as the common kernel of 1-forms (λ1, λ2, λ3) ∈

Ω1(M,R3) such that there exists a Riemannian metric g on D and a Quaternionic structure
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(Ji, i = 1, 2, 3) on D satisfying,

dλi|D = g(Ji , ).

By a Quaternionic structure we mean that Ji are (local) endomorphisms which satisfy the

quaternionic relations: J2
1 = J2

2 = J2
3 = −1 = J1J2J3. Equivalently, there exist an S2-bundle

Q→M of triples of almost complex structures (J1, J2, J3) on D.

Quaternionic contact structures are interesting in themselves and they appear in many

different contexts [BG08, IV10]. Let us first give one well-known example.

Example 4.1.34. Consider the unit sphere S4n+3 ⊂ R4n+4 ∼= Hn+1. For each x ∈ S4n+3,

consider the quaternionic subspace of Hn+1, orthogonal to x, namely,

⟨x⟩⊥ =
{
y ∈ Hn+1

∣∣ ⟨x, y⟩ = 0
}
,

with respect to the inner product ⟨x, y⟩ =
∑
x†iyi for x = (xi), y = (yi) ∈ Hn. Here (·)†

denotes the quaternionic conjugate. Now, this subspace has real dimension 4n. We get a

corank 3 distribution D on S4n+3 given as,

Dx = TxS
4n+3 ∩ ⟨x⟩⊥, x ∈ S4n+3.

One can easily check that D is indeed a quaternionic contact structure.

Just as in the cases of contact and holomorphic contact structures, we have the following.

Proposition 4.1.35. A quaternionic contact structure is a (corank 3) fat distribution.

Proof. Let D be a quaternionic contact structure on a manifold, equipped with a Riemannian

metric g on D. Consider some local 1-forms λi, i = 1, 2, 3 defining D such that dλi|D satisfies

the relation, dλi|D = g(Ji , ), where {Ji i = 1, 2, 3} abide by the quaternionic relations.

Now, for any tuple (p1, p2, p3) we have,

(∑
piJi

)2
= −

∑
(pi)2Id,

and hence
∑
piJi is invertible whenever (p1, p2, p3) ̸= 0. But then for any such tuple we have

that, ∑
pidλi|D =

∑
pig(Ji , ) = g(J , ), where J =

∑
piJi.

Since J is an automorphism and g is a Riemannian metric, g(J , ) is indeed nondegenerate.

Now any local 1-form 0 ̸= α ∈ AnnD can be expressed as α =
∑
piλi, for some non-zero
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tuple (p1, p2, p3). Therefor, dα|D =
∑
pi(x)dλi|D is a nondegenerate 2-form. Hence, D is fat

by Proposition 4.1.24(3).

4.1.3 Degree of a Corank 2 Fat Distribution

Let D ⊂ TM be a corank 2 fat distribution with curvature form Ω : Λ2D → TM/D. Choosing

some trivialization of TM/D over some U ⊂ M , we can write, Ω|U = (ω1, ω2), where ωi are

2-forms on D|U . Since D is fat, by Proposition 4.1.24(3), we have that ωi : Λ2D|U → R are

nondegenerate 2-forms. In particular, we can define a local automorphism A : D|U → D|U

given as,

ω1(u,Av) = ω2(u, v), for any u, v ∈ D|U .

As a consequence of Proposition 4.1.10, for any x ∈ U , the degree of the automorphism

Ax : Dx → Dx is independent of our choice of trivialization of TM/D. In particular, we can

now define the notion of degree for fat distribution.

Given a corank 2 fat distribution D ⊂ TM , we define deg(x,D) as the degree of the minimal

polynomial of Ax : Dx → Dx.

Proposition 4.1.36. Given a corank 2 fat distribution D ⊂ TM , the map x 7→ deg(x,D) is

lower-semicontinuous.

Proof. Suppose at some x ∈ M , we have d = deg(x,D). Choose some trivialization of

Ω =
loc.

(ω1, ω2) on a neighborhood x ∈ U ⊂ M and get the local automorphism A : D|U →

D|U . Choose some local nonvanishing section X ∈ D|U . Then, for v = Xx, we have

{v,Av, . . . , Ad−1v} are linearly independent. But then, {V,AV, . . . , Ad−1V } must also be

linearly independent on some open neighborhood U ′ ⊂ U of x. Now, for any y ∈ U ′ we have

that Ay has minimal polynomial of degree at least d. This proves that x 7→ deg(x,D) is a

lower-semicontinuous map.

Definition 4.1.37. A corank 2 fat distribution D ⊂ TM is said to be of degree d, if deg(x,D) =

d for each x ∈M .

Example 4.1.38. The underlying real distribution D of a holomorphic contact structure Ξ on

a complex manifold of dimension 2n+ 1, is a degree 2 fat distribution.

Example 4.1.39. Any corank 2 fat distribution D on a manifold of dimension 6 is of degree 2,

since deg(x,D) must be a non-zero even number and also deg(x,D) ≤ 1
2 dimDx = 2, at each

x ∈M (Observation 4.1.12).
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However, there are fat distributions of type (4, 6) which are not equivalent to holomorphic

contact. We shall revisit this in a later chapter.

Example 4.1.40. We will now give an example of a fat distribution on R10, with degree 4.

Consider, R10 with coordinates, {z, w, xi, yi, 1 ≤ i ≤ 4}. Take the 1-forms,

α1 = dz −
4∑
i=1

yidxi, α2 = dw −
(
y1dx2 − y2dx1

)
− 2
(
y3dx4 − y4dx3

)
.

Clearly these are independent forms, and therefore D = kerα1∩kerα2 is a corank 2 distribution.

A framing ⟨Yi, Xi⟩ of D can be given as follows :

X1 = ∂x1 + y1∂z − y2∂w,

X3 = ∂x3 + y3∂z − 2y4∂w,

X2 = ∂x2 + y2∂z + y1∂w,

X4 = ∂x4 + y4∂z + 2y3∂w,

Yi = ∂yi , for i = 1, . . . , 4.

Note that,

dα1 =
∑
i=1

dxi ∧ dyi, dα2 =
(
dx2 ∧ dy1 − dx1 ∧ dy2

)
+ 2
(
dx4 ∧ dy3 − dx3 ∧ dy4

)
.

It is easy to see that dαi|D are indeed nondegenerate. Let us consider the automorphism

A : D → D given by, dα2(x, y) = dα1(x,Ay) for any x, y ∈ D. The action of A on the framing

is then given by,

AX1 = −X2, AX2 = X1, AX3 = −2X4, AX4 = 2X3,

AY1 = Y2, AY2 = −Y1, AY3 = 2Y4, AY4 = −2Y3.

We can check that the minimal polynomial of this operator A is (T 2 + 1)(T 2 + 4). Thus,

D ⊂ TM is a degree 4 fat distribution. Consequently, germ of D is not equivalent to a

holomorphic contact distribution.

4.2 h-Principle for Immersions into Fat Distributions

In this section we shall obtain some new applications of h-principle of K-contact maps to con-

clude existence of horizontal immersions in degree 2 fat and Quaternionic contact distributions.

Furthermore, we shall prove the existence of K-contact maps into degree 2 fat distribution,

where K is a contact structure on Σ. The proofs are based on the contents of Chapter 3.
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4.2.1 Horizontal Immersions into Degree 2 Fat Distribution

Given (M,D), recall from Definition 3.1.7, we have the relation RHor ⊂ J1(Σ,M). Sections of

RHor are monomorphisms F : TΣ → u∗TM , covering some u : Σ → M such that F (Dσ) ⊂

Du(σ). Furthermore, F is Ω-regular and is Ω-isotropic, i.e, F ∗Ω = 0. Here Ω is the curvature

for of D.

We prove the following.

Theorem 4.2.1. Suppose D ⊂ TM is a degree 2 fat distribution on a manifold M and Σ is

an arbitrary manifold. Then RHor satisfies the C0-dense h-principle provided,

rkD ≥ 4 dimΣ + 4.

As seen in section 3.2, we have the relation R̃Hor ⊂ J1(Σ̃,M) associated to Ω-regular, D-

horizontal immersions of Σ̃ = Σ×R intoM , which admits a natural morphism ev : R̃Hor|Σ×0 →

RHor, induced by the restriction map C∞(Σ̃,M) → C∞(Σ,M). We prove the following.

Lemma 4.2.2. Suppose D is a degree 2 fat distribution on M . If rkD ≥ 4 dimΣ + 4, then

R̃Hor is an extension of RHor, i.e, ev : R̃Hor|Σ×0 → RHor is locally surjective.

Proof. Let (x, y, F ) represent a jet in RHor. Then V = Im F is an Ω-regular, Ω-isotropic

subspace of Dy. Since V is Ω-isotropic, i.e, V ⊂ V Ω, we have V ΩΩ ⊂ V Ω. Now, we use

the hypothesis that D is degree 2 fat; in particular (Dy, TM/D|y,Ωy) is a fat tuple (Defini-

tion 4.1.3). Since V is Ω-regular, it follows from Proposition 4.1.17(3) and Observation 4.1.8(1),

that,

dimV ΩΩ
= 2dimV.

Also, from Definition 4.1.1, we have,

codimV Ω = 2dimV.

Since rkD ≥ 4 dimΣ+ 4 by hypothesis, it follows that the codimension of V ΩΩ
in V Ω is ≥ 4.

Now, for any non-zero τ ∈ V Ω \ V ΩΩ
, the subspace V ′ = V ⊕ ⟨τ⟩ is an Ω-regular subspace by

Proposition 4.1.19. Clearly V ′ is Ω-isotropic. We can define a linear map F̃ : TxΣ×R → TyM

as follows:

F̃ (v, t) = F (v) + tτ, for all v ∈ TxΣ and t ∈ R.

Now suppose (F, u) : TΣ → TM is a bundle map representing a section of RHor, with

u = bsF : Σ → M being the base map of F . Denote Vx = ImFx = F (TxΣ) ⊂ Du(x) for all
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x ∈ Σ. It follows from the above discussion that we have two vector bundle over Σ defined as

follows,

TΣΩ :=
⋃
x∈Σ

V Ω
x and TΣΩΩ

:=
⋃
x∈Σ

V Ω
x

Ω

Since TΣΩΩ
is a subbundle of TΣΩ of positive codimension, using a local field τ in TΣΩ \

(TΣΩ)Ω as discussed in the previous paragraph, F can be locally lifted over each contractible

open set O ⊂ Σ to a section of R̃Hor|O. Thus ev : ΓR̃Hor → ΓRHor is surjective on such O

and hence R̃Hor is indeed an extension of RHor.

Remark 4.2.3. In fact, it follows from the above lemma that the relation R̃Hor is non-empty

if rkD ≥ dimΣ + 4, i.e, dimM ≥ 4 dimΣ + 6.

Proof of Theorem 4.2.1 now follows from a direct application of Theorem 3.2.7.

Existence of Regular Horizontal Immersions

The main result of this section can be stated as follows.

Theorem 4.2.4 ([BD20]). Suppose D ⊂ TM is a degree 2 fat distribution. Then any u : Σ →

M can be homotoped to a Ω-regular, D-horizontal map, provided

rkD ≥ max
{
4 dimΣ + 4, 5 dimΣ− 3

}
.

Furthermore the homotopy can be made arbitrarily C0-close to u.

In order to prove Theorem 4.2.4, it is enough to obtain a formal Ω-regular, D-horizontal

immersion, covering a given smooth map u : Σ → M , which gives a global section of the

relation RHor ⊂ J1(Σ,M). Then a direct application of Theorem 4.2.1 gives us the required

C0-small homotopy.

Consider the subbundle F ⊂ hom(TΣ, u∗TM), where the fibers are given by,

Fx =
{
F : TxΣ → Du(x)

∣∣∣ F is injective, Ω-regular and Ω-isotropic
}
, x ∈ Σ.

Clearly, ΓF consists of formal maps in ΨHor = ΓRHor which covers the given u : Σ → M .

In order to get a global section of F , we appeal to the obstruction theory ([Hus94]) for fiber

bundles.

Recall that given a fibration P ↪→ E → B, with typical fiber P , and a section s defined

over the n-skeleton B(n) ⊂ B, the obstruction to extending this section to a section over the
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(n+ 1)-skeleton lies in the cohomology group

Hn+1(B, πn(P ))

with local coefficient system πn(P ). In particular, if the fiber is (dimB − 1)-connected, then

we have a global section of the bundle E → B.

To determine the connectivity of the fibers of F , let us consider a degree 2 fat tuple

(D,E,Ω) and let Vk(D) denote the space of k-frames in D. Define a subset R(k) of Vk(D)

by,

R(k) =
{
(v1, . . . , vk) ∈ Vk(D)

∣∣∣ the span ⟨v1, . . . , vk⟩ is Ω-regular and Ω-isotropic
}

We first observe that the connectivity of this space does not depend on our choice of degree 2

tuple. Indeed we have the following.

Lemma 4.2.5. The space R(k) is 4n− 4k + 2-connected, where dimD = 4n.

Proof. The proof is by induction over k. For k = 1, we have

R(1) =
{
v ∈ D

∣∣ v ̸= 0 and ⟨v⟩ is Ω-regular, Ω-isotropic
}
.

But from Definition 4.1.3, every 1-dimensional subspace of D is Ω-regular as well as isotropic.

Thus we get,

R(1) ≡ D \ {0} ≃ S4n−1

Hence R(1) is 4n− 2-connected. Note that, 4n− 2 = 4n− 4.1 + 2.

Let k ≥ 2 and assume that, R(k−1) is 4n−4(k−1)+2 = 4n−4k+6-connected. Observe

that the projection map p : Vk(D) → Vk−1(D) given by p(v1, . . . , vk) = (v1, . . . , vk−1) maps,

R(k) into R(k − 1). We now identify the fibers of p : R(k) → R(k − 1).

Let b = (v1, . . . , vk−1) ∈ R(k − 1), so that V = ⟨v1, . . . , vk−1⟩ is Ω-regular and Ω-

isotropic. As we saw in the proof of Lemma 4.2.2, a tuple (v1, . . . , vk−1, τ) ∈ R(k) if and only

if τ ∈ V Ω \ V ΩΩ
. We have thus identified, the fiber of p over b with,

p−1(b) ≡ V Ω \ V ΩΩ
.

Note that, dimV ΩΩ
= 2dimV = 2k and

codimV Ω = 2dimV ⇒ dimV Ω = dimD − 2 dimV = 4n− 2(k − 1).
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Hence the fiber p−1(b) may be identified with F (k) := R4n−2k+2 \ R2(k−1) and so it is 4n −

2k+2− (2k−2)−2 = 4n−4k+2-connected. Next consider the fibration long exact sequence

associated to p : R(k) → R(k − 1),

· · · → πi(F (k)) → πi(R(k)) → πi(R(k − 1)) → πi−1(F (k)) → · · ·

Since πi(F (k)) = 0 for i ≤ 4n − 4k + 2, we get isomorphisms πi(R(k)) ∼= πi(R(k − 1)) for

i ≤ 4n − 4k + 2. But from the induction hypothesis, πi(R(k − 1)) = 0 for i ≤ 4n − 4k + 6.

Hence,

πi(R(k)) ∼= πi(R(k − 1)) = 0,

for i ≤ 4n− 4k + 2 < 4n− 4k + 6. This concludes the induction step and hence the lemma is

proved.

Let us now give the proof of main theorem.

Proof of Theorem 4.2.4. For x ∈ Σ, we may easily identify the fiber Fx with R(k) for the

degree 2 fat tuple
(
Du(x), TM/D|u(x),Ω|u(x)

)
and hence it follows from Lemma 4.2.5 that the

fibers of F are 4n− 4k + 2-connected. Now from the hypothesis we have,

rkD ≥ 5 dimΣ− 3 ⇔ 4n ≥ 5k − 3 ⇔ 4n− 4k + 2 ≥ k − 1 = dimΣ− 1.

Hence, F has a global section. We thus have a formal, Ω-regular, Ω-isotropic, D-horizontal map

F , covering the given u : Σ → M . Furthermore since rkD ≥ 4 dimΣ + 4, by Theorem 4.2.1,

this formal map F can be homotoped to a holonomic section of RHor. In particular, there exists

an Ω-regular, D-horizontal immersion Σ → M , arbitrarily C0-close to u. This concludes the

proof.

In particular, one may take u : Σ → M to be a constant map. Then as a direct corollary

we get,

Corollary 4.2.6. Let D be a degree 2 fat distribution on M . Then Σ admits an Ω-regular

D-horizontal immersion in an arbitrary small open subset in M , provided rkD ≥ max{4 rkD+

4, 5 dimΣ− 3}.

As a consequence of Proposition 4.1.30, we see that the Ω-regularity condition in the

context of holomorphic contact structure translates into totally real condition. We thus have

the immediate corollary of Theorem 4.2.4.
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Corollary 4.2.7. Given a holomorphic contact structure Ξ on a complex manifold M , any

smooth map u : Σ →M can be homotoped to a totally real horizontal immersion, provided

rkR Ξ ≥ max{4 dimΣ + 4, 5 dimΣ− 3}.

Furthermore, the homotopy can be made arbitrarily C0-small.

An Application to Symplectic Geometry

Let us now discuss an interesting consequence of the h-principle Theorem 4.2.1 in the symplectic

geometry. Recall that given a manifold N with a symplectic form ω, an immersion f : Σ → N

is called Lagrangian if f∗ω = 0. Now, further assume that the symplectic form ω in question

is exact, say, ω = dµ for some 1-form µ on N . In this case, N must be an open manifold.

Now, a Lagrangian immersion f : Σ → N is called exact if the closed form f∗µ is exact. The

space of exact Lagrangian immersions depends on the choice of a primitive µ. We refer to

[Gro86, EM02] for the h-principle for exact Lagrangian immersions.

Now, consider a manifold N with a pair of exact symplectic forms (dµ1, dµ2) on it.

Definition 4.2.8. An immersion f : Σ → (N, dµ1, dµ2) is said to be an exact (dµ1, dµ2)-

Lagrangian if f∗µ1, f∗µ2 are exact 1-forms.

Let M = N × R2 and π : M → N be the canonical projection map onto N . Then on M

we have the 1-forms,

λi = dzi − π∗µi, i = 1, 2,

where z1, z2 are the coordinates on R2. Clearly λ1 and λ2 are independent at each point of M

and so we have a corank 2 distribution D = kerλ1 ∩ kerλ2. Note that dπ : D → TN is a

fiberwise isomorphism. Furthermore, the curvature form ΩD is given as, ΩD = (dλ1|D, dλ2|D) =(
π∗dµ1|D, π∗dµ2|D

)
.

Now, identify C∞(Σ,M) with C∞(Σ, N)×C∞(Σ)×C∞(Σ) for an arbitrary manifold Σ.

Suppose u = (f, ϕ1, ϕ2) : Σ → N × R× R is a C∞-map. Then,

u∗λi = d
(
zi ◦ u

)
−
(
π ◦ u

)∗
µi = dϕi − f∗µi, i = 1, 2.

Therefore,

u∗λi = 0, for i = 1, 2 ⇔ f is exact (dµ1, dµ2)-Lagrangian.
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Hence, u is D-horizontal if and only if f = π ◦ u is an exact (dµ1, dµ2)-Lagrangian. Using

Theorem 4.2.1 we can now get an h-principle result for the regular exact (dµ1, dµ2)-Lagrangians

in certain cases. This partially improves some of the results obtained in [Dat11].

For immersions f : Σ → N , we have a similar notion of (dµ1, dµ2)-regularity. A subspace

V ⊂ TxN is called (dµ1, dµ2)-regular if the map,

ψ : TxN → hom(V,R2)

∂ →
(
ι∂dµ

1|V , ι∂dµ2|V
)

is surjective (compare Definition 4.1.1). Similarly, an immersion f : Σ → N is called (dµ1, dµ2)-

regular if V = Im dfσ is (dµ1, dµ2)-regular for each σ ∈ Σ.

Definition 4.2.9. A monomorphism F : TΣ → TN is said to be a formal regular, (dµ1, dµ2)-

Lagrangian if for each σ ∈ Σ,

� the subspace V = ImFσ ⊂ Tu(σ)N is (dµ1, dµ2)-regular subspace, and

� F ∗dµi = 0, that is, V is dµi-isotropic, for i = 1, 2.

Let us denote by RExaLag ⊂ J1(Σ,M) the underlying relation.

We then have the following.

Proposition 4.2.10. Every (formal) regular, (dµ1, dµ2)-Lagrangian map immersion lifts to a

(formal) Ω-regular D-horizontal immersion. Conversely, any (formal) Ω-regular D-horizontal

immersion projects to a (formal) regular, exact (dµ1, dµ2)-Lagrangian immersion.

Proof. Suppose (F, f) : TΣ → TN is a given formal, regular (dµ1, dµ2)-Lagrangian map. Set,

u = (f, 0, 0) : Σ → M . Then we can get a canonical lift H : TΣ → TM covering u, by using

the fact that dπ : Du(σ) → Tf(σ)N is an isomorphism. We have the commutative diagram,

D π∗dµi|D = dλi|D

TΣ TN dµi

dπ|D
H

F

Therefore, H is injective. We claim that H is Ω-regular and dλi-isotropic for i = 1, 2 (in other

words Ω-isotropic). The isotropy condition follows easily, since,

H∗dλi|D = H∗π∗dµi|D = (dπ|D ◦H)∗dµi = F ∗dµi = 0, i = 1, 2.
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To deduce the Ω-regularity, observe that we have a commutative diagram,

Du(σ) hom(ImHσ,R2)

Tf(σ)N hom(ImFσ,R2)

ϕ

dπ|u(σ)

ψ

(
dπ|u(σ)

)∗

where both the vertical maps are isomorphisms and the maps ϕ, ψ are given as,

ϕ(v) =
(
ιvdλ

i|ImH

)
i=1,2

and ψ(u) =
(
ιudµ

i|ImF

)
i=1,2

.

