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Chapter 1

Introduction

A distribution D on a manifold M is a smooth subbundle of the tangent bundle TM. The rank
of the vector bundle is defined as the rank of the distribution. A distribution is generally viewed
as a smooth assignment of vector subspaces D, C T, M to the points z € M.

For a given distribution D on a manifold M, we can consider the vector fields on M, which
are sections of D. We say D is involutive if the Lie bracket of any two local sections of D is
again a section of the same kind. In other words the vector fields in D are closed under the Lie
bracket operation. By the Frobenius Theorem, a distribution is involutive precisely when it is
integrable, that is, through each point of the manifold M, there is an (immersed) submanifold
L, such that the tangent space T, L equals D, at each point z € £. Thus, the dimension of
the integral submanifolds is the same as the rank of D.

The non-integrable distributions are not only plentiful but they also exhibit rich structures.
Here we are particularly interested in bracket generating distributions which lie at the polar
opposite end to involutive distributions. Explicitly, a distribution D is said to be bracket gener-
ating if the successive Lie bracket operations on vector fields in D generate the whole tangent
bundle. These distributions have received a wide attention because of their close connection to
physical questions related to constrained motion ([Car10, BCGT91, Mon02]).

Chow ([Cho39]) proved that if D is bracket generating then any two points of M can be
joined by a smooth curve which is tangent to D at each point, in contrast with the involutive
distributions where two points can be joined by such a curve if and only if they lie on the same
integral submanifold. Furthermore, Ge ([Ge93]) established that any continuous curve joining
two points can actually be C°-approximated by a curve which is everywhere tangent to D.

An immediate question that arises next is what could be the maximum possible dimension
k of a submanifold (immersed or embedded) through each point of M, which is everywhere

tangent to D? Any such submanifold is called horizontal to the given distribution D. More

3



4 Chapter 1. Introduction

generally, we may have the ambitious goal of classifying D-horizontal immersions and embed-
dings up to homotopy. This question has been well-studied in many instances and the answer
to this is usually given in the language of h-principle.

Among all the bracket-generating distributions, the contact structures have been studied
most extensively ([Gei08]). These are corank 1 distributions on odd-dimensional manifolds,
which are maximally non-integrable. In other words, a contact structure £ is locally given by a
1-form « such that, a A (da)™ is non-vanishing, where the dimension of the manifold is 2n + 1.
It can be easily seen that the maximal dimension of a horizontal submanifold of & as above is
n. These are called Legendrians. Locally, there are plenty of n-dimensional horizontal (Legen-
drian) submanifolds. Globally, Legendrian immersions and (loose) Legendrian embeddings are
completely understood in terms of h-Principle ([Gro86, Duc84, Mur12]). Beyond the corank 1
situation, very few cases are completely known. Engel structures, which are certain rank 2 dis-
tribution on 4-dimensional manifolds ([Eng89]), have been studied in depth in the recent years,
and the question of existence and classification of horizontal loops in a given Engel structure has
been solved ([Adal0, CdP18]). Horizontal immersions on product of contact manifolds have
also been studied in [D'A94].

The contact and Engel distributions mentioned above have several interesting proper-
ties. The simplest invariant for distribution germs is given by a pair of integers (n,r) where
n = dim M and r = rank D. The germs of contact and Engel structures are generic in their
respective classes and they also happen to be stable. These distributions admits local fram-
ing which generates finite dimensional nilpotent lie algebras. The only other generic class of
distributions generating finite dimensional Lie algebras are the even contact structures and the
1-dimensional distributions. All of them lie in the range r(n —r) < n ([Mon93]). But in the
range r(n —r) > n, the study of a generic distribution becomes difficult due to the presence of
function moduli.

The contact distributions are the simplest kind of strongly bracket generating distribution.
A distribution D is called strongly bracket generating if every non-vanishing vector field along
D, about a point x € M, Lie bracket generates the tangent space T, M. Strongly bracket
generating distributions are also referred to as fat distributions in the literature. In fact, in
corank 1, fat distributions are the same as the contact ones. The germs of fat distributions in
higher corank, are far from being generic ([Ray68]). However, they are interesting in their own
right and have been well-studied ([Ge93, Mon02]).

The notion of contact structures can be extended verbatim to complex manifolds. These are

(1,0)

complex, corank 1-subbundles of the holomorphic tangent bundle T\ M of a complex manifold
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M, with dim¢c M = 2n + 1, given locally by holomorphic 1-forms « satisfying o A (da)™ # 0.
The h-principle for holomorphic Legendrian embeddings of an open Riemann surface into certain
holomorphic contact manifolds has been studied in [FL18b, FL18a]. If one forgets the complex
structure of a given holomorphic contact distribution, one gets a corank 2-distribution on a
manifold of real dimension 4n + 2, which enjoys the fatness property ([Mon02]). There is also
a quaternionic analogue of contact structures but defined from a different point of view.

In this thesis we focus on fat distributions