Now, (dµ1, dµ2)-regularity of F is equivalent to surjectivity of ψ which implies surjectivity of

ϕ. Thus, the lift H is a formal, regular, isotropic D-horizontal map. A similar argument proves

the converse statement as well.

Since dµi is symplectic for i = 1, 2, we can define an automorphism A : TN → TN by,

dµ1(u,Av) = dµ2(u, v) for u, v ∈ TN . We now restrict to pairs (dµ1, dµ2) for which A has no

real eigenvalue and the degree of the minimal polynomial of A is 2 (at every point). Clearly,

this gives rise to the automorphism Ã : D → D satisfying, dλ1(u, Ãv) = dλ2(u, v) for u, v ∈ D;

which enjoys similar properties. In particular, D is then a fat distribution of degree 2.

Example 4.2.11. As a concrete example, one may consider the exact symplectic forms,

ω1 =
2n∑
i=1

dxi ∧ dyi and ω2 =
n∑
i=1

(
dx2i−1 ∧ dy2i − dx2i ∧ dy2i−1

)
,

on R4n, with the coordinates (xi, yi; i = 1, . . . , 2n). Then the automorphism A in this case

satisfies, A2 = −I. A very similar calculation as in Corollary 4.1.29 shows that any holomorphic

symplectic form ω on a complex n-manifold (i.e dω = 0 and ωn is nonvanishing), locally gives

rise to such pairs, when written as ω = ω1 + ιω2. Furthermore, the associated distribution D

on R4n+2 is precisely the real distribution underlying a standard holomorphic contact structure,

as observed in Corollary 4.1.29.

We now have the following h-principle.

Theorem 4.2.12 ([BD20]). Suppose, dµ1, dµ2 are exact symplectic forms on N , related by an

automorphism A : TN → TN , such that Ax has no real eigenvalue and the minimal polynomial

of Ax has degree 2, for all x ∈ N . Then the relation RExaLag satisfies the C0-dense h-principle,

provided dimN ≥ 4 dimΣ + 4.
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Proof. Suppose F0 ∈ ΓRExaLag is given. That is, F0 : TΣ → TM is a formal, regular, exact

(dµ1, dµ2)-Lagrangian, with f0 = bsF0. Consider the lift, F̃0 : TΣ → TM with bs F̃0 =

(f0, 0, 0); which is a formal, Ω-regular, isotropic D-horizontal map by Proposition 4.2.10. Now,

dimN ≥ 4 dimΣ + 4 ⇔ dimM ≥ 4 dimΣ + 6 ⇔ rkD ≥ 4 dimΣ + 4.

Hence, by Theorem 4.2.1, we have a homotopy F̃t of formal, Ω-regular, D-horizontal maps, so

that F̃1 = df̃1; where f̃t = bs F̃t. Furthermore f̃t is arbitrarily C0-close to f̃0. Now consider

the projected map, Ft = dπ ◦ F̃t, which covers ft = π ◦ f̃t. Again by Proposition 4.2.10, Ft

is formal, regular, exact (dµ1, dµ2)-Lagrangian, i.e, Ft ∈ ΓRExaLag. Furthermore, F1 = df1.

Hence, we have the required homotopy, proving the h-principle. Clearly, ft is C
0-close to f0 for

all t. This concludes the C0-dense h-principle for RExaLag.

An obstruction-theoretic argument as in Theorem 4.2.4 gives us the following result,

Theorem 4.2.13. Suppose (N, dµ1, dµ2) is as in Theorem 4.2.12. If dimN ≥ max{4 dimΣ+

4, 5 dimΣ − 3}, then any f : Σ → N can be homotoped to a regular exact (dµ1, dµ2)-

Lagrangian, keeping the homotopy arbitrarily C0-small.

The above theorem improves the result in [Dat11], where the author proved the existence

of regular, exact (dµ1, dµ2)-Lagrangian immersions Σ → N , under the condition dimN ≥

6 dimΣ.

4.2.2 Horizontal Immersions into Quaternionic Contact Manifolds

Given an arbitrary quaternionic contact structure D ⊂ TM (see Definition 4.1.33), we wish to

study D-horizontal immersions u : Σ → M . The aim of this section is to prove the following

h-principle.

Theorem 4.2.14. Suppose D ⊂ TM is a quaternionic contact structure and Σ is an arbitrary

manifold. Then RHor ⊂ J1(Σ,M) satisfies the C0-dense h-principle, provided

rkD ≥ 4 dimΣ + 4

In fact, given any monomorphism F : TΣ → TM , covering some u : Σ → M and satisfying

the curvature condition F ∗Ω = 0, we can homotope F to a D-horizontal immersion, keeping

the homotopy arbitrary C0-small, provided rkD ≥ 4 dimΣ + 4.

Denoting the curvature form of D by Ω, we recall that,
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� a subspace V ⊂ Dx is Ω-isotropic if we have V ⊂ V Ω.

� a subspace V ⊂ Dx is Ω-regular if and only if codimV Ω = corkD × dimV = 3dimV .

The following justifies the absence of Ω-regularity in the h-principle statement above.

Proposition 4.2.15 ([Pan16]). If D is a quaternionic contact structure, then any Ω-isotropic

subspace of Dx is Ω-regular

Proof. Since (M,D) is a quaternionic contact manifold, we have a Riemannian metric g on

D and local 1-forms λs on some open neighborhood U of x, defining D|U =
⋂3
s=1 kerλ

s.

Furthermore, the automorphisms Js : D|U → D|U defined via the relation dλs
(
u, v
)
= g(Jsu, v)

for any vectors u, v ∈ D|U , satisfy the quaternionic relations,

J2
1 = J2

2 = J2
3 = −1 = J1J2J3.

Now, suppose V ⊂ Dx is an Ω-isotropic subspace. We show that
∑
JsV is a direct sum.

First note that J∗s = −Js, where J∗s is the adjoint of Js. Indeed, we have,

g(u, J∗s v) = g(Jsu, v) = dλs(u, v) = −dλs(v, u) = −g(Jsv, u) = g(u,−Jsv),

for any u, v ∈ D|U . Since V is Ω-isotropic, i.e, V ⊂ V Ω =
⋂3
s=1 V

⊥dλs , for any u, v ∈ V we

have,

g(J1u, J2v) = g(u,−J1J2v) = g(u, J3v) = dλs(u, v) = 0.

Similar arguments give us that, g(Jiu, Jjv) = 0 for any i ̸= j. Thus, we see that J1V, J2V, J3V

are pairwise g-orthogonal subspaces. Hence
∑3

s=1 JsV is a direct sum, so that dim
(∑

JsV
)
=

3dimV .

Next we show that, V Ω ∩
(∑

JsV
)
= 0. In fact, for any w ∈ V Ω and for any z =

J1v
1 + J2v

2 + J3v
3 ∈

∑
JsV , we have that

g(z, w) =

3∑
s=1

g(Jsv
s, w) =

3∑
s=1

dλs(vs, w) = 0.

In other words, V Ω and
∑
JsV are g-orthogonal and hence they have zero intersection. But

then we readily have that, codimV Ω ≥ dim
(∑

JsV
)
= 3dimV . On the other hand, it is

clear that codimV Ω ≤ 3 dimV , which implies that codimV Ω = 3dimV , proving that V is

indeed Ω-regular.

We now proceed as in the previous section to prove the following.
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Lemma 4.2.16. If rkD ≥ 4 dimΣ + 4, then R̃Hor is an extension of RHor.

Proof. Let (x, y, F ) represent a jet in RHor. Then V = ImF is an Ω-isotropic subspace of Dy

and so V ⊂ V Ω. By Proposition 4.2.15, V is Ω-regular as well. Hence we have,

codimV Ω = 3dimV.

Now from the dimension condition we have,

rkD ≥ 4 dimΣ + 4 ⇒ dimV Ω = rkD − 3 dimΣ ≥ dimΣ + 4 = dimV + 4.

Thus, we have that the codimension of V in V Ω is ≥ 4. Now, for any τ ∈ V Ω \ V , we have

that V ′ = V + ⟨τ⟩ is again isotropic. We may then define an extension F̃ : TxΣ⊕ R → TyM

by F̃ (v, t) = F (v) + tτ for all v ∈ TxΣ and t ∈ R. Clearly (x, y, F̃ ) is then a jet in R̃Hor.

Proceeding just as in Lemma 4.2.2, we can now complete the proof.

The proof of Theorem 4.2.14 now follows directly from Theorem 3.2.7.

Existence of Horizontal Immersions in Quaternionic Contact Structures

We conclude from the above h-principle, the following existence result.

Theorem 4.2.17. Let D be a quaternionic contact structure onM . Then any map u : Σ →M

can be homotoped to a D-horizontal immersion provided,

rkD ≥ max{4 dimΣ + 4, 5 dimΣ− 3}.

Furthermore, the homotopy can be made arbitrarily C0-small.

The proof is similar to that of Theorem 4.2.4; in fact it is simpler since Ω-regularity is

automatic by Proposition 4.2.15. Let us denote,

R(k) =
{
(v1, . . . , vk) ∈ Vk(Dx)

∣∣∣ the span ⟨v1, . . . , vk⟩ ⊂ Dx is Ωx- isotropic
}
,

where Vk(D) is the space of k-frames in a vector space D. We then have the following.

Lemma 4.2.18. The space R(k) is 4n− 4k + 2-connected, where rkD = 4n.

Proof. The proof is via induction on k. For k = 1, we have,

R(1) =
{
v ∈ Dx

∣∣ v is nonzero, ⟨v⟩ is isotropic}.
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But every one dimensional subspace is isotropic. Hence we have,

R(1) = Dx \ 0 ≃ S4n−1,

which is 4n− 2 connected. Note that, 4n− 2 = 4n− 4.1 + 1.

Inductively, assume that for some k ≥ 2, the space R(k − 1) is 4n − 4(k − 1) + 2 =

4n − 4k + 6-connected. We see that the projection map p : Vk(Dx) → Vk−1(Dx) given by,

p(v1, . . . , vk) = (v1, . . . , vk−1) maps R(k) into R(k − 1). In particular, we have a fiber bundle

p : R(k) → R(k − 1). Now, let b = (v1, . . . , vk−1) ∈ R(k − 1), so that V = ⟨v1, . . . , vk−1⟩ is

Ω-isotropic, i.e, V ⊂ V Ω. Proceeding as in Lemma 4.2.16, we get that a tuple (v1, . . . , vk, τ) ∈

R(k) if and only if τ ∈ V Ω \ V . Now we see that,

dimV Ω = dimDx − 3 dimV = 4n− 3(k − 1) = 4n− 3k + 3.

Thus we have identified the fiber p−1(b) with,

F (k) := R4n−3k+3 \ Rk−1,

which is (4n− 3k + 3)− (k − 1)− 2 = 4n− 4k + 2-connected.

Next, consider the fibration long exact sequence for the fiber bundle p : R(k) → R(k − 1),

· · · → πi(F (k)) → πi(R(k)) → πi(R(k − 1)) → πi−1(F (k)) → · · ·

Since πi(F (k)) = 0, for i ≤ 4n − 4k + 2, we get isomorphism πi(R(k)) ∼= πi(R(k − 1)) for

i ≤ 4n − 4k + 2. But from the induction hypothesis, πi(R(k − 1)) = 0 for i ≤ 4n − 4k + 6.

Hence,

πi(R(k)) = 0, for i ≤ 4n− 4k + 2 < 4n− 4k + 6.

This concludes the induction argument as we have proved thatR(k) is 4n−4k+2-connected.

Proof of Theorem 4.2.17. Suppose u : Σ → M is an arbitrary map. Consider the subbundle

F ⊂ hom(TΣ, u∗D) where the fibers are given by,

Fx =
{
F : TxΣ → Du(x)

∣∣∣ F is injective and Ω-isotropic}, x ∈ Σ.

Clearly, ΓF consists of formal maps in ΨHor = ΓRHor, that covers u. We can identify the fiber

Fx with the space R(k) and hence by Lemma 4.2.18, the fiber is 4n− 4k + 2-connected. So,
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under the hypothesis,

rkD = 4n ≥ 5 dimΣ− 3 = 5k − 3 ⇔ 4n− 4k + 2 ≥ k − 1,

the fibers of F are (dimΣ− 1)-connected. We then have a global section F ∈ ΓF . The proof

now follows directly from Theorem 4.2.14.

Applying Theorem 4.2.17 to the constant maps Σ →M we have the immediate corollary.

Corollary 4.2.19. Given a quaternionic contact structure D on M , every manifold Σ admits

a D-horizontal immersion in some arbitrarily small coordinate neighborhood in M , provided

rkD ≥ max{4 dimΣ + 4, 5 dimΣ− 3}.

An Application to Symplectic Geometry

Just as in the previous section, let us now consider a triple of symplectic forms, say ωi for

i = 1, 2, 3, on a Riemannian manifold (N, g). Suppose, the endomorphisms Ji of TN defined

by,

g(Ji , ) = ωi( , ), i = 1, 2, 3,

satisfy the quaternionic relations : J2
1 = J2

2 = J2
3 = −1 = J1J2J3.

Example 4.2.20. Any hyperkähler manifold (N, g) gives rise to such a symplectic triple ([BG08]).

Further assume that the symplectic forms are exact, i.e, ωi = dµi, for i = 1, 2, 3.

Definition 4.2.21. An immersion u : Σ → N is called an exact (dµ1, dµ2, dµ3)-Lagrangian if

u∗µi is an exact 1-form for i = 1, 2, 3.

Now, given (N, g, dµi, i = 1, 2, 3) as above, there exists a corank 3 distribution D on

M = N × R3, given by,

D =
3⋂
i=1

ker
(
dzi − π∗µi

)
,

where π : M → N is the projection and {z1, z2, z3} are the coordinates along R3. Clearly, D

is then a quaternionic structure on M . Now, arguing just as in Theorem 4.2.12, we have the

following as a corollary to Theorem 4.2.14.

Corollary 4.2.22. Let (N, g, dµi, i = 1, 2, 3) as above. Then, there exists an exact (dµi)-

Lagrangian immersion Σ → N , provided dimN ≥ max{4 dimΣ + 4, 5 dimΣ− 3}.
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4.2.3 Isocontact Immersions into Degree 2 Fat Distribution

So far we have only exhibited examples of horizontal immersions in specific fat distributions. In

our next example, we will considerK-contact maps in degree 2 fat distributions, forK nontrivial.

Given K ⊂ TΣ and D ⊂ TM , recall from Definition 3.1.7, the relation RIsoCont ⊂ J1(Σ,M),

representing the formal Ω-regular, K-isocontact maps. That is, ΨIsoCont = ΓRIsoCont consists

of monomorphisms F : TΣ → TM , covering some u : Σ → M , inducing K = F−1D.

Furthermore, F is Ω-regular, i.e, the bundle map

u∗D → hom(K,u∗TM/D)

ξ 7→
(
X 7→ Ω(ξ, FX)

)
is surjective; and F satisfies the curvature condition, i.e, F ∗Ω|K = ΩK . Here, Ω and ΩK are

the curvature forms of D and K respectively.

The goal of this section is to prove the following h-principle.

Theorem 4.2.23. Suppose D ⊂ TM is a degree 2 fat distribution and ξ ⊂ TΣ is a fixed

contact structure. Then, RIsoCont satisfies the C0-dense h-principle, provided

rkD ≥ 2 rk ξ + 4.

In fact, suppose we are given any monomorphism F : TΣ → TM , covering some u : Σ → M ,

inducing K = F−1D and satisfying the curvature condition F ∗Ω|ξ = F̃ ◦ Ωξ. Then F can

be homotoped to a K-isocontact immersion Σ → (M,D), provided rkD ≥ 2 rk ξ + 4, while

keeping the homotopy arbitrarily C0-small.

Before proceeding any further, let us first explain the absence of “Ω-regularity” in the above

statement.

Proposition 4.2.24. Let D ⊂ TM be a degree 2 fat distribution and ξ ⊂ TΣ be a contact

structure. Then any formal isocontact immersion F : (TΣ, ξ) → (TM,D) satisfying the

curvature condition is Ω-regular.

Proof. Suppose, F : TΣ ↪→ TM induces ξ = F−1D and satisfies, F ∗Ω|ξ = F̃ ◦ Ωξ; where

F̃ : TΣ/ξ → u∗TM/D is the induced injective bundle map and Ωξ, ΩD are the curvature forms

of ξ and D respectively. Fix some x ∈ Σ, and let y ∈ M , so that F : TxΣ → TyM . We may

choose some trivializations of TΣ/ξ and TM/D about x and y, respectively. Then there exists
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local 2-forms σ, ω1, ω2, such that,

Ωξ =
loc.

σ|ξ and ΩD =
loc.

(ω1|D, ω2|D),

with respect to the trivializations. Denote by A : Dy → Dy the connecting automorphism for

the tuple (ω1|Dy , ω2|Dy). Since F̃ is injective, we then see that the curvature condition at the

point x translates into,

F ∗ω1|ξ = b1σ, F ∗ω2|ξ = b2σ, for some scalars (b1, b2) ̸= (0, 0).

Without loss of generality, assume that b1 ̸= 0. Let us denote V = F (ξx) ⊂ Dy, so that we

may write,

ω2|V = cω1|V , for c =
b2
b1
.

Since σ is a nondegenerate 2-form on ξx and b1 ̸= 0, we observe that V is a symplectic

subspace of Dy, with respect to ω1. Recall from Observation 4.1.8 (1) that, V is Ω-regular if

and only if V +AV is a direct sum. Now, if possible, let z = Av ∈ V ∩AV for some 0 ̸= v ∈ V .

Then, using Observation 4.1.8 (3), we have for any u ∈ V ,

ω1(z, u) = ω1(Av, u) = ω2(v, u) = cω1(v, u) ⇒ ω1(Av − cv, u) = 0.

Since V is ω1-symplectic, we have that Av = cv, implying that c is an eigenvalue of A. But

this is a contradiction by Observation 4.1.8 (2). Hence, we have that V is Ω-regular. Since

x ∈ Σ is arbitrary, we have that any formal isocontact map F satisfying the curvature condition

is Ω-regular.

The proof of Theorem 4.2.23 follows from Theorem 3.2.7, provided we can prove the ‘local

extensibility’ property. Recall that we have the relation R̃IsoCont ⊂ J1(Σ̃,M), whose sections

are the formal, Ω-regular, K̃-isocontact immersions Σ̃ → M , where K̃ = dπ−1K and π : Σ̃ =

Σ×R → Σ is the projection. We also have a natural map ev : R̃IsoCont|Σ×0 → RIsoCont induced

by the projection map Σ̃ → Σ. We show that R̃IsoCont is indeed an extension in the sense of

Definition 2.2.13.

Lemma 4.2.25. Let D ⊂ TM be degree 2 fat and ξ ⊂ TΣ be a contact distribution. Then

R̃IsoCont is an extension of RIsoCont, provided rkD ≥ 2 rk ξ + 4.

Proof. Suppose (x, y, F ) is a jet in RIsoCont and denote, V = F (ξx) ⊂ Dy. Since the induced

map F̃ : TΣ/Σ|x → TM/D|y is injective, we may choose suitable trivialization of TΣ/ξ and
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TM/D around x and y respectively, so that we have a representation Ω =
loc.

(ω1, ω2) and the

curvature condition F ∗Ω|ξx = F̃ ◦ Ωξx translates into,

V ⊂ Dy is ω1-symplectic and ω2-isotropic.

We show that V Ω ∩ V ΩΩ
= 0.

Denote by A : Dy → Dy the connecting automorphism for the tuple (ω1, ω2). Since D is a

degree 2 fat distribution, A must satisfy A2 = λA+ µI for some scalars λ, µ ∈ R, with µ ̸= 0.

Now for any u, v ∈ V we have,

ω1(u,Av) = ω2(u, v) = 0, as V is ω2-isotropic.

This further implies that for all u, v ∈ V ,

ω1(Au,Av) = ω2(u,Av) = ω1(u,A2v) = λω1(u,Av) + µω1(u, v) = µω1(u, v).

As µ ̸= 0, we get that AV is ω1-symplectic. But then V + AV is ω1-symplectic as well, since

ω1(V,AV ) = 0. We then have,

V ΩΩ ∩ V Ω = (V +AV ) ∩ (V +AV )⊥1 = 0, by Proposition 4.1.17.

Since V is an Ω-regular subspace, from Definition 4.1.1, it follows that the codimension

of V Ω in Dy is 2 dimV . Hence, from the dimension condition, it follows that dimV Ω ≥ 4.

Now, for any τ ∈ V Ω we have that τ ̸∈ V ΩΩ
and so by Proposition 4.1.19, V ′ = V + ⟨τ⟩

is an Ω-regular subspace of Dy. Let us define an extension F̂ : TxΣ × R → TyM of F by

F̂ (v, t) = F (v) + tτ for t ∈ R and v ∈ TxΣ. It is then immediate that F̂−1(Dy) = ξ̃x and F̂ is

Ω-regular. Furthermore, for any (v, t) ∈ ξ̃x = ξx ⊕ R, we have that,

Ω(F̂ (t), F̂ (v)) = Ω(tτ, F (v)) = 0, as τ ∈ V Ω = (F (ξx))
Ω,

and so, Ωξ̃(t, v) = 0 = Ω(F̂ (t), F̂ (v)). In other words, F̂ satisfies the curvature condition

relative to Ωξ̃ and ΩD. Proceeding as in Lemma 4.2.2, we can now complete the proof.

The proof of Theorem 4.2.23 is now immediate from Theorem 3.2.7.

Existence of Isocontact Immersions

In this section, we prove the following.
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Theorem 4.2.26. Suppose ξ ⊂ TΣ is a contact structure on Σ and D ⊂ TM is a degree 2 fat

distribution on M . Then any map u : Σ → M can be homotoped to an isocontact immersion

(Σ, ξ) → (M,D) provided,

� rkD ≥ max{2 rk ξ + 4, 3 rk ξ − 2}, and

� one of the following two conditions holds true,

– both ξ and D are cotrivializable.

– H2(Σ) = 0.

Furthermore, the homotopy can be made arbitrary C0-close to u.

Suppose dimM = 4n+2 and dimΣ = 2k+1. Let us first assume that we are given some

injective bundle map G : TΣ/ξ → u∗TM/D, covering a map u : Σ → M . Now, as in the

previous two cases, we construct a sub-bundle F ⊂ hom(ξ, u∗D), where the fibers are given by,

Fx =
{
F : ξx → Du(x)

∣∣∣ F is injective and F ∗Ω|ξx = Gx ◦ Ωξ
}
, for x ∈ Σ.

We wish to get a global section of the bundle F . Towards this end, we need to figure out the

connectivity of the fibers Fx.

Let us consider the following linear algebraic set up. Let (D,E,Ω) be a degree 2 fat tuple.

Suppose Ω is represented by a pair of 2-forms (ω1, ω2) on D and A : D → D is the connecting

automorphism for the pair (ω1, ω2). Consider the subspace R(k) ⊂ V2k(D) given as,

R(k) =
{
b = (u1, v1, . . . , uk, vk) ∈ V2k(D)

∣∣∣b is a symplectic basis for ω1|V and V is ω2-isotropic,
where V =

〈
ui, vi, i = 1, . . . , k

〉 }
.

As we argued in Lemma 4.2.25, it is easy to see, by an application of Theorem 2.1.7 about

the point x, that the connectivity question about Fx can be translated to that of R(k), where

rk ξ = 2k.

Lemma 4.2.27. The space R(k) is 4n− 4k + 2-connected, where dimD = 4n

Proof. We proceed by induction on k. For k = 1,

R(1) =
{
(u, v) ∈ V2(D)

∣∣∣ ω1(u, v) = 1 and ω2(u, v) = 0
}
.

If (u, v) ∈ R(1), then

v ∈ u⊥2 \ u⊥1 = u⊥2 \
(
u⊥1 ∩ u⊥2

)
,
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As (D,E,Ω) is a fat tuple, every non-zero u is Ω-regular and hence in particular, u⊥1 ∩u⊥2 is a

codimension 1 hyperplane in u⊥2 . Clearly the complement space is then disconnected. But since

we also demand that ω1(u, v) = 1, the space of all such v is a codimension 1 affine subspace

of D and hence is a contractible set. Thus, we have obtained that, R(1) is homotopically

equivalent to the space of nonzero vectors u ∈ D. But, D \ 0 ∼= R4n \ 0 ≃ S4n−1 is clearly

(4n− 2)-connected. Hence, R(1) is (4n− 2)-connected. Note that 4n− 2 = 4n− 4.1 + 2.

Let us now assume that R(k−1) is 4n−4(k−1)+2 = 4n−4k+6-connected for some k ≥ 2.

Observe that the projection map p : V2k(D) → V2k−2(D) clearly maps R(k) into R(k − 1).

For a fixed tuple b = (u1, v1, . . . , uk−1, vk−1) ∈ R(k − 1), the span V = ⟨u1, . . . , vk−1⟩ is

ω1-symplectic and ω2-isotropic. As argued in Lemma 4.2.25 we then have that V + AV is

ω1-symplectic, i.e, (V +AV ) ∩ (V +AV )⊥1 = 0. Since V is Ω-regular, we get that

dim(V +AV )⊥1 = dimD−dim(V +AV ) = dimD−2 dimV = 4n−4(k−1) = 4n−4k+4.

Since (D,E,Ω) is a degree 2 fat tuple, from Proposition 4.1.17 (2) we get that,

(V +AV )⊥1 = (V +AV )⊥2 = V Ω.

Thus it follows from the ω1-symplecticity of V + AV that the restriction of ω1 and ω2 to the

space D̂ = V Ω are symplectic. Moreover, since V Ω is invariant, (D̂, E,Ω|D̂) is also a degree 2

fat tuple. So if we choose any (u, v) ∈ V2D̂, satisfying ω1(u, v) = 1 and ω2(u, v) = 0, it follows

that (u1, . . . , vk−1, u, v) ∈ F (k). In fact, we may identify the fiber p−1(b) with the space,

{
(u, v) ∈ V2(D̂)

∣∣∣ ω1(u, v) = 1, ω2(u, v) = 0
}
,

which is (dimV Ω−2)-connected as it has been already noted above. Thus, p−1(b) is dimV Ω−

2 = (4n− 4k + 4)− 2 = 4n− 4k + 2-connected.

Now an application of the homotopy long exact sequence to the bundle p : R(k) → R(k−1)

gives us that,

πi
(
R(k)

)
= πi

(
R(k − 1)

)
, for i ≤ 4n− 4k + 2.

But then by induction hypothesis we have,

πi
(
R(k)

)
= πi

(
R(k − 1)

)
= 0, for i ≤ 4n− 4k + 2.

Hence, R(k) is 4n− 4k + 2-connected. This concludes the proof.
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We now prove the existence.

Proof of Theorem 4.2.26. Suppose u : Σ → M is any given map. We first observe the impli-

cation of the second part of the hypothesis. If both ξ and D are given to be cotrivializable,

it is easy to note that there exists an injective bundle morphism G : TΣ/ξ → u∗TM/D. In

general, the obstruction to the existence of such a map G lies in H2(Σ) ([Hus94]). Hence, with

H2(Σ) = 0, we have the required bundle map.

Now for a fixed monomorphismG, we construct the fiber bundle F = F(u,G) ⊂ hom(ξ, u∗TM)

as discussed above. By Lemma 4.2.27, the fibers of F are 4n − 4k + 2 connected, where

rkD = 4n and rk ξ = 2k. From the hypothesis we have,

rkD ≥ 3 rk ξ − 2 = 6k − 2 ⇔ 4n− 4k + 2 ≥ 2k = dimΣ− 1

Hence we have a global section F̂ ∈ ΓF .

Lastly we observe that for any such global section F̂ ∈ ΓF , we may get a formal, ξ-

isocontact immersion F : TΣ → u∗TM covering u, satisfying F |D = F̂ and F̃ = G, by

choosing some splitting of TΣ/ξ and u∗TM/D. The proof now follows from a direct application

of Theorem 4.2.23.

An application of Theorem 4.2.26 to constant maps Σ →M gives us the following corollary.

Corollary 4.2.28. Let ξ ⊂ TΣ,D ⊂ TM be as in Theorem 4.2.26, satisfying the hypoth-

esis. Then there exists an ξ-isocontact immersion (Σ, ξ) → (M,D) in any arbitrary small

neighborhood of a point in M .



Chapter 5

Partially Horizontal Maps

Throughout this chapterM will denote a smooth manifold with a fixed distribution D having the

curvature form Ω = ΩD. We shall prove an h-principle (Theorem 5.1.17) for certain ‘regular’

class of smooth immersions u : Σ → (M,D), which induce distributions on Σ. Gromov

defines such maps as partially horizontal maps. Application of the h-principle are contained in

section 5.2.

5.1 A General Approach to m-Horizontal Immersions

In general, for an arbitrary immersion u : Σ → M , the object du−1(D) ⊂ TΣ need not be a

distribution. We are thus naturally led to the following definition introduced by Gromov.

Definition 5.1.1. [Gro96, Pg.256] An immersion u : Σ → (M,D) is said to be m-horizontal if

du−1(D) is a rank m distribution on Σ.

An m-horizontal immersion, where m = dimΣ, is clearly a D-horizontal immersion. This

justifies the nomenclature.

Now, given an m-horizontal immersion u : Σ →M , let us denote the distribution du−1(D)

by G. Note that, u : (Σ, G) → (M,D) is then a G-isocontact immersion. Therefore, the

induced map,

d̃u : TΣ/G→ u∗TM/D

is injective and we have the following numerical constraints:

rkD ≥ m, corkD ≥ dimΣ−m.

103
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As discussed in Proposition 3.1.4, we have the following commutative diagram:

Λ2G Λ2u∗D

TΣ/G u∗TM/D

ΩG

du

u∗ΩD

d̃u

where ΩG denotes the curvature form of G.

For smooth maps u : Σ →M and distributions G ⊂ TΣ of rank m, let us now consider the

operator,

(u,G) 7→ u∗λ|G,

where λ : TM → TM/D is the quotient map. We have that

u∗λ|G = 0 ⇒ du(G) ⊂ D ⇒ G ⊂ du−1(D).

Now, if we further assume that the map u : Σ →M is an immersion satisfying,

rk(λ ◦ du) ≥ dimΣ−m,

then a simple dimension counting argument gives us that du−1(D) = G, and hence u is then

an m-horizontal immersion. Furthermore, it should be noted that in this case G is completely

determined by u.

We now formalize this in the framework of differential operators as discussed in section

2.2.2. Note that, the space of m-distributions on Σ can be viewed as the space of sections of

the m-Grassmannian bundle GrmTΣ over Σ. Let

B = C∞(Σ,M)× ΓGrmTΣ.

For each (u,G) ∈ B, consider the vector space,

E(u,G) = Γhom
(
G, u∗TM/D

)
.

We have u∗λ|G ∈ E(u,G). Thus the operator,

Dm-HorGr : (u,G) 7→ u∗λ|G

can be treated as a section of the infinite dimensional vector bundle E → B. The solutions

(u,G) of the equationDm-HorGr = 0, for which u : Σ →M is an immersion with rk Im(λ◦du) ≥
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dimΣ−m, are precisely the m-horizontal immersions Σ →M . We should note that Dm-HorGr

is not a differential operator in the sense of Definition 2.2.19. Let us now introduce an auxiliary

differential operator in this context.

5.1.1 Auxiliary Differential operator D = DG,ρ

Let us first fix a rank m distribution G ⊂ TΣ and a splitting ρ of the short exact sequence,

0 G TΣ TΣ/G 0

ρ

Since Grm(W ) is locally parameterized by hom (V,W/V ), for any subspace V in a vector space

W , we may identify a neighborhood of G in ΓGrmTΣ with the infinite dimensional vector space

Γhom(G,TΣ/G) as follows : For each morphism ϕ : G→ TΣ/G, we have the injective map,

ϕ̄ : G→ TΣ

X 7→ X + ρϕX

which defines a rank m distribution, namely,

Gϕ = Im ϕ̄ =
{
X + ρϕX

∣∣ X ∈ G
}
.

Then
{
Gϕ
∣∣ ϕ ∈ Γhom(G,TΣ/G)

}
is a neighborhood ofG parameterized by Γhom(G,TΣ/G).

Consider the subspace,

U = U(G, ρ) = C∞(Σ,M)× Γhom(G,TΣ/G).

We can then identify U ↪→ B by (u, ϕ) 7→
(
u,Gϕ). For simplicity, let us assume that D =⋂p

s=1 kerλ
s for global 1-forms λs ∈ Ω1(M), so that the fiber over (u,Gϕ) is Γhom(Gϕ,Rp).

We then observe that the vector bundle E → B trivializes over U as,

E|U ∼= U × Γhom(G,Rp).
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We have the following diagram,

U × Γhom(G,Rp) E

U = C∞(Σ,M)× Γhom(G,TΣ/G) B

where, there is a canonical isomorphism of fibers,

Γhom(G,Rp) −→ Γhom(Gϕ,Rp)

α 7−→ α ◦ ϕ̄−1

Now, consider an auxiliary differential operator,

D = DG,ρ : C∞(Σ,M)× Γhom(G,TΣ/G) −→ Γhom(G,Rp)

(u, ϕ) 7−→ ϕ̄∗u∗λs =
(
X 7→ u∗λs(X + ρϕX)

)
It is clear that,

D(u, ϕ) = 0 ⇒ u∗λs|Im ϕ̄ = 0, s = 1, . . . , p ⇒ du
(
Im ϕ̄

)
⊂ D i.e du(Gϕ) ⊂ D.

Hence, if (u, ϕ) ∈ U is a solution of D = 0, where u is an immersion and rk Im(λs ◦ du) ≥

dimΣ − m, then u : Σ → M is indeed an m-horizontal immersion, inducing the rank m

distribution Gϕ.

Let us now determine the linearization operator of D at some (u, ϕ),

L(u,ϕ) : Γu
∗TM ⊕ Γhom(G,TΣ/G) → Γhom(G,Rp).

Suppose ξ ∈ Γu∗TM is represented by the family of maps ut : Σ → M such that, ξσ =

d
dt |t=0ut(σ) for σ ∈ Σ and u0 = u. Then for any ψ ∈ Γhom(G,TΣ/G) we have,

L(u,ϕ)(ξ, ψ) =
d

dt

∣∣∣
t=0

D(ut, ϕ+ tψ)

= lim
t→0

1

t

[
u∗tλ

s ◦ ϕ+ tψ − u∗λs ◦ ϕ̄
]

= lim
t→0

1

t

[
u∗tλ

s − u∗λs
]
◦ ϕ̄+ lim

t→0

1

t
u∗tλ

s ◦
(
tρ ◦ ψ

)
=
(
ιξdλ

s + dιξλ
s
)
◦ ϕ̄+ u∗λs ◦ ρ ◦ ψ
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Infinitesimal Inversion of D

Restricting the linearization operator to the subspace Γu∗D we have,

L(u,ϕ) : Γu
∗D ⊕ Γhom(G,TΣ/G) → Γhom(G,Rp)(

ξ, ψ
)
7→ ιξdλ

s ◦ ϕ̄+ u∗λs ◦ ρ ◦ ψ

L(u,ϕ) is clearly C
∞(Σ)-linear and therefore, is induced by a bundle map

u∗D ⊕ hom(G,TΣ/G) → hom(G,Rp).

Furthermore, if D(u, ϕ) = 0, then it follows that

L(u,ϕ)(ξ, ψ) = ιξΩ ◦ ϕ̄+ u∗λs ◦ ρ ◦ ψ,

where Ω = ΩD is the curvature form. As before, we identify the regularity condition on the

solution tuples (u, ϕ).

Definition 5.1.2. A tuple (u, ϕ), where u : Σ → M is an m-horizontal immersion inducing

Gϕ = du−1(D), is called Ω-regular if the bundle map L(u,ϕ) is surjective.

It is to be noted that the above notion of Ω-regularity is different from what was defined in

the previous chapter. The notion of regularity is indeed independent of any choice of defining

forms for D or the choice of a splitting map ρ : TΣ/G → TΣ, as it can be seen from the

proposition below.

Now, when u is an m-horizontal immersion inducing the chosen distribution G, that is if

G = du−1(D), then the homomorphism ϕ = 0. Since ρ is a splitting morphism in the diagram

below,

TΣ TM

TΣ/G TM/D

du

ρ

d̃u

we have that,

u∗λs ◦ ρ
(
X mod G

)
= d̃u

(
ρ(X mod G) mod G

)
= d̃u(X mod G),
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for any X ∈ TΣ. Thus, we have d̃u = u∗λs ◦ ρ for any choice of splitting map ρ. Hence, the

linearization operator becomes,

L(u,0)(ξ, ψ) = ιξΩ|G + d̃u ◦ ψ

In particular, the Ω-regularity of a solution tuple may now be defined as follows.

Definition 5.1.3. A tuple (u,H), where u : Σ → M is an m-horizontal immersion inducing

the rank m distribution H = du−1(D), is called Ω-regular if the bundle map,

L(u,H) : u
∗D ⊕ hom(H,TΣ/H) → hom(H,u∗TM/D)

(ξ, ψ) 7→ ιξΩ|H + d̃u ◦ ψ

is an epimorphism, where d̃u : TΣ/H → u∗TM/D is the induced monomorphism.

Let us now show that all these notions of regularity are in fact equivalent.

Proposition 5.1.4. Suppose G ⊂ TΣ is a k-dimensional distribution on Σ and ρ : TΣ/G ↪→ G

is a splitting morphism. Let u : Σ →M be an m-horizontal immersion inducing the distribution

Gϕ = du−1D, for some morphism ϕ : G → TΣ/G. Denote Gϕ by H. Then the following are

equivalent.

1. The operator L(u,H) is an epimorphism.

2. The operator L(u,ϕ) is an epimorphism.

3. The bundle map,

Ω• : u
∗D → hom

(
H,u∗(TM/D)

/
Im d̃u

)
ξ 7→ q ◦ ιξΩ|G

is an epimorphism, where q : u∗TM/D → u∗(TM/D)
/
Im d̃u is the quotient map.

Proof. Let us first prove, 1 ⇔ 2. Recall that the map L(u,H) is given as,

L(u,H) : u
∗D ⊕ hom(H,TΣ/H) → hom(H,u∗TM/D)

(ξ, ψ) 7→ ιξΩ|H + d̃u
H ◦ ψ =

(
X 7→ Ω(ξ, u∗X) + d̃u

H ◦ ψ(X)
)

where d̃u
H

: TΣ/H → u∗TM/D is the induced monomorphism. We shall relate this map with

L(u,ϕ).
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First observe that the bundle map, β : TΣ/G→ TΣ/H given as,

β(X mod G) = ρ
(
X mod G

)
mod H,

is an isomorphism. Indeed we have that,

β(X mod G) = 0 ⇒ ρ
(
X mod G

)
∈ H ⇒ ρ(X mod G) = 0,

since Im ρ ∩H = Im ρ ∩ Gϕ = 0. Now, ρ being injective, we conclude that X mod G = 0,

showing that β is injective. But, this further implies that β is an isomorphism for rkTΣ/G =

rkTΣ/H.

We also have that ϕ̄ : G→ Gϕ = H is an isomorphism and hence get the isomorphism,

α : hom(G,TΣ/G) → hom(H,TΣ/H)

ψ 7→ β ◦ ψ ◦ ϕ̄−1

Now for any ψ : G→ TΣ/G and X ∈ G we see,

u∗λs
(
ρψ(X)

)
= d̃u

H
(
ρψ(X) mod H

)
= d̃u

H ◦ β(ψ(X)).

Consequently we now have that,

L(u,ϕ)

(
ξ, ψ

)
(X) = Ω

(
ξ, ϕ̄(X)

)
+ u∗λs

(
ρψ(X)

)
= Ω

(
ξ, ϕ̄(X)

)
+ d̃u

H ◦ β
(
ψ(X)

)
= Ω(ξ, ϕ̄X) + d̃u

H ◦ α(ψ)(ϕ̄X)

= L(u,H)

(
ξ, α(ψ)

)(
ϕ̄X
)

⇒ L(u,ϕ)(ξ, ψ) = L(u,H)(ξ, α(ψ)) ◦ ϕ̄

It is now immediate that L(u,ϕ) is surjective if and only if L(u,H) is, since both α and ϕ̄ are

isomorphisms. This concludes the proof that 1 ⇔ 2.

Next, we show that 1 ⇔ 3. For any (ξ, ψ) ∈ u∗D ⊕ hom(H,TΣ/H) we have,

L(u,H)(ξ, ψ) = ιξΩ|H + d̃u ◦ ψ.
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We observe that L(u,H) restricted to hom(H,TΣ/H) equals the morphism

(d̃u)∗ : hom(H,TΣ/H) → hom(H,u∗(TM/D)),

which is injective linear. Hence, the fiber wise surjectivity of L(u,H) is equivalent to that of

Ω•.

The Microflexibility and Local h-Principle for the Sheaf of Ω-regular Tuples

For a given distribution G ⊂ TΣ, with a splitting map ρ : TΣ/G ↪→ TΣ, we define a subspace

A ⊂ C∞(Σ,M)× Γ(hom(G,TΣ/G) as follows :

A =
{(
u, ϕ

) ∣∣ u is an immersion, rk(λs ◦ du) ≥ dimΣ−m and L(u,ϕ) is an epimorphism
}

It is immediate that A = SolA for an open relation A ⊂ J1(Σ,M) × hom(G,TΣ/G)(1).

Furthermore, we have observed that the operator D : (u, ϕ) 7→ u∗λs|Gϕ is infinitesimally

invertible over the solution space A, with order of inversion 0.

As usual, we have the relation,

RG,ρ
α = RG,ρ

α (D,A, 0) ⊂ Jα+1(Σ,M)× hom(G,TΣ/G)(α+1),

consisting of A-regular, α-infinitesimal solutions of D. In other words, for α ≥ 0, the smooth

solutions of Rα are precisely the Ω-regular tuples (u, ϕ), where u : Σ →M is an m-horizontal

immersion, inducing the distribution Gϕ = du−1(D). Let us denote the sheaves,

ΦG,ρ = SolRG,ρ
α and ΨG,ρ

α = ΓRG,ρ
α .

Observation 5.1.5. We have the following.

1. The solution sheaf ΦG,ρ is a microflexible sheaf, by Theorem 2.2.27

2. For α ≥ 2, the relation RG,ρ
α satisfies the local h-principle, i.e, the jet map jα+1 : ΦG,ρ →

ΨG,ρ
α is a local weak homotopy equivalence, by Theorem 2.2.28

Just as before, let us now define the following first jet relation.

Definition 5.1.6. For a fixed G ⊂ TΣ and a splitting map ρ : TΣ/G ↪→ TΣ, define the relation

RG,ρ ⊂ J (Σ,M)× hom(G,TΣ/G)(1) consisting of jets j1u,ϕ(σ) satisfying the following :
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� duσ is an injective, inducing Gϕσ = du−1Du(σ) and the map L(u,ϕ) is surjective at σ

� the curvature condition u∗Ω|
Gϕσ

= d̃u
ϕ ◦ Ω

Gϕσ
holds, where ΩGϕ is the curvature form of

Gϕ and d̃u
ϕ
: TΣ/Gϕ|σ → TM/D|u(σ) is the induced map.

It is immediate that RG,ρ ⊂ RG,ρ
0 and ΦG,ρ = SolRG,ρ. Let us now focus on a relation,

independent of the choice of G and ρ.

5.1.2 The Relation Rm-HorGr

Recall from Proposition 3.1.4 that for any tuple (u,H), where u : Σ → M is an m-horizontal

immersion inducing the distribution H = du−1D, the curvature condition is understood as,

u∗Ω|H = d̃u ◦ ΩH ,

where d̃u : TΣ/H → u∗TM/D is the induced map and ΩH : Λ2H → TΣ/H is the curvature

2-form. Now, the curvature form ΩH at the point σ is determined by the first jet j1H(σ). Thus,

just as in Definition 3.1.7, we define a first order relation Rm-HorGr as follows.

Definition 5.1.7. Rm-HorGr ⊂ J1(Σ,M)× (GrmTΣ)
(1) consists of jets j1u,H(σ) satisfying,

� P = duσ is injective.

� P ∗λs|Hσ = 0 and the induced map P̃ : TΣ/H|σ → TM/D|u(σ) is injective.

� the linear map,

Du(σ) ⊕ hom(H,TΣ/H)|σ → hom
(
Hσ, TM/D|u(σ)

)
(ξ, ψ) 7→ P ∗ιξΩ|Hσ + P̃ ◦ ψ

is surjective.

� the curvature condition,

P ∗Ω|Hσ = P̃ ◦ ΩHσ ,

holds at the point σ, where ΩH : Λ2H → TΣ/H is the curvature 2-form.

For each α ≥ 0, we have the relations Rm-HorGr
α ⊂ Jα+1(Σ,M)× (GrmTΣ)

(α+1), consisting of

jets jα+1
u,H (σ) satisfying,

� j1u,H(σ) ∈ Rm-HorGr, and
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� jα
Dm-HorGr(u,H)

(σ) = 0 in hom(H,u∗TM/D)(α).

It is immediate that Rm-HorGr ⊂ Rm-HorGr
0 . We have the following jet lifting lemma, very

similar to Lemma 3.2.1.

Lemma 5.1.8. For any α ≥ 1, the jet projection map

p = pα+1
1 : Jα+1(Σ,M)× (GrmTΣ)

(α+1) → J1(Σ,M)× (GrmTΣ)
(1)

maps the relation Rm-HorGr
α surjectively onto Rm-HorGr. The fiber over each jet in Rm-HorGr

is contractible. Furthermore, any section of Rm-HorGr, defined over a contractible chart in Σ,

can be lifted to Rm-HorGr
α along p, and consequently, the induced sheaf map p : ΓRm-HorGr

α →

ΓRm-HorGr is a weak homotopy equivalence.

Proof. In order to proof the lemma, let us interpret the curvature condition in a different light.

First observe that we have an operator,

C∞(Σ,M)× Ω1(Σ,Rq)× C∞
(
Σ,Matq×p

)
→ Ω1(Σ,Rp)(

u, µ =
(
µr
)
, A
)
7→
(
u∗λs

)
−Aµ

where q = dimΣ−m. It is then immediate that for any tuple (u, µ,A),

(
u∗λs

)
= Aµ ⇒ u∗λs|∩qr=1 kerµ

r = 0.

In particular, if we assume that the tuple µ =
(
µr) of 1-forms is point-wise independent, and if

u is an immersion with rk Im(λs ◦ du) ≥ q, then we have that

du−1(D) = H := ∩qr=1 kerµ
r.

Now, applying the exterior derivative on both sides of the equation
(
u∗λs

)
= Aµ and restricting

to the common kernel H, we have,

(
u∗dλs|H

)
= A

(
dµr|H

)
.

We note that this equation represents the curvature condition for the tuple (u,H), i.e, the

equation

u∗Ω|H = d̃u ◦ ΩH .
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Indeed, we have that the matrix A represents the linear map d̃u : TΣ/H ∼= Rq → TM/D ∼= Rp

and the curvature 2-form for H = ∩ kerµr is given as, ΩH = (dµr|H).

Now in order to represent jets in Rm-HorGr
α , we need to find out the αth-order differentials

of the equations
(
u∗λs

)
= A

(
µr
)
. Since we are only interested in jets, we might as well work

with some choice of local coordinates and consequently, we get system of equations,

(
u∗λs(∂i)

)
= A

(
µr(∂i)

)
for ∂i ≡ ∂xi , 1 ≤ i ≤ dimΣ.

Expanding we have, ((
λsν ◦ u

)
∂iu

ν
)
q×k

= A
(
µri

)
p×n

,

where λs =
∑n

ν=1 λ
s
µdy

ν and µr =
∑k

i=1 µ
r
idx

i, with respect to the coordinates, for n =

dimM,k = dimΣ. For some arbitrary partial differential ∂I , where the multi-index I is of

order |I| ≤ α, we have, by the Leibniz rule,

(
∂I

(
(λsν ◦ u)∂iuν

))
= A

(
∂Iµ

r
i

)
+ terms involving higher order derivatives of A (∗)

Treating these as formal equations in the jet jαu,µ,A(σ), we note that the higher order jets in A

occur linearly. In particular, setting all the higher order jets of A at σ to identically zero, we

see that equation (∗) transforms into,

(
∂I

(
(λsν ◦ u)∂iuν

))∣∣∣
σ
= A(σ)

(
∂Iµ

r
i

)∣∣∣
σ

(∗′)

Note that this system is identical to the equations defining the relation Rα associated to the

horizontal immersion relation RHor, modulo ImA(σ).

Now, suppose we are given some jet j1u,H(σ) ∈ Rm-HorGr, which is represented as the jet

j1u,µ,A(σ). Then note that the Ω-regularity is satisfied modulo ImA(σ) (Definition 5.1.10).

Also the curvature condition is given as,

(
u∗dλs|H

)∣∣∣
σ
≡ 0 mod ImA(σ),

which is same as the curvature condition for horizontal immersions, modulo ImA(σ). Thus,

following the proof of Lemma 3.2.1, we are able to formally solve for the jet jαu (σ) satisfying

the system, (
∂I

(
(λsν ◦ u)∂iuν

))∣∣∣
σ
≡ 0 mod ImA(σ), for all |I| ≤ α. (**)
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Furthermore, the space of all such solutions is contractible.

Now, since A(σ) represents the injective linear map d̃uσ, for any given jet jαu (σ) solving

(∗∗), we are able to solve for the jet jαµ (σ) for the tuple µ = (µr), satisfying (∗′) as well, which

again has an affine solution space. Lastly, we get a jet jαu,µ,A(σ) solving (∗) at σ, by arbitrarily

solving the the higher jets of A satisfying the linear system given by (∗). In particular, setting

all of them to zero gives a jet in Rm-HorGr
α , lifting the given jet j1u,H(σ) in Rm-HorGr.

As observed, the fiber over the jet in Rm-HorGr is contractible. Furthermore, the above

argument can be performed over a contractible open set as well. This concludes the proof.

5.1.3 h-principle on Open Manifolds

We have the following h-principle for open manifolds.

Theorem 5.1.9. If Σ is an open manifold then the relation Rm-HorGr satisfies the parametric

h-principle.

Proof. Denote the solution sheaf ofRm-HorGr by Φm-HorGr and the sheaf of sections by Ψm-HorGr.

We proceed with the proof in the following steps.

Step 1 We first show that Φm-HorGr is microflexible and Rm-HorGr satisfies the local h-principle,

i.e, the sheaf map j1 : Φm-HorGr → Ψm-HorGr is a local weak homotopy equivalence.

Step 2 Next we show that Φm-HorGr is invariant under the natural Diff(Σ)-action.

The proof is then immediate by appealing to Remark 2.2.12.

Proof of Step 1 : Observe that for a fixed G ⊂ TΣ and a splitting map ρ, we have the

fiber-preserving map,

Ξ : J1(Σ,M)× hom(G,TΣ/G)(1) → J1(Σ,M)× (GrmTΣ)
(1)(

j1u(σ), j
1
ϕ(σ)

)
7→
(
j1u(σ), j

1
Gϕ(σ)

)
where Gϕ ⊂ TΣ is interpreted as a (local) section of GrmTΣ. This map Ξ embeds RG,ρ

(Definition 5.1.6) as an open subset R̃G,ρ := ImΞ ⊂ Rm-HorGr and it is easy to see that,

Rm-HorGr =
⋃
G,ρ

R̃G,ρ.
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Now, we have the the sheaves ΦG,ρ = SolRG,ρ and ΨG,ρ
α = ΓRG,ρ

α , as in Observation 5.1.5.

We see that Ξ induces the sheaf maps,

ΦG,ρ ↪→ Φm-HorGr, ΨG,ρ
α ↪→ ΓRm-HorGr

α .

As Γhom(G,TΣ/G) gives an open covering for the space ΓGrmTΣ, we see that ΦG,ρ embeds

in Φm-HorGr as an open subsheaf; in fact, by varying G ⊂ TΣ and the splitting map ρ, we can

cover Φm-HorGr by the images of the sheaves ΦG,ρ.

Since the question of microflexibility is regarding lifting homotopies defined on pairs of

compact sets in Σ, we see that any homotopy lifting diagram for Φm-HorGr can be transferred

to some ΦG,ρ = SolRG,ρ, for some suitably chosen G, ρ. Now, ΦG,ρ is microflexible by

Observation 5.1.5 (1). Hence, we see that Φm-HorGr is microflexible as well.

By similar arguments, we also get j3 : Φm-HorGr → ΓRm-HorGr
2 is a local weak homotopy

equivalence by Observation 5.1.5 (2). Now, from Lemma 5.1.8 we have, p31 : ΓRm-HorGr
2 →

Ψm-HorGr is a weak homotopy equivalence. Composing the maps we have, j1 = p31 ◦ j3 :

Φm-HorGr → Ψm-HorGr is a local weak homotopy equivalence.

Proof of Step 2 : Recall that, as a consequence of Proposition 5.1.4, an m-horizontal im-

mersion u, inducing H = du−1D, is Ω-regular if the bundle map,

Ω• : u
∗D → hom

(
H,u∗TM/D

/
Im d̃u

)
ξ 7→

(
X 7→ Ω(ξ, u∗X) mod Im d̃u

)
is surjective. In particular, Ω-regularity of (u,H) is completely understood via the image of

the differential map du : TΣ → TM . Now Im du remains unchanged after an Diff(Σ)-action.

Indeed, suppose ζ ∈ Diff(Σ) is some (local) diffeomorphism and denote v = u ◦ ζ. Then we

see that

dv−1D = (du ◦ dζ)−1D = dζ−1du−1D

As u is an m-horizontal immersion and ζ is a diffeomorphism, we have that v is again an m-

horizontal immersion. As for the regularity, we similarly observe that Im d̃u = Im d̃v and hence

clearly the tuple (v, dv−1(D)) is then Ω-regular. Thus, the solution sheaf is Diff(Σ)-invariant.

This completes the proof in view of Remark 2.2.12.
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h-Principle of the Relation Rm-Hor ⊂ J1(Σ,M)

Recall that in Proposition 5.1.4 (3), we have rephrased the Ω-regularity of the tuple (u,H) in

terms the surjectivity of the following bundle map,

Ω• : u
∗D → hom

(
H,u∗TM/D

/
Im d̃u

)
ξ 7→

(
X 7→ Ω(ξ, u∗X) mod Im d̃u

)
which only involves the jets in J1(Σ,M). So, we may adopt the following definition for Ω-

regularity of m-horizontal immersions due to Gromov.

Definition 5.1.10. [Gro96, pg. 256] An m-horizontal immersion u : Σ → M , inducing H =

du−1(D), is called Ω•-regular, if the bundle map,

Ω• : u
∗D −→ hom

(
H,u∗(TM/D)

/
Im d̃u

)
ξ 7−→ q ◦ ιξΩ|H

is an epimorphism, where d̃u : TΣ/H → u∗TM/D is the induced monomorphism and q :

u∗TM/D → u∗(TM/D)
/
Im d̃u is the quotient map.

On the other hand the curvature condition on (u,H) involves first jet information from

(GrmTΣ)
(1). Now, for a jet j1(u,G)(σ) ∈ Rm-HorGr, the curvature condition u∗Ω|Gσ = d̃u◦ΩG|σ

gives us, u∗Ω|Gσ ≡ 0 mod Im d̃u, and consequently we have that dσu(G) ⊂ kerΩ•. We then

proceed to define a relation Rm-Hor ⊂ J1(Σ,M) as follows.

Definition 5.1.11. [Gro96, pg. 256] The relation Rm-Hor ⊂ J1(Σ,M) consists of 1-jets

(σ, y, F ) ∈ J1(Σ,M) satisfying the following.

� F is injective, such that dim(ImF ∩ Dy) = m.

� If G = F−1Dy and F̃ : TσΣ/G→ TM/D|y is the induced map, then the map Ω• defined

as,

Ω• : Dy → hom
(
G,
(
TM/D|y

)/
Im F̃

)
ξ 7→ F ∗ιξΩ|G mod Im F̃

is surjective.

� F (G) ⊂ kerΩ•.
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The obvious projection map, j1u,G(σ) → j1u(σ) maps the relation Rm-HorGr into Rm-Hor.

Indeed, we should note the following schematic diagram of relations,

RG,ρ Rm-HorGr

Rm-Hor

j1
(u,ϕ)

(σ) 7→j1
(u,Gϕ)

(σ)

j 1
(u,ϕ) (σ)7→

j 1
u (σ) j

1
u
(σ
)←

[j1(u,H
)
(σ
)

for some fixed G ⊂ TΣ and a splitting map ρ : TΣ/G ↪→ TΣ. Here, the horizontal map is an

embedding. Clearly, we have induced diagram in the solutions sheaves :

ΦG,ρ Φm-HorGr

Φm-Hor

(u,ϕ)7→(u,Gϕ)

(u,ϕ)7→
u u←

[(u,
H)

Note that the right diagonal arrow is in fact an identification. We have similar diagram for map

of sections as well. We summarize all the relations that we have encountered so far in a tabular

form in Table 5.1.
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We have the following result that relates Rm-HorGr and Rm-Hor.

Lemma 5.1.12. The fiber-preserving map Rm-HorGr → Rm-Hor is surjective, with contractible

fibers. Furthermore any section in Ψm-Hor admits a lift to a section Ψm-HorGr, over contractible

open sets in Σ and consequently, Ψm-HorGr ≃
w.h.e

Ψm-Hor.

Proof. Suppose the jet (σ, y, P ) ∈ Rm-Hor is represented as j1u(σ) for some u : Op(σ) → M .

Denote H = P−1D. Since P (H) ⊂ kerΩ•, we see that for all X,Y ∈ H at σ,

0 = Ω•(PX)(PY ) = Ω(PX,PY ) mod Im P̃ .

In other words we have,

Ω(PX,PY ) ∈ Im P̃ .

Since P̃ is an injective, we can define a 2-form R : Λ2H → TΣ/H by,

R(X,Y ) = P̃−1 ◦ Ω(PX,PY ), ∀X,Y ∈ Hσ.

Then, P ∗Ω|H = P̃ ◦R.

Now, for q = codimH = dimΣ−m, consider a q-tuple of 1-forms (µ1, . . . , µq) on Op(σ),

which is linearly independent at the point σ. The surjectivity of the map j1(µr)(σ) 7→ (µr, dµr)|σ

then implies the same for,

j1(µr)(σ) 7→
(
dµr|∩pr=1 kerµ

r

)∣∣
σ
.

Hence, we can get a jet j1(µr)(σ), so that,

H =

p⋂
r=1

kerµrσ and R =
(
dµr|H

)
.

In other words, the jet j1(µr)(σ) can now be identified with a jet j1G(σ) ∈ GrmTΣ, so that

H = Gσ and ΩGσ = R. It then follows that j1u,G(σ) ∈ Rm-HorGr is the desired lift of j1u(σ) =

(σ, y, P ).

It is clear from above that the space of all the lifts is affine and hence it is contractible.

Also, the argument can easily be performed for sections over contractible open sets of Σ. This

concludes the proof.

We then have the following corollary to Theorem 5.1.9

Corollary 5.1.13. The relation Rm-Hor satisfies the parametric h-principle over open manifold

Σ.
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Proof. Observe that, a solution u ∈ Φm-Hor uniquely determines the tuple (u,G) ∈ Φm-HorGr,

where G = du−1D. Consequently, we may identify Φm-Hor with Φm-HorGr. We have the

commutative diagram,

(u,H) Φm-HorGr Ψm-HorGr j1u,H(σ)

u Φm-Hor Ψm-Hor j1u(σ)

j1

j1

It then follows that,

� the sheaf map Ψm-HorGr → Ψm-Hor induced by the projection, is a weak homotopy equiv-

alence (by Lemma 5.1.12).

� the map j1 : Φm-HorGr → Ψm-HorGr is a weak homotopy equivalence whenever Σ is an

open manifold (by Theorem 5.1.9).

Hence we have that the map j1 : Φm-Hor → Ψm-Hor is a weak homotopy equivalence, provided

Σ is open.

5.1.4 A Candidate for an Extension

In order to get any h-principle for closed manifolds, we need to discuss the extension problem

for m-horizontal immersions. For a fixed G ⊂ TΣ and a splitting morphism ρ : TΣ/G ↪→ TΣ,

we have a canonical choice of a distribution G̃ on Σ̃ = Σ× R, namely,

G̃ := dπ−1(G) ⊂ T Σ̃,

where, π : Σ̃ → Σ is the canonical projection. We see, cork G̃ = corkG. Therefor the inclusion

map Σ ↪→ Σ̃ induces an isomorphism TΣ/G → T Σ̃/G̃|Σ and moreover, T Σ̃/G̃ ∼= π∗(TΣ/G).

We have a canonical choice of splitting morphism ρ̃ : T Σ̃/G̃→ T Σ̃ defined as,

ρ̃|σ,t =
(
ρ|σ, 0

)
, for (σ, t) ∈ Σ̃.

In other words, ρ̃ : (v, w) mod G̃ 7→
(
ρ(v mod G), 0

)
for any (v, w) ∈ TσΣ⊕ R.

Note that for any ψ : G̃→ T Σ̃/G̃, the distribution

G̃ψ =
{
X + ρ̃ψX

∣∣ X ∈ G̃
}
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is transverse to π∗TΣ ⊂ T Σ̃ at each point. Indeed, for any (0, c) ∈ TσΣ⊕ TtR, we have that

(0, c) + ρ̃ψ(0, c) = (0, c) +
(
ρψ(0, c), 0

)
=
(
ρψ(0, c), c

)
̸∈ TσΣ⊕ 0, for c ̸= 0.

Hence, if G̃ψ = du−1(D), then v = u|Σ is an m-horizontal distribution and,

(dvσ)
−1D = (duσ)

−1D ∩ TσΣ = G̃ψσ ∩ TσΣ = Gϕσ,

where ϕ = ψ|G⊕0.

Let us denote by R̃G̃,ρ̃ ⊂ J1(Σ,M) the relation consisting of first jets j1u,ψ(Σ) ∈ J1(Σ̃,M)×

hom(G̃, T Σ̃/G̃)(1) satisfying the following.

� duσ is an injective morphism, inducing them+1-dimensional subspace, G̃ψ|σ = du−1σ (Du(σ))

� the linear map,

Du(σ) ⊕ hom(G̃, T Σ̃/G̃)|σ → hom(G̃σ, TM/D|u(σ))

(ξ, ζ) 7→ u∗ιξΩ
∣∣
σ
◦ ψ̄ + u∗λ

∣∣
σ
◦ ρ ◦ ζ

is surjective

� the curvature condition,

u∗Ω|
G̃ψσ

= d̃u
ψ
σ ◦ Ω

G̃ψσ
,

holds at the point σ, where d̃u
ψ
σ : T Σ̃/G̃ψ|σ → TM/D|u(σ) is the induced map and ΩG̃ψ

is the curvature 2-form for G̃ψ.

In other words,

R̃G̃,ρ̃ =
{
j1u,ψ(σ) ∈ J1(Σ̃,M)× hom(G̃, T Σ̃/G̃)(1)

∣∣∣ j1
u,G̃ψ

(σ) ∈ R̃m+ 1-HorGr
}
.

In view of Remark 2.2.18, we put forth the relations R̃G̃,ρ̃ as a collection of possible candidates

for an extension of the relation Rm-Hor (see Definition 5.1.11).

The ev Map : We have the two natural bundles,

X =
(
Σ×M

)
→ Σ, X̃ = (Σ̃×M)× hom(G̃, T Σ̃/G) → Σ̃
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Consider the fiber-preserving morphism,

ev : ΓX̃|Σ×0 → ΓX

(u, ψ) 7→ u|Σ

It follows from Proposition 5.1.4 that if (u, ψ) is a Ω-regular tuple, v = u|Σ is Ω•-regular.

Consequently, the induced map in the jet maps R̃G̃,ρ̃|Σ into Rm-Hor.

Let us denote, Φ̃ = Sol R̃G̃,ρ̃. We then have that Φ̃ consists of Ω-regular tuple (u, ψ),

satisfying G̃ψ = du−1D, and clearly it is not invariant under the natural Diff(Σ̃, π) action.

Indeed, for any (u, ψ) ∈ Φ̃ and for some ζ ∈ Diff(Σ̃, π), the induced distribution H = d(u ◦

ζ)−1D = dζ−1G̃ψ, may fail to be transverse to π∗TΣ everywhere. Thus we are unable to apply

Theorem 2.2.9 to the sheaf Φ̃ to get the flexibility of Φ̃|Σ. Instead, we prove it directly.

Proposition 5.1.14. The restricted sheaf Φ̃|Σ is flexible.

Proof. We divide the proof into the following steps.

Step 1 We introduce an auxiliary differential operator D̂0 (see [Gro96, pg. 260]).

Step 2 We identify a suitable regularity condition for solutions of D̂0 so that the sheaf Φ̂ of

regular solutions of D̂0 is microflexible.

Step 3 We get a Diff(Σ̃, π)-action on Φ̂ and consequently get the flexibility of Φ̂|Σ.

Step 4 We deduce the flexibility of Φ̃|Σ from that of Φ̂|Σ.

Proof of Step 1 : First consider the operator,

D̂0 : C
∞(Σ̃,M)× C∞(Σ̃,R)× Γhom(G̃, T Σ̃/G̃) → Γhom

(
G̃,Rp

)
(
u, h, ψ

)
7→
(
u ◦ h̄

)∗
λs ◦ ψ̄

where the map h̄ : Σ̃ → Σ̃ is given as, h̄(σ, t) =
(
σ, h(σ, t)

)
. In particular, observe that for the

canonical projection map π2 : Σ̃ = Σ×R → R, we have π̄2 = IdΣ̃. Moreover, if ∂th ̸= 0, then

h̄ becomes a fiber preserving diffeomorphism of Σ× R, i.e, h̄ ∈ Diff(Σ̃, π).

It is now immediate that,

D̂0(u, h, ψ) = 0 ⇒ (u ◦ h̄)∗λs|Im ψ̄ = 0, s = 1, . . . , p ⇒ d(u ◦ h̄)
(
G̃ψ
)
⊂ D,

where G̃ψ = Im ψ̄. Furthermore, u ◦ h̄ is an (m + 1)-horizontal immersion, inducing G̃ψ =

d(u ◦ h̄)−1D, if the following conditions hold :
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� u is an immersion, with rk(λs ◦ du) ≥ dim Σ̃− (m+ 1) = dimΣ−m, and

� ∂th ̸= 0, i.e, h̄ is a diffeomorphism.

Proof of Step 2 : Next, we determine the linearization operator of D̂0 at some (u, h, ψ),

L(u,h,ψ) : Γu
∗TM ⊕ C∞(Σ̃,R)⊕ Γhom(G̃, T Σ̃/G̃) → Γhom(G̃,Rp)

Restricting the operator to the subspace Γu∗TM ⊕ 0⊕ Γhom(G̃, T Σ̃/G̃) we find out,

L(u,h,ψ)(ξ, 0, ζ) =
d

dt

∣∣
t=0

D̃(ut, h, ψ + tζ)

= lim
t→0

1

t

[
(ut ◦ h̄)∗λs ◦ ψ + tζ − (u ◦ h̄)∗λs ◦ ψ̄

]
= lim

t→0

1

t

[
h̄∗
(
u∗tλ

s − u∗λs
)
◦ ψ + tζ + (u ◦ h̄)∗λs ◦

(
ψ + tζ − ψ̄

)]
= h̄∗

(
ιξdλ

s + dιξλ
s
)
◦ ψ̄ + (u ◦ h̄)∗λs ◦ ρ̃ ◦ ζ

Further restricting this to the subspace Γu∗D ⊕ 0⊕ Γhom(G̃, T Σ̃/G̃) we get the operator,

L(u,h,ψ) : Γu
∗D ⊕ Γhom(G̃, T Σ̃/G̃) → Γhom(G̃,Rp)

(ξ, ζ) 7→ (u ◦ h̄)∗(ιξdλs) ◦ ψ̄ + (u ◦ h̄)∗λs ◦ ρ̃ ◦ ζ

Clearly L(u,h,ψ) is C
∞(Σ̃)-linear and hence it is given by a bundle map,

u∗D ⊕ hom(G̃, T Σ̃/G̃) → hom(G̃,Rp).

It follows that L(u,h,ψ) is surjective precisely when the tuple (u ◦ h̄, ψ) is Ω-regular (Defini-

tion 5.1.2).

Let Φ̂ be the sheaf of tuples (u, h, ψ) ∈ C∞(Σ̃,M) × C∞(Σ̃,R) × Γhom(G̃, T Σ̃/G̃),

satisfying the conditions below :

u is an immersion, ∂th ̸= 0, Gψ = d(u ◦ h̄)−1D and (u ◦ h̄, ψ) is an Ω-regular tuple.

Note that we have a sheaf morphism,

Φ̂ → Φ̃

(u, h, ψ) 7→
(
u ◦ h̄, ψ

)
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It follows from Theorem 2.2.27 that Φ̂ is microflexible.

Proof of Step 3 : As we have already noted, every smooth map h : Σ̃ → R, satisfying ∂th ̸= 0,

defines a fiber preserving diffeomorphism h̄ : Σ̃ → Σ̃. In fact, every element of Diff(Σ̃, π) can

be uniquely realized in this way for some map Σ̃ → R. Now suppose θ ∈ Diff(Σ̃, π) is given

and consider a tuple (u, h, ψ) ∈ Φ̂. In particular, since ∂th ̸= 0, we have θ ◦ h̄ ∈ Diff(Σ̃, π),

whenever it is defined. Then for any such compatible tuple, there is a unique κ ∈ C∞(Σ̃,R)

so that, θ ◦ h̄ = κ̄. We now define the action as,

θ · (u, h, ψ) 7→ (u ◦ θ−1, κ, ψ).

Observe that,

(u ◦ θ−1) ◦ κ̄ = (u ◦ θ−1) ◦ (θ ◦ h̄) = u ◦ h̄ ⇒ d(u ◦ θ ◦ κ̄)−1D = d(u ◦ h̄)−1D = G̃ψ.

Hence we have (u ◦ θ−1, κ, ψ) ∈ Ψ̂. Consequently, it follows from Theorem 2.2.9 that Φ̂|Σ is

flexible.

Proof of Step 4 : Now, fix some arbitrary pair of compact sets A,B with A ⊂ B ⊂ Σ and

consider a homotopy lifting diagram,

P × 0 Φ̃|B

P × [0, 1] Φ̃|A

vp0 , φ
p
0

upt , ψ
p
t

(∗)

where P is an arbitrary compact polyhedron. Observe that given any tuple (u, ψ) ∈ Φ̃, the tuple

(u, π2, ψ) ∈ Φ̂, where π2 : Σ̃ = Σ×R → R is the canonical projection, since u◦π̄2 = u◦IdΣ̃ = u.

Thus we can get a new homotopy lifting diagram from (∗) as follows.

P × 0 Φ̂|B

P × [0, 1] Φ̂|A

vp0 , π2, φ
p
0

upt , π2, ψ
p
t

(∗∗)
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Since Φ̂|Σ is a flexible sheaf, we have a map,

(vpt , h
p
t , φ

p
t ) : P × [0, 1] → Φ̂|B,

which solves the diagram (∗∗). But then the tuple (vpt ◦ h̄
p
t , ψ

p
t ) : P × [0, 1] → Φ̃|B solves

the diagram (∗). Consequently, we have that the sheaf Φ̃|Σ is flexible. This concludes the

proof.

Lastly, we state the following lemma, which justifies hypothesis (3) of Theorem 2.2.15.

Lemma 5.1.15. Let O ⊂ Σ be a coordinate chart and C ⊂ O is a compact subset. Suppose

that U ⊂M is an open subset such that D|U is trivial. Then, given any Ω•-regular,m-horizontal

immersion u : OpC → U ⊂M , the 1-jet map,

j1 : ev−1(u) → ev−1(F = j1u)

in the commutative diagram below,

ev−1(u) Φ̃G̃,ρ̃|C×0 Φm-Hor|C u

ev−1(F ) Ψ̃G̃,ρ̃|C×0 Ψm-Hor|C F = j1u

j1

ev

ev

induces a surjective map between the set of path components, for some suitable choice of

G ⊂ TO and a splitting map ρ : TO/G ↪→ TO, Furthermore, the homotopy can be kept

C0-small.

Proof. Since u : O → U is a given m-horizontal immersion, fix G = du−1D, a rank m

distribution on O ⊂ Σ. Next, choose some splitting map ρ : TO/G ↪→ TO. Recall the

notations,

Φm-Hor = SolRm-Hor, Φ̃G̃,ρ̃ = Sol R̃G̃,ρ̃, Ψm-Hor = ΓRm-Hor, Ψ̃G̃,ρ̃ = ΓR̃G̃,ρ̃,

and the fiber preserving map ev : RG̃,ρ̃|C → Rm-Hor. Now, fix some neighborhood V of C,

with C ⊂ V ⊂ O, over which u is defined and then fix an arbitrarily small open neighborhood

Uϵ of u(V ).

The proof follows in a similar fashion as Lemma 3.2.6. We only mention the main steps.

Step 1 Given an arbitrary extension F̃ ∈ Ψ̃|C×0 of F along ev, we construct a regular solution

(v, ψ) ∈ Φ̃ on ÕpC, so that j1v,ψ|OpC = F̃ |OpC .
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Step 2 We get an homotopy between j1v,ψ and F̃ , in the relation

R̃G̃,ρ̃ ⊂ J1(W,Uϵ)× hom(G̃, T Σ̃/G̃)(1) → J1(W,Uϵ) =W × Uϵ,

overW×Uϵ, so that the homotopy is constant on points of C. In particular, the homotopy

belongs to ev−1(F ). Note that, here W ⊂ ÕpC is an open neighborhood of C, to be

fixed in Step 1, as done in Lemma 3.2.6.

The first step can be done identically as in Lemma 3.2.6; the jet lifting argument in the

context of R̃G̃,ρ̃ is provided by Lemma 5.1.8, since R̃G̃,ρ̃ embeds as an open subset of R̃m+ 1-Hor.

Let us elaborate on step 2 now. We break it in few sub-steps.

Step 2a First we identify the image of R̃G̃,ρ̃ ↪→ R̃m+ 1-Hor under the map j1u,ϕ(σ) 7→ j1u(σ).

In fact, we consider the fiber-preserving map,

Π : R̃G̃,ρ̃ → J1(Σ̃,M)× hom(G̃, T Σ̃/G̃)(0)

j1u,ϕ(σ) 7→
(
j1u(σ), j

0
ϕ(σ)

)
which forgets the pure first jet data of j1ϕ(σ) and let us denote the image as, R̃G̃,ρ̃

0 := ImΠ.

We note that, R̃G̃,ρ̃
0 embeds into R̃m+ 1-Hor via the map

(
j1u(σ), j

0
ϕ(σ)

)
7→ j1u(σ) and so

we have the diagram,

R̃G̃,ρ̃ R̃G̃,ρ̃
0 R̃m+ 1-HorΠ

j1u,ϕ(σ)7→j
1
u(σ)

Identifying R̃G̃,ρ̃
0 as a subset of R̃m+ 1-Hor, we note that, as a consequence of Lemma 5.1.12,

any path in R̃G̃,ρ̃
0 can be lifted to a path in R̃G̃,ρ̃, via the map Π.

Step 2b We look at the image of the two formal sections of j1v,ψ and F̃ from Step 1 under the

map Π, and get a homotopy joining Π
(
j1v,ψ

)
and Π

(
F̃
)
, say,

Ĥt : Π
(
j1v,ψ

)
∼ Π

(
F̃
)
, in the affine bundle J1(Σ̃,M)× hom(G̃, T Σ̃/G̃)(0),

which is constant on C. Again, this step can be performed in a similar fashion as presented

in Lemma 3.2.6. Note that this homotopy need not be inside R̃G̃,ρ̃
0 .

Step 2c We claim that R̃G̃,ρ
0 is a local neighborhood retract. Thus we can push the homotopy

Ĥt from the previous step into R̃G̃,ρ, while keeping the endpoints fixed. We now have a
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homotopy,

H̃t : Π
(
j1v,ψ

)
∼ Π

(
F̃
)
, in R̃G̃,ρ̃

0 ,

which is fixed on points of C. This claim will be proved in Lemma 5.1.16.

Step 2d Lastly, by Lemma 5.1.12, we can lift the homotopy H̃t from the last step to a homotopy

in R̃G̃,ρ̃, joining j1v,ψ and F̃ . That is, we have a homotopy,

F̃t : j
1
v,ψ ∼ F̃ , in R̃G̃,ρ̃

which, by construction, is constant on points of C. Hence F̃t is in fact a homotopy in

ev−1
(
F̃
)
. This concludes the proof.

Let us now prove that the subset R̃G̃,ρ̃
0 ⊂ J1(Σ̃,M)× hom(G̃, T Σ̃/G̃)(0), as considered in

the above lemma, is a fiberwise local neighborhood retract. For notational simplicity, let us

work with,

RG,ρ ⊂ J1(Σ,M)× hom(G,TΣ/G)(1), for some fixed G ⊂ TΣ and ρ : TΣ/G ↪→ TΣ.

We note that RG,ρ
0 consists of tuples,

(
σ, y, P : TxΣ → TyM, φ : Gσ → TΣ/G|σ

)
satisfying,

� P is injective, inducing Gφ = P−1D.

� the map,

Ω• : Dy → hom
(
Gφ, TM/D|y

/
Im P̃

)
ξ 7→ P ∗(ιξΩ)|Gφ mod Im P̃

is surjective. By Proposition 5.1.4, this takes care of Ω-regularity.

� P (Gφ) ⊂ kerΩ•, or equivalently, P
∗Ω|Gφ = 0 mod Im P̃ .

We prove the following.

Lemma 5.1.16. The following holds true for RG,ρ
0 .

� RG,ρ
0 |(x,y) is a submanifold of J1

(x,y)(Σ,M)× hom(G,TΣ/G)|x, for (x, y) ∈ J0(Σ,M).
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� RG,ρ
0 is a submanifold of J1(Σ,M)× hom(G,TΣ/G).

� The projection map p : J1(Σ,M)×hom(G,TΣ/G) → J0(Σ,M) restricts to a submersion

on RG,ρ
0 .

As a consequence, RG,ρ
0 is a fiber-wise, local neighborhood retract.

Proof. We prove it in a few steps.

Step 1 We consider the fiber-preserving map,

Ξ1 : J
1(Σ,M)× hom(G,TΣ/G) → hom(G,TM/D)

(x, y, P, φ) 7→ λ ◦ P ◦ φ̄

We show that Ξ1|(x,y) over each fiber is a submersion and consequently, Ξ1|−1(x,y)(0) ={
(x, y, P, φ)

∣∣ P−1Dy = Gφ
}

is a submanifold of J1
(x,y)(Σ,M) × hom(G,TΣ/G)|x.

Furthermore, Ξ−11 (0) is a submanifold of J1(Σ,M)× hom(G,TΣ/G) as well.

Step 2 For fixed (x, y) ∈ J0(Σ,M), we aim to show RG,ρ
0 |(x,y) is a submanifold. We break

this into the following steps.

Step 2a First, we get a natural map,

Θ = Θ(x,y) : Ξ1|−1(x,y)(0) → hom(TΣ/G|x, TM/D|y)

(x, y, P, φ) 7→ λ ◦ P ◦ ρ

and show that Θ is a submersion.

Step 2b Next, we define the map,

ΞA2 : Θ−1(A) → hom
(
Λ2Gx, TM/D|y

/
ImA

)
(x, y, P, φ) 7→ φ̄∗P ∗Ω mod ImA

for a linear map A : TΣ/G|x → TM/D|y. Note that, (ΞA2 )
−1(0) consists of tuples

(x, y, P, φ) satisfying the formal curvature condition,

P (Gφ) ⊂ kerΩ•.

We show that, for A injective, the set RG,ρ
0 |(x,y)∩Θ−1(A) consists of regular points

of ΞA2 . Consequently, R
G,ρ
0 |(x,y) ∩Θ−1(A) is a submanifold. Ω•-regularity is crucial

at this step.
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Step 2c For a fixed monomorphism A : TΣ/G|x ↪→ TM/D|y, we identify an open set,

MA =
{
B : TΣ/G|x ↪→ TM/D|y

∣∣ B ⋔ ImA} ⊂ hom(TΣ/G, TM/D)|(x,y).

Next we fix a choice of splitting map η : (TM/D|y)
/
ImA ↪→ TM/D|y and using

it we get the isomorphisms,

η̂(B) : (TM/D|y)
/
ImA→ (TM/D|y)

/
ImB.

We then define the fiber-preserving map,

Ξ̂A2 : Θ−1(MA) → MA × hom
(
Λ2Gx, TM/D|y

/
ImA

)
by,

Ξ̂2(x, y, P, φ) =
(
B, η̂(B)−1 ◦ ΞB2 (x, y, P, φ)

)
,

for (x, y, P, φ) ∈ Θ−1(B), B ∈ MA. We note that RG,ρ
0 |(x,y) ∩ Θ−1(MA) are

regular points of Ξ̂2 and consequently is a submanifold.

We conclude that RG,ρ
0 |(x,y) is a submanifold of Ξ1|−1(x,y)(0) for fixed (x, y).

Step 3 Lastly, using local trivialization argument, we prove that RG,ρ
0 is a submanifold and

furthermore, restriction of p : J1(Σ,M) × hom(G,TΣ/G) → J0(Σ,M) to RG,ρ
0 is a

submersion.

Proof of Step 1 : We have the bundle map, Ξ1 : J
1(Σ,M)×hom(G,TΣ/G) → hom(G,TM/D)

over J0(Σ,M), defined as,

Ξ1|(x,y) : J1
(x,y)(Σ,M)× hom(G,TΣ/G)|x → hom(Gx, TM/D|y)(

x, y, P, φ
)
7→ λ ◦ P ◦ φ̄

for (x, y) ∈ J0(Σ,M) = Σ ×M . That is, Ξ1|(x,y)(x, y, P, φ) = P ∗λ|Gφ = φ̄∗P ∗λ. Note that

Ξ1|(x,y) is not a linear map. We have the derivative map of Ξ1|(x,y) at some (x, y, P, φ) as,

d(Ξ1|(x,y))|(x,y,P,φ) : hom(TxΣ, TyM)× hom(G,TΣ/G)|x → hom(Gx, TM/D|y)

(P1, φ1) 7→ λ ◦ P1 ◦ φ̄+ λ ◦ P ◦ ρ ◦ φ1
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Now, for any given Q : Gx → TM/D|y, first we get some Q̃ : Gx → TyM so that Q = λ ◦ Q̃

and then we get a P1 : TxΣ → TyM , satisfying P1|Gφ = Q̃ ◦ φ̄−1. We have the diagram,

TxΣ TyM

Gφ Gx TM/D|y

P1

λ

φ̄

∼=
Q

Q̃

Then, setting φ1 = 0, we have,

d
(
Ξ1|(x,y)

)
|(x,y,P,φ)

(
P1, φ1

)
= λ ◦ P1φ̄+ 0 = λ ◦ Q̃ ◦ φ̄−1 ◦ φ̄ = λ ◦ Q̃ = Q.

Hence, Ξ1|(x,y) is a submersion and so,

(
Ξ1|(x,y)

)−1
(0) =

{(
x, y, P, φ

) ∣∣ P ∗λ|Gφ = 0
}

is a submanifold of J1
(x,y)(Σ,M) × hom(G,TΣ/G)|x. The tangent space at some (x, y, P, φ)

is given as,

ker
(
dΞ1|(x,y)

)
|(x,y,P,φ) =

{
(P1, φ1)

∣∣ λ ◦ P1 ◦ φ̄+ λ ◦ P ◦ ρ ◦ φ1 = 0
}
.

Proof of Step 2a : First observe that for a tuple (x, y, P, φ) satisfying P ∗λ|Gφ = 0, we have

the composition of the two maps,

TΣ/G|x TxΣ/G
φ TM/D|y

Z ρ(Z) mod Gφ Pρ(Z) mod Dy

∼= P̃

Thus, we may consider the map,

Θ : Ξ1|−1(x,y)(0) =
{
(x, y, P, φ)

∣∣P ∗λ|Gφ = 0
}
−→ hom(TΣ/G|x, TM/D|y)

(x, y, P, φ) 7−→ λ ◦ P ◦ ρ =
(
Z 7→ Pρ(Z) mod Dy

)
We find out the derivative of Θ at (x, y, P, φ) as,

T(x,y,P,φ)Θ(P1, φ1) = λ ◦ P1 ◦ ρ, for (P1, φ1) ∈ T(x,y,P,φ)
(
Ξ1|−1(x,y)(0)

)
.
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We claim that, Θ is a submersion. Suppose, a linear map Q : TΣ/G|x → TM/D|y is given.

Let us define P1 : TxΣ → TyM in two steps, using the splitting, TxΣ = Gx ⊕ Im ρ.

� First, define P1|Im ρ so that, λ ◦ P1|Im ρ = Q ◦ ρ−1.

� Next, define P1|Gx so that, λ ◦ P1|Gx = −Q ◦ φ.

This is expressed in the following two commutative diagrams :

TΣ/G|x TM/D|y

Im ρ TyM

Q

ρ ∼=
Q◦ρ−1

P1|Im ρ

λ

TΣ/G|x TM/D|y

Gx TyM

−Q

φ

P1|Gx

−Q◦φ
λ

Then, first note that for any X ∈ Gx,

λ ◦ P1 ◦ φ̄(X) = λP1

(
X + ρφX

)
= λP1(X) + λP1ρφX = −QφX +QφX = 0.

Now, setting φ1 = 0, we have,

(P1, φ1) ∈ T(x,y,P,φ)
(
Ξ1|−1(x,y)(0)

)
=
{
(P1, φ1)

∣∣ λ ◦ P1 ◦ φ̄+ λ ◦ P ◦ ρ ◦ φ1 = 0
}
.

On the other hand,

T(x,y,P,φ)Θ(P1, φ1) = λ ◦ P1 ◦ ρ = Q.

Thus, Θ is indeed a submersion.

Proof of Step 2b : For some linear map A : TΣ/G|x → TM/D|y, consider the fiber,

OA = Θ−1(A) =
{
(x, y, P, φ)

∣∣ P ∗λ|Gφ = 0, P̃ ◦ φ̂ = A
}
⊂ Ξ1|−1(x,y)(0),

where φ̂ : TΣ/G|x → TxΣ/G
φ is the isomorphism, φ̂(Z) = ρZ mod Gφ. In particular, we

then have ImA = Im(P̃ ◦ φ̂) = Im P̃ and hence,

OA =
{
(x, y, P, φ)

∣∣ P ∗λ|Gφ = 0, Im P̃ = ImA
}
.

Since Θ is a submersion, OA is a submanifold.
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Now, consider the map,

Ξ2 = ΞA2 : OA → hom
(
Λ2Gx, TM/D|y

/
ImA

)
(x, y, P, φ) 7→ φ̄∗P ∗Ω mod ImA

Then, we have,

Ξ2(x, y, P, φ) = 0 ⇒ φ̄∗P ∗Ω ≡ 0 mod Im P̃ ,

since, ImA = Im P̃ . Hence, in particular, for an injective map A : TΣ/G|x → TM/D|y,

RG,ρ
0 |(x,y) ∩OA = Ξ−12 (0) ∩

{
P : TxΣ → TyM is injective and Ω•-regular}.

Let us now compute the derivative of Ξ2 at some (x, y, P, φ) ∈ OA,

dΞ2|(x,y,P,φ) : T(x,y,P,φ)OA → hom
(
Λ2Gx, TM/D|y

/
ImA

)
.

We have for X,Y ∈ Gx,

dΞ2|(x,y,P,φ)
(
P1, φ1

)
(X,Y )

= lim
t→0

1

t

[
φ+ tφ1

∗
(P + tP1)

∗Ω− φ̄∗P ∗Ω
]
(X,Y ) mod ImA

= lim
t→0

1

t

[
Ω
(
(P + tP1) ◦ φ+ tφ1X, (P + tP1) ◦ φ+ tφ1Y

)
− Ω

(
Pφ̄X,P φ̄Y

)]
= Ω

(
P1 ◦ φ̄X, P ◦ φ̄Y

)
mod ImA+Ω

(
P ◦ φ̄X, P1 ◦ φ̄Y

)
mod ImA

+ lim
t→0

1

t

[
Ω
(
P ◦ φ+ tφ1X,P ◦ φ+ tφ1Y

)
− Ω

(
Pφ̄X,P φ̄Y

)]
mod ImA

=
[
Ω
(
P1 ◦ φ̄X, P ◦ φ̄Y

)
+Ω

(
P ◦ φ̄X, P1 ◦ φ̄Y

)
+Ω

(
P ◦ ρφ1X,P ◦ φ̄Y

)
+Ω

(
P ◦ φ̄X, P ◦ ρφ1Y

)]
mod ImA

Now suppose (x, y, P, φ) ∈ OA satisfies Ξ2(x, y, P, φ) = 0 and it is Ω•-regular, i.e, P is injective

and the map,

Ω• : Dy → hom(Gφ, TM/D|y
/
Im P̃ )

ξ 7→ P ∗ιξΩ mod Im P̃
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is surjective. Recall that ImA = Im P̃ and so, we must have that A : TΣ/G|x → TM/D|y is

injective. Applying the hom(Gφ, ) functor to Ω•, we have the surjective map,

hom(Gφ,Dy) → hom
(
Gφ,hom

(
Gφ, TM/D|y

/
Im P̃

))
.

Composing with the alternating map, Alt : F 7→
(
X ∧ Y 7→ F (X)(Y )− F (Y )(X)

)
and then

the isomorphism φ̄ : Gx → Gφ, we have the following diagram,

hom(Gφ,Dy) hom
(
Gφ,hom

(
Gφ, TM/D|y

/
Im P̃

))

hom
(
Λ2Gφ, TM/D|y

/
Im P̃

)

hom
(
Λ2Gx, TM/D|y

/
Im P̃

)

Alt

∼=

so that the diagonal arrow is surjective as well. That is we have the surjective map,

hom(Gφ,Dy) → hom
(
Λ2Gx, TM/D|y

/
Im P̃

)
Q 7→

(
X ∧ Y 7→

(
Ω(Qφ̄X,P φ̄Y ) + Ω(Pφ̄X,Qφ̄Y )

)
mod Im P̃

)

Suppose R : Λ2Gx → TM/D|y
/
Im P̃ is some arbitrary map. Then, we can find Q : Gφ → Dy

so that,

(
Ω(Qφ̄X,P φ̄Y ) + Ω(Pφ̄X,Qφ̄Y )

)
mod Im P̃ = R(X,Y ), X, Y ∈ Gx.

Now, we have the tangent space,

T(x,y,P,φ)OA = kerT(x,y,P,φ)Θ

=
{
(P1, φ1)

∣∣ λ ◦ P1 ◦ φ̄+ λ ◦ P ◦ ρ ◦ φ1 = 0, λ ◦ P1 ◦ ρ = 0
}

=
{
(P1, φ1)

∣∣ λ ◦ P1|Gx + λ ◦ P ◦ ρ ◦ φ1 = 0, λ ◦ P1 ◦ ρ = 0
}

Let P1 : TxΣ → TyM be an arbitrary extension of Q : Gφ → Dy so that ImP1 ⊂ Dy and

φ1 = 0. Then, note that λ ◦Q = 0 and hence,

λ ◦ P1 ◦ φ̄+ λ ◦ P ◦ ρ ◦ φ1 = λ ◦Q ◦ φ̄+ 0 = 0, and λ ◦ P1 ◦ ρ = 0.
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Thus (P1, φ1) is in the tangent space. We also observe that for any X,Y ∈ Gx,

dΞ2|(x,y,P,φ)
(
P1, φ1

)
(X,Y )

=
[
Ω
(
P1 ◦ φ̄X, P ◦ φ̄Y

)
+Ω

(
P ◦ φ̄X, P1 ◦ φ̄Y

)
+Ω

(
P ◦ ρφ1X,P ◦ φ̄Y

)
+Ω

(
P ◦ φ̄X, P ◦ ρφ1Y

)]
mod Im P̃

=
[
Ω
(
Q ◦ φ̄X, P ◦ φ̄Y

)
+Ω

(
P ◦ φ̄X,Q ◦ φ̄Y

)
+ 0
]

mod Im P̃ , as P1|Gφ = Q

= R(X,Y ), by our choice of Q

So, the Ω•-regular points in Ξ−12 (0) are regular points of Ξ2 and hence,

Ξ−12 (0) ∩ {Ω•-regular points}

is a submanifold of OA. Clearly, this subset is precisely, RG,ρ
0 |(x,y) ∩OA.

Proof of Step 2c : Now, let us fix a monomorphism A : TΣ/G|x ↪→ TM/D|y and a choice

of a splitting map, η : TM/D|y
/
ImA ↪→ TM/D|y. Next consider the subset,

MA =
{
B : TΣ/G|x ↪→ TM/D|y

∣∣∣ B ⋔ Im η ⇔ ImB∩Im η = 0
}
⊂ hom

(
TΣ/G, TM/D

)∣∣
(x,y)

Clearly MA is an open subset, as it is defined via a transversality condition. Now, we have the

submersion Θ : Ξ1|−1(x,y)(0) → hom(TΣ/G, TM/D)|(x,y) and let us now consider the restriction

of Θ,

Θ−1(MA) → MA.

Note that for any B ∈ MA we have an isomorphism,

η̂(B) : TM/D|y
/
ImA→ TM/D|y

/
ImB

Z 7→ η(Z) mod ImB

Next we define a smooth fiber-preserving map,

Θ−1(MA) MA × hom
(
Λ2Gx, TM/D|y

/
ImA

)
MA

Ξ̂2

Θ
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as follows : for (x, y, P, φ) ∈ Θ−1(B), where B ∈ MA, we define,

Ξ̂2(x, y, P, φ) =
(
B, η̂(B)−1 ◦ ΞB2 (x, y, P, φ)

)
=
(
B, η̂(B)−1 ◦

(
φ̄∗P ∗Ω mod ImA

))
.

Clearly Ξ̂−12 (0) consists of those tuples in Θ−1(MA), for which the formal curvature condition

holds. Also, it follows from the previous step that, in the fiber OB over B ∈ MA, the set

RG,ρ
0 |(x,y) ∩OB are regular points of Ξ̂2|OB , since

Ξ̂2|B = η(B)−1 ◦ ΞB2 , where η(B) is a linear isomorphism.

It then follows from the above diagram that,

RG,ρ
0 |(x,y) ∩Θ−1(MA) are regular points in Ξ̂−12 (0).

Consequently, this is a submanifold of Θ−1(MA).

Now, by construction,MA forms an open cover of the base manifoldMon(TΣ/G, TM/D)|(x,y)
of monomorphisms TΣ|x ↪→ TM/D|y. Hence, RG,ρ

0 |(x,y) is a submanifold of Ξ1|−1(x,y)(0). This

concludes the proof of Step 2.

Proof of Step 3 : Performing the previous steps more generally, we can prove that RG,ρ
0 is

in fact submanifold of J1(Σ,M)× hom(G,TΣ/G). Note that we have the diagram,

J1(Σ,M)× hom(G,TΣ/G) Ξ−11 (0)

hom(TΣ/G, TM/D)

J0(Σ,M)

Θ

where, Ξ1(x, y, P, φ) = λ ◦ P ◦ φ̄ and Θ is a submersion.

Now choose contractible neighborhoods U ⊂ Σ, V ⊂ M around some points x0 ∈ Σ and

y0 ∈M , and fix the bundle isomorphisms,

ε1 : G|U → U ×Gx0 , ε2 : TM/D|V → V × TM/D|y0 , ε3 : TΣ/G|U → U × TΣ/G|x0 .
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We then have the bundle isomorphism,

Ψ : hom
(
TΣ/G, TM/D

)
|U×V −→ (U × V )× hom

(
TΣ/G, TM/D

)
|(x0,y0)(

ψ : TΣ/G|x → TM/D|y
)
7−→

(
x, y, ε2|y ◦ ψ ◦ ε3|−1x

)
Just as in the previous step, for some fixed A : TΣ/G|x0 ↪→ TM/D|y0 and a splitting

η : TM/D|y0
/
ImA ↪→ TM/D|y0 , we have the open set,

MA =
{
B : TΣ/G|y0 ↪→ TM/D|y0

∣∣ B ⋔ Im η
}
⊂ hom(TΣ/G, TM/D)|(x0,y0).

Note that, for any,

B : TΣ/G|x → TM/D|y in Ψ−1
(
{(x, y)} ×MA

)
we have an isomorphism,

η̃(x, y,B) : TM/D|y0
/
ImA→ TM/D|y

/
ImB

Z 7→
(
ε2|−1y η(Z)

)
mod ImB

Indeed, it follows from the definition of Ψ that, B ∈ Ψ−1MA ⇔ (ε2 ◦B) ⋔ Im η.

Now, consider the subset,

O = O(x0, y0, A, ρ) := Θ−1 ◦ Ψ−1
((
U × V

)
×MA

)
,

which is clearly open in Ξ−11 (0). We proceed to define a fiber-preserving map Ξ̃2,

O (U × V )×MA × hom
(
Λ2Gx0 , TM/D|y0

/
ImA

)
U × V

Ξ̃2

as follows. For (x, y) ∈ U × V and (x, y, P, φ) ∈ O, denote B = Θ(x, y, P, φ). Now,

Ξ̃2(x, y, P, φ) can be defined so that the following diagram is commutative :

Λ2Gx0 TM/D|y0
/
ImA

Λ2Gx TM/D|y
/
ImB

Ξ̃2(x,y,P,φ)

ε1|x ∼= η̃(x,y,B)∼=

ΞB2 (x,y,P,φ)
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It then follows that, Ξ̃−12 (0) consists of those tuples (x, y, P, φ) ∈ O, which satisfy the

formal curvature condition. Arguing as before, we have that,

RG,ρ
0 |U×V ∩ O are regular points of Ξ̃−12 (0).

Thus RG,ρ
0 is locally a manifold. Hence we conclude that RG,ρ

0 is a submanifold of J1(Σ,M)×

hom(G,TΣ/G). In fact, the same argument shows that the restriction of p : J1(Σ,M) ×

hom(G,TΣ/G) → J0(Σ,M) to RG,ρ
0 is a submersion. This concludes the proof.

We end this section by stating the following h-principle, similar to Theorem 3.2.7.

Theorem 5.1.17. Suppose, for any given F ∈ Ψm-Hor and any contractible open set O ⊂ Σ,

there exists a suitable rank m distribution G ⊂ TO and a splitting map ρ : TO/G ↪→ TO, so

that F |O is in the image of ev : ΓR̃G̃,ρ̃|O → Ψm-Hor. Then the relation Rm-Hor satisfies the

C0-dense h-principle.

Proof. For any G and ρ fixed over some O ⊂ Σ, we have the following :

� Φ̃G̃,ρ̃|Σ = Sol R̃G̃,ρ̃|Σ is flexible by Proposition 5.1.14.

� We observed in Theorem 5.1.9 that R̃m+ 1-HorGr enjoys the local h-principle. Since the

relation R̃G̃,ρ̃ can be embedded as an open set in the relation R̃m+ 1-HorGr, it satisfies

the same.

Lastly, Lemma 5.1.15 justifies the more general version of hypothesis (3) of Theorem 2.2.15, as

observed in Remark 2.2.18. The proof is now immediate from the remark, i.e, Rm-Hor satisfies

the C0-dense h-principle.

In the next section, we shall see that the “surjectivity hypothesis” in the above h-principle

is indeed satisfied in many interesting situations.

5.2 h-Principle for Partially Horizontal Immersions into Fat Dis-

tributions

In this section, we shall obtain h-principle of m-horizontal immersions of a general manifold Σ

in (M,D), for some fat distribution D. Suppose corkD = p. In the context of m-horizontal

immersions of Σ in (M,D), if we set q := dimΣ−m, then

0 ≤ q ≤ p = corkD.
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The left endpoint q = 0 gives us m = dimΣ and so, the m-horizontal immersions are just the

D-horizontal immersions. The other end, i.e, q = p gives rise to transverse immersions.

5.2.1 Immersions Transverse to a Corank p Distribution

Let us recall from Definition 5.1.11, the relation Rm-Hor ⊂ J1(Σ,M), whose sections are

monomorphisms F : TΣ → TM , covering some u : Σ → M , inducing the rank m subbundle

H := F−1D. Moreover, F satisfies,

� the Ω•-regularity : the bundle map

Ω• : u
∗D → hom

(
H,u∗TM/D

/
Im F̃

)
ξ 7→

(
X 7→ Ω(ξ, FX) mod Im F̃

)
is an epimorphism, where we have the induced map F̃ : TΣ/H ↪→ u∗TM/D.

� the curvature condition : F (H) ⊂ kerΩ•.

First we observe the following.

Proposition 5.2.1. For m = dimΣ − corkD, the relation Rm-Hor ⊂ J1(Σ,M) can be given

as,

Rm-Hor =
{
(σ, y, F )

∣∣ F : TσΣ → TyM is injective linear and TyM = ImF +Dy

}
.

Proof. Let F : TσΣ → TyM be an injective linear map such that ImF + Dy = TyM and

supposem = dimF−1Dy. Then dimΣ+dimDy−dimF−1Dy = dimTyM , i.e, dimΣ = m+p.

Denote, F−1Dy by H. Then,

ImF +Dy = TyM ⇒ codimH = codim F−1Dy = codim Dy

⇒ the induced map F̃ : TσΣ/H → u∗TyM/Dy is an isomorphism

⇒ hom
(
H,u∗TM/D

/
Im F̃

)
= 0

The last condition clearly implies that Ω• : D → hom
(
H,u∗TM/D

/
Im F̃

)
is surjective and

F (H) ⊂ kerΩ•. Therefore, (σ, y, F ) ∈ Rm-Hor, where dimΣ = m+ p.

Conversely, suppose that (σ, y, F ) ∈ Rm-Hor. Then, in particular dimF−1D = m =

dimΣ − corkD. Denoting F−1Dy by H, we have codimH = codimDy and therefore, F̃ :

TσΣ/H → TyM/Dy is an isomorphism. This implies that TσΣ → TσΣ/H → TyM/Dy is

surjective. In other words, ImF +Dy = TyM . This completes the proof.
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We recall the definition.

Definition 5.2.2. Given a distribution D on M , a smooth map u : Σ → M is said to be

transverse to D if the composition map TΣ
du→ u∗TM → u∗TM/D is surjective.

In view of the above proposition, we can now identify the solution space of Rm-Hor with the

space of immersions transverse to D, whenever m = dimΣ− corkD. We prove the following.

Theorem 5.2.3. Let D be a corank p distribution on M and m = dimΣ − p. Then, the

relation Rm-Hor satisfies the C0-dense h-principle, provided

rkD > m (or, dimM > dimΣ).

In particular, given a monomorphism F : TΣ → TM , such that F−1D is a subbundle of corank

p, we can homotope F to an m-horizontal immersion Σ →M , provided dimM > dimΣ.

The above theorem can now be restated as follows.

Theorem. Let D be a corank p distribution on M . Then a monomorphism F : TΣ → TM ,

such that F−1D is a subbundle of corank p, can be homotoped to a transverse immersion

Σ → (M,D), provided dimM > dimΣ.

Remark 5.2.4. In [Gro86, pg. 84], Gromov conjectured that given a bracket-generating distri-

bution D ⊂ TM , smooth maps Σ → M transverse to D, abide by the C0-dense, parametric

h-principle. In [EM02, pg 131], the h-principle is proved for contact distributions; furthermore

the authors indicate a possible way to prove the general conjecture as well. In a recent article

[dPS20], the conjecture is proved for analytic manifold M equipped with an analytic, bracket-

generating distribution D ⊂ TM . Note that Theorem 5.2.3 is applicable for any distribution

D, but assumes that the maps under considerations are additionally immersions.

We now prove the h-principle.

Proof of Theorem 5.2.3. We only need to justify a suitable “surjectivity hypothesis” is true, as

in the statement of Theorem 5.1.17.

Suppose we are given formal section F ∈ Ψm-Hor, covering some u : Σ → M and inducing

the subbundleH = F−1D. Fix some contractible sets O ⊂ Σ and U ⊂M satisfying O ⊂ u−1U .

Now, we choose an arbitrary non-zero section τ over O such that,

τ(σ) ∈ Du(σ) \ F (Hσ), σ ∈ O,
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which exists, since rkD > m by hypothesis.

Let us now extend F |O to a bundle map P : T (O × R) → TU defined by,

P (v, c∂t) = F (v) + cτ, for v ∈ TσΣ and any c ∈ R,

where ∂t is the coordinate vector field along R. Note that P is a monomorphism and it is

transverse to D since F ⋔ D, covering the map ũ = u ◦ π : O × R → U , i.e, we have

ImP |(σ,t) +Du(σ) = Tu(σ)U, for (σ, t) ∈ O × R.

Then from Proposition 5.2.1, P is a formal m + 1-horizontal immersion O × R → U , i.e,

P ∈ Ψ̃m+ 1-Hor.

Now, let us fix some G ⊂ TO and a splitting map ρ : TO/G ↪→ TO, so that the distribution

H|O can be realized as H|O = Gϕ for some ϕ : G → TO/G. Recall that for Õ = O × R, we

have the relations,

R̃G̃,ρ̃ ⊂ J1(Õ, U)×hom(G̃, T Σ̃/G̃)(1) and R̃m+ 1-Hor ⊂ J1(Õ, U×R)×hom(G̃, T Õ/G̃)(1),

and the map, ev : R̃G̃,ρ̃|O → Rm-Hor given by, j1v,ψ(σ) 7→ j1v|Σ(σ). It is clear that the section P

takes its value in the image of R̃G̃,ρ̃ in R̃m+ 1-Hor, under the map, j1v,ψ(σ) 7→ j1v(σ). Now, R̃G̃,ρ̃

has been identified as an open set of R̃m+ 1-HorGr and hence, by an application of Lemma 5.1.12,

we can get a formal section P̃ ∈ ΓR̃G̃,ρ̃, extending the section P . It is immediate that,

ev(P̃ |O×0) = P |TΣ = F . The h-principle now follows directly from Theorem 5.1.17.

5.2.2 Partially Horizontal Immersions into Fat Distribution

Our goal in this section is to prove the following theorem.

Theorem 5.2.5. Let D be a corank p fat distribution on M and m = dimΣ− (p− 1). Then,

Rm-Hor satisfies the C0-dense h-principle.

In other words, we are considering immersions in a corank p fat distribution D ⊂ TM , which

induces a corank p− 1 distribution on Σ. The proof of this h-principle is in the same vein as in

Theorem 4.2.1. Before we proceed to prove the theorem, we make the following observation.

Proposition 5.2.6. If D ⊂ TM is a corank p fat distribution, then any monomorphism F :

TΣ → TM , inducing a corank p− 1 distribution G = F−1(D) ⊂ TΣ, is Ω•-regular.
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Proof. Recall, the Ω•-regularity F is understood as the surjectivity of the map,

Ω• : u
∗D → hom

(
G, u∗(TM/D)

/
Im F̃

)
∂ 7→ F ∗ι∂Ω|G mod Im F̃

where F̃ : TΣ/G→ u∗TM/D is the induced bundle map. Since F̃ is injective, it follows that

rk
(
u∗(TM/D)/ Im F̃

)
= rkTM/D − rk Im F̃ = rkTM/D − rkTΣ/G = p− (p− 1) = 1.

Thus, we have u∗(TM/D)
/
Im F̃ ∼=

loc.
R. We may now choose a (local) trivialization of u∗TM/D

so that, u∗Ω = (ω1, . . . , ωp) and the map Ω• is given as,

Ω•(ξ) = F ∗ιξω
p|G for ξ ∈ D.

Since D is a fat distribution, ωp must be a nondegenerate 2-form on D. Consequently, Ω• is

surjective, proving the regularity.

In view of the lemma, the above theorem can now be restated as follows.

Theorem. Let D be a corank p fat distribution on M . Then a monomorphism F : TΣ → TM

such that F−1D is a subbundle of corank p − 1, can be homotoped to a partially horizontal

immersion inducing a corank p−1 distribution, provided rkD > 2m, wherem = dimΣ−(p−1).

Let us now prove the h-principle.

Proof of Theorem 5.2.5. In view of Theorem 5.1.17, we only need to show that the (local)

extensibility criteria is satisfied. Suppose F ∈ Rm-Hor is a formal m-horizontal map, with u =

bsF , inducing the subbundle H = F−1D. Fix some contractible open sets U ⊂M and O ⊂ Σ

satisfying, O ⊂ u−1(U). Now, F satisfies the formal curvature condition, F (H) ⊂ kerΩ•,

where,

Ω• : u
∗D → hom

(
G, u∗TM/D

/
Im F̃

)
.

Since u∗(TM/D)/ Im F̃ is of rank 1, there exists a trivialization of u∗TM/D over O such that,

u∗Ω =
loc.

(ω1, . . . , ωp) and the map Ω• is locally given as,

Ω•(ξ) = F ∗ιξω
p|H , for ξ ∈ D|O.

The curvature condition implies that F (H) is isotropic with respect to ωp. Since rkD > 2m =

2dimF (H) and ωp is a nondegenerate 2-form (which is a consequence of fatness of D), we
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can get a non-vanishing field τ ∈ u∗D \ F (H) over the contractible open set O, so that,

ωp(τ, F (H)) = 0, on points of O.

Let us now extend F |O to a bundle map P : T (O × R) → TU by setting, P (v, c∂t) =

F (v) + c∂t for v ∈ TσO and c ∈ R, where ∂t is the coordinate vector field along R. It is clear

from our choice of τ that P a monomorphism, covering the map ũ = u ◦ π : O × R → U ,

inducing an rank m + 1 subbundle on O × R. Furthermore, P satisfies the formal curvature

condition. By Proposition 5.2.6, it is Ω•-regular. Consequently, P ∈ Ψ̃m+ 1-Hor. We can now

proceed as in the proof of Theorem 5.2.3 to conclude the h-principle.

Corollary 5.2.7. Suppose D ⊂ TM is a corank p fat distribution and dimM ≥ 3 dimΣ−p+1.

Then any map u : Σ → M can be C0-approximated by an m-horizontal immersion Σ → M ,

where m = dimΣ− (p− 1), provided, there exists a rank m sub-bundle G ⊂ TΣ along with a

bundle monomorphism F̃ : TΣ/G→ u∗TM/D.

Proof. Under the hypothesis of the theorem, we only need to produce an injective bundle map

F : G→ D, covering u, such that F (G) ⊂ kerΩ•, where

Ω• : u
∗D → hom(G, u∗(TM/D)

/
Im F̃ )

ξ 7→ F ∗ιξΩ|G mod Im F̃

Consider the bundle F ⊂ hom(G, u∗D), where the fibers are given as,

Fσ =
{
F : TσΣ → Du(σ)

∣∣F is injective and ImF ⊂ kerΩ•

}
, for σ ∈ Σ.

We are looking for a global section of this F .

Just as we did in Theorem 5.2.5, let us choose a suitable trivialization of u∗TM/D, so that

Ω• can be locally represented as,

Ω•(ξ)(X) = ω(ξ, FX), ξ ∈ u∗D, X ∈ G,

for some (local) 2-form ω on D. The curvature condition is then understood as F (G) being

ω-isotropic. Since D is a fat distribution, ω must be nondegenerate. An argument very similar

to that in Lemma 4.2.5 then shows that the fiber Fσ is (rkD − 2m)-connected. Now, observe
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that the dimension condition dimM ≥ 3 dimΣ− (p− 1) is equivalent to,

rkD ≥ 3 dimΣ− 2p+ 1 ⇔ rkD − 2m ≥ dimΣ− 1, since dimΣ = m+ (p− 1).

Therefor, F admits a global section, say, F̂ : G→ u∗D.

Lastly, by choosing some isomorphisms TΣ ∼= G⊕ TΣ/G and TM ∼= D ⊕ TM/D, we can

define a morphism F : TΣ → u∗TM given as,

F = F̂ + F̃ .

It is immediate that F is a formal m-horizontal immersion, covering u : Σ → M and inducing

the bundle G, which satisfies the formal curvature condition. Now Theorem 5.2.5 applies, since

we have from the hypothesis,

dimM ≥ 3 dimΣ− p+ 1 ⇒ rkD > 2m.

Hence, the map u can be homotoped to an m-horizontal immersion Σ →M , while keeping the

homotopy arbitrarily C0-small.

5.2.3 Partially Horizontal Immersions into Quaternionic Contact Distribution

For a corank 3 distribution D ⊂ TM and a manifold Σ, there are exactly 4 possible values of

m for which m-horizontal immersions Σ →M are defined, namely,

0 ≤ dimΣ−m ≤ 3, i.e, m = dimΣ− q, q = 0, 1, 2, 3.

When D is a quaternionic contact structure, the h-principle in all these cases, except for m =

dimΣ− 1, have already been addressed in Theorem 4.2.14, Theorem 5.2.5 and Theorem 5.2.3.

We now prove the following.

Theorem 5.2.8. Given D ⊂ TM is a quaternionic contact structure on M and Σ is any

manifold. Then, for m = dimΣ − 1, the relation Rm-Hor ⊂ J1(Σ,M) satisfies the C0-dense

h-principle, provided

rkD ≥ 4m+ 4.
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Proof. Suppose we have a monomorphism, F : TΣ → TM , with base map u : Σ → M ,

inducing an m-dimensional subbundle H := F−1D. Furthermore suppose that the bundle map,

Ω• : u
∗D → hom

(
H,u∗TM/D

/
Im F̃

)
ξ 7→

(
F ∗ιξΩ

)
|H mod Im F̃

is surjective and F (H) ⊂ kerΩ•. We shall find a formal extension of F over contractible open

subsets O ⊂ Σ.

As D is a quaternionic contact structure, it follows from Definition 4.1.33 that we have

a Riemannian metric g on D and a trivialization TM/D|O = R3, so that the automorphisms

Ji : D → D, defined over O by,

dλi|D = g(Ji , ), i = 1, 2, 3,

satisfy the quaternionic relations, where λ = λi ⊗ ei for the standard basis (e1, e2, e3) of R3.

Now consider a nonvanishing section R of TΣ/H over O and let,

ê3 := F̃ (R) ∈ R3.

Suitably scaling R if necessary, we can extend ê3 to a orthonormal framing (ê1, ê2, ê3) of R3,

so that êi = Bei for some B ∈ SO(3). Then it follows that the automorphisms Ĵi defined by,

dλ̂i|D = g(Ĵi , ), i = 1, 2, 3,

satisfy the quaternionic relations as well, where λ = λ̂i ⊗ êi.

Now, from our choice above, over O we have,

(
u∗TM/D

/
Im F̃

) ∼= 〈[ê1], [ê2]〉 ∼= R2, where [êi] := êi mod Im F̃ .

Under this isomorphism, the map Ω• is then simply given as,

Ω• : u
∗D → hom

(
H,R2

)
ξ 7→

(
X 7→

(
ω̂1(ξ, FX), ω̂2(ξ, FX)

))
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where ω̂i = dλ̂i|D. For each σ ∈ O, consider the tuple

Tσ :=
(
Du(σ), R2, Ω̂σ =

(
ω̂1, ω̂2

)
u(σ)

)
.

The connecting morphism A : Du(σ) → Du(σ) for the pair (ω̂1, ω̂2) is given as, A = −Ĵ−11 Ĵ2.

Indeed, for u, v ∈ D we have,

ω̂1(u,Av) = g(Ĵ1u,−Ĵ−11 Ĵ2v) = g(u, Ĵ2v) = ω̂2(u, v),

since the adjoint Ĵ∗s = −Ĵs (as observed in Proposition 4.2.15). Therefore,

A = −Ĵ−11 Ĵ2 = Ĵ1Ĵ2 = Ĵ3 ⇒ A2 = Ĵ2
3 = −I,

and so, Tσ is a degree 2 fat tuple. We also observe that,

� the surjectivity of Ω• is equivalent to the Ω̂x-regularity of F (Hσ), while

� the curvature condition F (H) ⊂ kerΩ• means that F (Hσ) is Ω̂x-isotropic.

But then, just as we argued in Lemma 4.2.2, under the dimension condition, we can get a

continuous section τ ∈ u∗D over O such that,

τ ∈
(
V Ω̂
)Ω̂ \ V Ω̂, where V = F (H)|O is a vector bundle.

The rest of the proof now follows as in Theorem 5.2.5.

Remark 5.2.9. It may be noted that to prove the h-principle for m-horizontal immersions,

for m = dimΣ − 1, into quaternionic contact distributions (Theorem 5.2.8), we reduced the

underlying algebraic problem of extension to the extension problem for horizontal immersions in

degree 2 fat distirbutions (see Chapter 4). Similarly, the h-principle form-horizontal immersions,

for m = dimΣ−(p−1), into corank p fat distributions was reduced to the extensibility problem

of Legendrian immersions in contact distributions.





Chapter 6

Germs of Horizontal 2-Submanifold in

Fat Distribution of Type (4, 6)

Our goal here is to prove the existence of germs of 2-dimensional horizontal submanifolds for

a certain class of corank 2 fat distribution D on R6, which admit a pair of Reeb like vector

fields (see Definition 6.2.1). Holomorphic contact distributions are the best known examples in

this class of fat corank 2 distributions. We may recall that the holomorphic contact manifolds

are modeled on the holomorphic 1-jet space J1(Cn,C) and just like their real counterparts,

as explained in Example 2.1.20, 1-jet prolongation of any holomorphic map Cn → C is a

holomorphic Legendrian embedding. So there are plenty of holomorphic horizontal submanifolds

in any holomorphic contact manifold. In [FL18b] the authors have shown that holomorphic

Legendrian embeddings of an open Riemann surface Σ into the standard holomorphic contact

manifold
(
C2n+1, dz−

∑
i yidxi

)
satisfy the parametric Oka principle. In particular, they prove

that the space of Legendrian holomorphic embeddings Σ ↪→ C2n+1 has the same homotopy

type as the space of continuous maps Σ → S4n−1. The authors further observe that such a

global h-principle type result may not be true for a general holomorphic contact manifold.

Since D in our case is a corank 2 fat distribution on R6, it is necessarily of degree 2.

Though we have studied horizontal immersions in a degree 2 fat distribution in Chapter 4, we

may note that this particular case is not covered there, since D in the present case can not

admit an isotropic 2-subspace which is Ω-regular (see Remark 3.1.6). However, this does not

rule out the possibility of obtaining a germ of horizontal 2-submanifold as the operator is still

underdetermined. In fact, the results of [FL18b] supports this in the special case of standard

holomorphic contact distribution on C2n+1.

As we shall be working in a setup where Ω-regularity is impossible to achieve, we need

to appeal to a different flavor of implicit function theorem in lieu of Theorem 2.2.24, namely,

147
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Hamilton’s implicit function theorem.

6.1 Hamilton’s Implicit Function Theorem

Nash’s Implicit Function Theorem [Nas56] in the context of C∞-isometric immersions has

been generalized by several authors, we have already encountered one of its variation in The-

orem 2.2.24. Here we recall Hamilton’s formalism of infinite dimensional implicit function

theorem that works for smooth differential operators between Fréchet spaces. This theorem is

used crucially in order to get the local h-principle of horizontal maps into corank 2 fat distribu-

tions which admit Reeb directions. To begin with, we discuss the basic notion of tame spaces

and tame operators from the exposition by Hamilton ([Ham82]).

Definition 6.1.1. [Ham82, pg. 67] A Fréchet space is a complete, Hausdorff, metrizable,

locally convex topological vector space.

In particular the topology of a Fréchet space F is given by a countable collection of semi-

norms {| · |n}, such that a sequence fj → f if and only if |fj − f |n → 0 for all n, as j → ∞.

A choice of this collection of norms is called a grading on the space and we say (F, {| · |n}) is

a graded Fréchet space.

Example 6.1.2. Many naturally occurring spaces are in fact Fréchet spaces.

1. Every Banach space (X, | · |X) is a Fréchet space. It may also be graded if we set

| · |n = | · |X for all n ([Ham82, pg. 68]).

2. Given a compact manifold X, possibly with boundary, the function space C∞(X) is a

graded Fréchet space. More generally, given any vector bundle E → X, the space of

sections Γ(E) is also a graded Fréchet space. The Ck-norms on the sections give a

possible grading ([Ham82, pg. 68]).

3. Given a Banach space (X, | · |X), denote by Σ(X) the space of exponentially decreasing

sequences of X, which consists of sequences {xk} of elements of X, such that,

|{xk}|n =

∞∑
k=0

enk|xk|X <∞, ∀n ≥ 0.

Then Σ(X) is a graded Fréchet space with the norms defined above ([Ham82, pg. 134]).

Definition 6.1.3. [Ham82, pg. 135] A linear map L : F → G between Fréchet spaces F,G is

said to satisfy tame estimates of degree r and base b if there exists a constant c = c(n) such
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that,

|Lf |n ≤ C|f |n+r, ∀n ≥ b, ∀f ∈ F

L is said to be tame if it satisfies the tame estimates for some n and r.

Example 6.1.4. We have that a large class of operators are in fact tame.

1. A linear partial differential operator L : C∞(X) → C∞(X) of order r satisfies the tame

estimate |Lu|n ≤ |u|n+r for all n ≥ 0 and hence L is tame of degree r ([Ham82, pg.

135]).

2. Inverses of elliptic, parabolic, hyperbolic and sub-elliptic operators are tame maps ([Ham82,

pg. 67]). In particular, the solution of elliptic boundary value problem is tame ([Ham82,

pg. 161]).

3. Composition of two tame maps is again tame ([Ham82, pg. 136]).

Definition 6.1.5. [Ham82, pg. 136] Given graded Fréchet spaces F,G, we say F is a tame

direct summand of G if there are tame linear maps L : F → G and M : G→ F such that the

composition ML : F → F is the identity.

We now define tame Fréchet spaces.

Definition 6.1.6. [Ham82, pg. 136] A Fréchet space F is said to be tame if F is a tame direct

summand of Σ(X), for some Banach space X.

Example 6.1.7. Given a compact manifold X, possibly with boundary, and a vector bundle

E → X, the section space Γ(E) is a tame Fréchet space ([Ham82, pg. 139]).

Let us also define, tame smooth maps.

Definition 6.1.8. [Ham82, pg. 143] A map P : U ⊂ F → G, between Fréchet spaces F,G,

defined over some open set U ⊂ F is said to be a smooth tame map, if P is smooth and all

the derivatives DkP are tame linear maps.

We now state the inverse function theorem.

Theorem 6.1.9. [Ham82, pg. 171] Given tame Fréchet spaces F,G and a tame smooth map

P : U → G, where U ⊂ F is open. Suppose that for the derivative DP (u) at u ∈ U , the

equation DP (u)h = k admits unique solution h = V P (u)k for each k ∈ G. Furthermore,

assume that V P : U × G → F is a smooth tame map. Then P is locally invertible and each

local inverse P−1 is smooth tame.

Remark 6.1.10. Unlike the inverse function theorem for Banach spaces, one needs to have

that the derivative DP is invertible on an open set U ⊂ F .
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6.2 Fat Distributions with Reeb-like Vector Fields

Suppose Ξ is a given holomorphic contact structure on a complex manifold M and D ⊂ TM

is the isomorphic real distribution under the canonical isomorphism TM ∼= T(1,0)M . It follows

from the proof of Corollary 4.1.29, there exists local 1-forms α1, α2 ∈ Ω1(M) and local vector

fields Z1, Z2, such that D can be written as D =
loc.

kerα1 ∩ kerα2 and the tangent bundle TM

locally as the direct sum TM =
loc.

D ⊕ ⟨Z1, Z2⟩. Furthermore, αi and Zi satisfy the relations

below:

[Z1, Z2] = 0, αi(Zj) = δij , ιZidαj |D = 0, i, j = 1, 2.

Motivated by this, we consider the following.

Definition 6.2.1. A corank 2 distribution D on M is said to admit (local) Reeb directions

Z1, Z2, if D =
loc.

kerα1 ∩ kerα2 and TM = D ⊕ ⟨Z1, Z2⟩ such that,

1. α1(Z1) = 1, α1(Z2) = 0,

2. α2(Z1) = 0, α2(Z2) = 1,

3. ιZidαj |D = 0 for i, j = 1, 2,

4. [Z1, Z2] = 0.

As observed, the real distribution underlying any holomorphic contact structures, admits

(local) Reeb directions.

Now, given any corank 2 fat distribution D on a manifold M of dimension 4n+ 2, one can

find ([Ge92]) a coordinate system (x1, . . . , x4n, z1, z2) and 1-forms,

αi = dzi −
∑
j,k

Γijkxjdxk +Ri, i = 1, 2,

such that D =
loc.

kerα1 ∩ kerα2. Here Ri =
∑2

j=1 fijdzj +
∑4n

j=1 gijdxj is a 1-form such

that, fij , gij ∈ O(|x|2 + |z|2) and {Γijk} constitute the structure constants of some nilpotent

Lie algebra, known as the nilpotentization (Remark 4.1.32), associated to the distribution D.

In particular Γijk = −Γikj . Observe that, if we take fij = 0 and gij to be functions of xk’s

only, then any such tuple of forms (α1, α2) above gives a distribution, which admits local Reeb

directions ⟨∂z1 , ∂z2⟩.

From the classification results of [CFS05], we see that the only possible Lie algebra that can

arise as the nilpotentization of a corank 2 fat distribution on a 6 dimensional manifold is the

complex Heisenberg Lie algebra.
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Question 6.2.2. Is every (germ of) corank 2 fat distribution on R6, which admits local Reeb

directions, diffeomorphic to the germ of the distribution underlying a holomorphic contact

structure?

For a general corank 2 fat distribution, the answer is clearly no. From the result of Mont-

gomery (Theorem 2.1.10), it follows that a generic distribution germ of type (4, 6) cannot admit

a local frame, which generates a finite dimensional Lie algebra. Whereas, a holomorphic con-

tact distribution admits such a frame, as observed in Corollary 4.1.29, generating the complex

Heisenberg Lie algebra. Since the set of germs of fat distributions of type (4, 6) is open, there

are plenty of fat distributions, non-isomorphic to the contact holomorphic one. But it is not

clear whether any of these fat distributions admit (local) Reeb directions.

Now suppose D is a corank 2 fat distribution on a manifold M of dimension 6, defined by a

pair of 1-forms α1, α2. Hence ωi = dαi|D are nondegenerate and the connecting homomorphism

A : D → D defined by

ω2(u, v) = ω1(u,Axv), ∀u, v ∈ Dx, x ∈M,

has no real eigenvalue. We further assume that the distribution D admits local Reeb directions.

Remark 6.2.3. Any corank 2 fat distribution on a six dimensional manifold is in fact of degree

2, as we have already seen in Example 4.1.39. But it is clear that Theorem 4.2.1 is not applicable

due to dimension constraints.

Now for a fixed manifold Σ = D2, consider the partial differential operator,

D : C∞(Σ,M) → Ω1(Σ,R2)

u 7→
(
u∗α1, u

∗α2

)
The C∞-solutions of D(u) = 0 are precisely the D-horizontal maps Σ → M . Furthermore,

horizontality implies the isotropy condition, u∗dα1 = 0 = u∗dα2; implying that dux : TxΣ →

Du(x) is an isotropic map with respect to both the forms ωi = dαi|D on D for every x ∈ Σ.

6.3 Local Inversion of D

Linearizing D at an u ∈ C∞(Σ,M) we have the linear differential operator Lu as follows:

Lu : Γu∗TM → Ω1(Σ,R2)
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∂ 7→
(
d
(
αi ◦ ∂

)
+ u∗ι∂dαi

)
i=1,2

Since Σ = D2 is a compact manifold with boundary, we have (see Example 6.1.7),

Observation 6.3.1. The spaces Γ(u∗TM) and Ω1(Σ,R2) are tame Fréchet spaces for any

u : Σ →M .

Since the linearization Lu at u : Σ → M is a linear partial differential operator of order 1,

we have (see Example 6.1.4),

Observation 6.3.2. Lu is a tame linear map of order 1 for any u : Σ → M . Consequently, D

is a smooth tame map.

This sets the problem into the framework of the differential operator between Fréchet spaces

for studying the existence of local inversion. We first prove the following result.

Proposition 6.3.3. If u is a smooth horizontal immersion then Lu admits a tame inverse Mu.

Note that we are assuming the existence of D-horizontal immersions here. We first observe

the following linear algebraic result.

Lemma 6.3.4. If V ⊂ Dx is common isotropic with respect to ωi = dαi|D and dimV = 2,

then V = AV

Proof. Since V is common isotropic,

V ⊂ V ⊥1 ∩ V ⊥2 = (V +AV )⊥1 ⇒ dim(V +AV )⊥1 ≥ dimV = 2

and so, dim(V + AV ) ≤ dimDx − 2 = 2. On the other hand, dim(V + AV ) ≥ dimV = 2.

Hence, dim(V +AV ) = 2 = dimV , which is possible only if V = AV .

Remark 6.3.5. In view of Definition 4.1.14, the last lemma can be restated as follows : every

Ω-isotropic subspace of a corank 2 fat distribution on 6-dimensional manifold is invariant.

Proposition 6.3.6. If u is a smoothD-horizontal immersion, then given any (P,Q) ∈ Ω1(Σ,R2),

the equation Lu(∂) = (P,Q) admits a unique solution ∂ = Mu(P,Q), subject to a boundary

condition. The process of obtaining the solution depends on a choice of complex structure J

on D.

Proof. We first choose an almost complex structure J on D, compatible with ω1 = dα1|D.

Since u is D-horizontal we have,

u∗αi = 0 ⇒ u∗dαi = 0, for i = 1, 2.
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Thus Im duσ is common isotropic with respect to both ωi = dαi|D and so in particular, Im duσ

is J-totally real, since J is ω1-compatible. Also since u is an immersion, dim Im duσ = 2. Then

by Lemma 6.3.4, we also have that,

A(Im duσ) = Im duσ, for σ ∈ Σ.

Let us denote, X = u∗(∂x), Y = u∗(∂y), where ∂x, ∂y are the coordinate vector fields on

Σ = D2. We thus have

⟨AX,AY ⟩ = ⟨X,Y ⟩.

Hence, A restricts to an automorphism on ⟨X,Y ⟩:

A0 = A|⟨X,Y ⟩.

Let us write,

AX = pX + qY, AY = rX + sY (∗)

for some functions p, q, r, s ∈ C∞(Σ). Then we have that A0 =

p q

r s

 with respect to the

basis (X,Y ). Since A has no real eigenvalue, A0 also has no real eigenvalue. This means that

the characteristic polynomial

λ2 − (p+ s)λ+ (ps− qr)

of A0 has negative discriminant, i.e.,

(p+ s)2 − 4(ps− qr) = (p− s)2 + 4qr < 0.

Now, let us consider the equation,

Lu(∂) = (P,Q),

where P,Q ∈ Ω1(Σ). We write,

∂ = ∂0 + aZ1 + bZ2,
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where ∂0 ∈ u∗D and Z1, Z2 are the Reeb directions associated to (α1, α2), pulled back along

u. Using properties (1), (2) and (3) of Definition 6.2.1, we then have,

Lu(∂) =
(
da+ u∗ι∂0dα1, db+ u∗ι∂0dα2

)
.

Now, let us write,

P = P1dx+ P2dy, Q = Q1dx+Q2dy

Evaluating both sides of Lu(∂) = (P,Q) on ∂x, ∂y, we then have the system,


∂xa+ dα1(∂0, X) = P1

∂ya+ dα1(∂0, Y ) = P2

(1)


∂xb+ dα2(∂0, X) = Q1

∂yb+ dα2(∂0, Y ) = Q2

(2)

We also consider an auxiliary system of equations:
dα1(∂0, JX) = 0

dα1(∂0, JY ) = 0
(3)

Now from (∗) we have,

dα2(∂0, X) = dα1(∂0, AX) = p dα1(∂0, X) + q dα1(∂0, Y )

dα2(∂0, Y ) = dα1(∂0, AY ) = r dα1(∂0, X) + s dα1(∂0, Y )

This transforms (2) into the following system of PDEs:
∂xb+ p dα1(∂0, X) + q dα1(∂0, Y ) = Q1

∂yb+ r dα1(∂0, X) + s dα1(∂0, Y ) = Q2

(2′)

Using (1) we eliminate ∂0 from (2′) and get,
∂xb− p∂xa− q∂ya = Q1 − pP1 − qP2

∂yb− r∂xa− s∂ya = Q2 − rP1 − sP2

(2′′)
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Since (p − s)2 + 4qr < 0, the system of PDEs given by (2′′) is elliptic. Hence, the Dirichlet

problem (2′′) with the boundary condition

a|∂Σ = a0, b|∂Σ = b0, (4)

will have a unique solution,

(a, b) =Mu(P,Q, a0, b0).

Lastly, using the solution (a, b) =Mu(P,Q, a0, b0) we get from (1), (3),

dα1(∂0, X) = P1 − ∂xa

dα1(∂0, Y ) = P2 − ∂ya

dα1(∂0, JX) = 0

dα1(∂0, JY ) = 0

(5)

Since Im duσ is J-totally real, D = ⟨X,Y, JX, JY ⟩ is a local framing, and since dα1|D is

nondegenerate, (5) can be uniquely solved for ∂0. Thus, Lu(∂) = (P,Q) has a unique solution

∂ = Mu(P,Q, a0, b0).

subject to satisfying the auxiliary system (3) and the boundary condition (4).

We can now prove Proposition 6.3.3

Proof of Proposition 6.3.3. From Proposition 6.3.6 we have that Lu admits unique solution

Mu, whenever u is D-horizontal immersion. As in Proposition 6.3.6, Mu is obtained as a

solution to a Dirichlet problem and hence it is tame (see Example 6.1.4). Then Mu is obtained

from Mu by solving a linear system, which is again tame. Hence the inverse Mu is tame, being

composition of two tame maps (see (3) of Example 6.1.4).

Tame Inversion of D

From Proposition 6.3.3 we see that the linearization Lu admits right inverse Mu, provided u is

D-horizontal immersion. But in order to apply the Implicit Function Theorem due to Hamilton

(Theorem 6.1.9), we need to show that there is an open set of maps U ⊂ C∞(Σ,M) such that

the family {Lu | u ∈ U} admits a smooth tame inverse. We now identify this set U.

We first restrict ourselves to a collection U0 of maps u : Σ → M satisfying the following

two conditions:
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� u is an immersion

� Im du is transverse to ⟨Z1, Z2⟩

This collection U0 ⊂ C∞(Σ,M) is clearly open, since it is defined by open conditions. Now,

we have a canonical projection,

πD : TM = D ⊕ ⟨Z1, Z2⟩ → D.

For any u ∈ U0 we see that the image πD(Im du) has dimension 2 at each point of Σ. Let us

choose an almost complex structure J : D → D, compatible with dα1|D, as in Proposition 6.3.6.

Then the set {
(X,Y ) ∈ Fr2D

∣∣∣ V = ⟨X,Y ⟩ is J-totally real
}

is open in the 2-frame bundle Fr2D, since the totally real condition V ∩ JV = 0 is open. For

any tuple (X,Y ) we have the framing (X,Y, JX, JY ) of D and we can write,

A =

A11 A12

A21 A22


4×4

with respect to this basis. Let, Ox ⊂ Fr2Dx be the set of those (X,Y ) ∈ Fr2Dx such that,

� V = ⟨X,Y ⟩ is J-totally real

� The matrix A11 as above is negative definite

Since both are open conditions, we see that Ox is open in Fr2Dx.

We now define,

Definition 6.3.7. A map u : Σ →M is said to be admissible if it satisfies the following.

� u ∈ U0, i.e, f is an immersion with Im du ⋔ ⟨Z1, Z2⟩

� Im duσ = ⟨u∗∂x, u∗∂y⟩ ∈ π−1D
(
Ou(σ)

)
for each σ ∈ Σ

Denote by U ⊂ C∞(Σ,M) the set of admissible maps.

In fact we have defined an open relation A ⊂ J1(Σ,M) such that U = SolA. Since A is

an open relation, we have that U is open in C∞(Σ,M). It is apparent that any D-horizontal

immersion is admissible. We now prove the following.

Theorem 6.3.8. The linearization Lu admits a smooth tame inverse Mu for every u ∈ U
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Proof. Suppose u ∈ U. We have, Im du = ⟨u∗∂x, u∗∂y⟩. Let us write,

u∗∂x = X + a1Z1 + a2Z2, u∗∂y = Y + b1Z1 + b2Z2

where X = πD(u∗∂x), Y = πD(u∗∂y). By assumption, (X,Y ) ∈ Fr2D is totally real and so

we have a basis (X,Y, JX, JY ) of D. Hence, we can write,
AX = pX + qY + p′JX + q′JY

AY = rX + sY + r′JX + s′JY
(6)

The matrix of A has the form, 
p r ∗ ∗

q s ∗ ∗

p′ r′ ∗ ∗

q′ s′ ∗ ∗



and by the hypothesis on U, A11 =

p q

r s

 is negative definite, which is equivalent to,

(p− s)2 + 4qr < 0.

Now we wish to solve Lu(∂) = (P,Q), as we did in Proposition 6.3.6, where

Lu : Γu∗TM → Ω1(Σ,R2)

∂ 7→
(
d
(
αi ◦ ∂

)
+ u∗ι∂dαi

)
i=1,2

Let ∂ = ∂0 + aZ1 + bZ2, where ∂0 ∈ u∗D. Since [Z1, Z2] = 0 (by (4) of Definition 6.2.1), we

have,

dα1(Z1, Z2) = Z1(α1(Z2))− Z2(α1(Z1))− α1([Z1, Z2]) = Z1(0)− Z2(1)− α1(0) = 0,

and similarly, dα2(Z1, Z2) = 0. Hence,

dα1(∂, u∗∂x) = dα1(∂0 + aZ1 + bZ2, X + a1Z1 + a2Z2) = dα1(∂0, X),
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and similarly the remaining ones. Thus, we get a system as before,
∂xa+ dα1(∂0, X) = P1

∂ya+ dα1(∂0, Y ) = P2

(7)


∂xb+ dα1(∂0, AX) = Q1

∂yb+ dα1(∂0, AY ) = Q2

(8)

We add the linear equations,

dα1(∂0, JX) = 0 = dα1(∂0, JY ) (9)

to (7),(8). Then using (6) and (9), the system (8) becomes,
∂xb+ p dα1(∂0, X) + q dα1(∂0, Y ) = Q1

∂yb+ r dα1(∂0, X) + s dα1(∂0, Y ) = Q2

(8′)

Using (7) we can eliminate ∂0 in (8′) and get,
∂xb− p∂xa− q∂ya = Q1 − pP1 − qP2

∂yb− r∂xa− s∂ya = Q2 − rP1 − sP2

(8′′)

Since (p− s)2 + 4qr < 0, we have that (8′′) is elliptic. Hence given any arbitrary boundary

condition a|∂Σ = a0, b|∂Σ = b0, we have the unique solution,

(a, b) =Mu(P,Q, a0, b0).

Then, as in Proposition 6.3.6, we obtain unique solution

∂ = Mu(P,Q, a0, b0)

to the system given by (7), (8) and (9). Thus whenever u ∈ U, we have a solution Mu for the

linearized equation Lu = (P,Q). As argued in the proof of Proposition 6.3.3, both Lu and Mu

are tame operators.

Since Lu is surjective for every u ∈ U and the family of right inverses M : U×Ω1(Σ,R2) →

C∞(Σ,M) is a smooth tame map, we obtain the following by an application of Theorem 6.1.9.
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Theorem 6.3.9. The operator D restricted to U is locally right invertible. Given any u0 ∈ U,

there exists an open neighborhood U of u0 and a smooth tame map D−1u0 : D(U) → U such

that D ◦D−1u0 = Id.

The proof of the Implicit Function Theorem, in fact, implies that there exists a positive

integer r0 such that the following holds true.

Theorem 6.3.10. Let u0 ∈ U and g0 = D(u0). Let ϵ > 0 be any positive number. Then there

exists a δ > 0 and an integer r0, such that for any α ≥ r0 and for every g ∈ Ω1(Σ,R2) with

|g|α < δ, there is an u = D−1u0 (g0 + g) ∈ U satisfying the following conditions:

D(u) = g0 + g and |u− u0|α+2 < ϵ.

6.4 Existence of Horizontal Germs and the Local h-Principle

Since we are only interested in germs, without loss of generality, we assume that M = R6 and

Σ = R2. Suppose, we have a corank 2 fat distribution D on M , which admits Reeb directions

(Definition 6.2.1). Consider the (open) relation A ⊂ J1(Σ,M), as in the previous section, so

that the set of admissible maps U are precisely the smooth holonomic sections of A. We have

shown that the operator, D : u 7→
(
u∗α1, u

∗α2

)
is locally invertible over U.

Now following Gromov([Gro86]), we can get the (parametric) local h-principle. One crucial

thing to observe is that unlike Theorem 2.2.24, the inversion of D as we have obtained in

Theorem 6.3.9, does not conform to the notion of locality as considered by Gromov. Yet we

observe that the proof of local h-principle goes through, without the locality property of D−1.

For the sake of completeness, we reproduce the proof.

Recall from Definition 2.2.26 that a germ of a map u : Σ →M at σ ∈ Σ is an infinitesimal

solution of order α of D(u) = 0 if,

jαD(u)(σ) = 0.

Now since D has order 1, the property that u is an infinitesimal solution of order α, only depends

on the jet jα+1
u (σ). Consider the relation,

Rα = Rα(D, 0,A) ⊂ Jα+1(Σ,M),

consisting of jets jα+1
u (σ), represented by u : Op(σ) →M , so that,

u ∈ SolA = U and jα+1
D(u) = 0.
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We note that, for any α ≥ 0, the smooth solutions of Rα are precisely the A-regular solutions,

i.e, admissible solutions of D = 0. We then prove the following.

Theorem 6.4.1. If α is sufficiently large, then every infinitesimal solution u : Op(σ) → M of

order α admits a homotopy ut : Op(σ) → M , such that u0 = u on some Opσ and u1 is a

D-horizontal admissible solution, i.e, D(u1) = 0. Furthermore, the jets jα+1
ut (σ) belongs to Rα,

for all t ∈ [0, 1].

Proof. Suppose u is defined on an open ball V ⊂ Σ about σ. Since u ∈ SolA and A is open,

we can get a neighborhood V0 of σ, such that σ ∈ V0 ⊂ V and u|V0 is a solution of A. In other

words, u|V0 is admissible. Denote, g0 = D(u|V0).

Since jα+1
u (σ) ∈ Rα, we have jαg0(σ) = jαD(u)(σ) = 0. Hence for any given ϵ > 0, there

exists a neighborhood W ⊂ V0 of σ such that |g0|α < ϵ on W . We can get some gϵ on V0 so

that,

� gϵ = −g0 on some neighborhood W ⊂ V0 of σ, and

� gϵ is ϵ-small in Cα-norm, i.e, |gϵ|α < ϵ on V0.

Now let us apply Theorem 6.3.10 for the domain V0. Since y0 := u|V0 is admissible, we

have that Dy0 admits a local inverse. In particular, there exists some ϵ, δ > 0 such that for any

|g|α < ϵ we have unique y such that D(y) = D(y0) + g and |y − y0|α+1 < δ. Here we require

that α to be sufficiently large. Now, in particular, for this ϵ = ϵ(y0, r), we can get W and gϵ as

above. Then we have unique solutions,

ut = D−1y0 (tgϵ),

over V0, satisfying |ut − y0|α+1 < ϵ for t ∈ [0, 1]. Now,

D(ut) = D(y0) + tgϵ = D(u|V0) + tgϵ = g0 + tgϵ,

In particular we have, D(u0) = g0 and hence u0 = u|V0 from uniqueness. On the other hand,

over W ,

D(u1) = g0 + gϵ = g0 − g0 = 0.

Thus u1 is a solution D(u1) = 0, over W . Furthermore the jet jα+1
ut (σ) ∈ Rα for all t ∈

[0, 1].

Thus we have a (parametric) local h-principle for Rα (see [Gro86, pg. 119]).
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Corollary 6.4.2. For α large enough, The jet map jα+1 : SolRα → ΓRα is a local weak

homotopy equivalence at any σ ∈ Σ.

In order to prove the existence of a horizontal germ, we need to prove that Rα ̸= ∅ at

some σ. One issue with Theorem 6.4.1 is that we do not specify the higher jet order α, that

is crucial in order to get a local solution. We now show that in fact we can get a lift to any

arbitrary higher jet from the first jet relation of isotropic horizontal maps. Recall that given

any map u satisfying u∗αi = 0 we have, taking derivatives, that u∗dαi = 0. That is, Im du is

ωi = dαi|D-isotropic. Now from Proposition 6.3.3, we have that every solution is automatically

admissible. Consider the relation R ⊂ R0 ⊂ J1(Σ,M) consisting of (x, y, F : TxΣ → TyM)

such that, F ∗dλs = 0 for s = 1, 2. In other words, F : TΣ → TM is a formal isotropic

D-horizontal immersion. We have the following result.

Lemma 6.4.3. For any α ≥ 1, the jet projection map p = pα+1
1 : Jα+1(Σ,M) → J1(Σ,M)

maps Rα|(x,y) surjectively onto R|(x,y), for any (x, y) ∈ Σ×M .

Proof. The proof is similar to that of Lemma 3.2.1 for Ω-regular horizontal immersions. Note

that since the distribution D in question is fat, by Definition 4.1.20, every 1-dimensional sub-

space ⟨v⟩ of Dy is Ω-regular. Now, suppose we have fixed some coordinate (x1, x2) about

σ ∈ Σ. Then for any Ω-isotropic, injective map F : TσΣ → TyM , ImF admits a codimension

1 Ω-regular subspace, namely, ⟨F (∂x1)⟩. Consequently, the proof now follows immediately from

Remark 3.3.3.

Note that we have SolR = SolRα for any α ≥ 0. Then as a direct consequence of

Corollary 6.4.2 and Lemma 6.4.3, we have the following local h-principle.

Corollary 6.4.4 ([Bho20]). The relation R ⊂ J1(Σ,M) satisfies the (parametric) local h-

principle, i.e, the jet map j1 : SolR → ΓR is a local weak homotopy equivalence at any

σ ∈ Σ.

We can now prove the existence of germs of D-horizontal submanifolds of dimension 2.

Theorem 6.4.5 ([Bho20]). Given D is corank 2 fat distribution on a manifold M of dimension

6, admitting local Reeb directions. Then there exists a germ of a D-horizontal submanifold of

dimension 2.

Proof. Suppose D = kerα1∩kerα2 for some local 1-forms αi around some y ∈M . Pick some

arbitrary 0 ̸= v ∈ Dy and set u = Av, where A is the (local) automorphism. Then, observe



162 Chapter 6. Germs of Horizontal 2-Submanifold in Fat Distribution of Type (4, 6)

that,

dα1(u, v) = dα1(Av, v) = dα2(v, v) = 0 and, dα2(u, v) = dα1(u,Av) = dα1(u, u) = 0.

In other words, ⟨u, v⟩ ⊂ Dy is Ω-isotropic. Now, consider the jet σ = (0, y, F : TxD2 →

TyM) ∈ J1(D2,M) given by F (∂x) = u, F (∂y) = v. Then clearly, we have σ ∈ R|(0,y) by

construction. But then by Corollary 6.4.4, we have a D-horizontal immersion u : Op(0) →M .

Since u is an immersion, it is a local diffeomorphism and so we have a germ of D-horizontal

submanifold of dimension 2.

We conclude with the following Conjecture:

Conjecture. If Σ is an open 2-manifold then horizontal immersions of Σ in (R6,D), with some

higher order regularity condition, satisfy the h-principle.
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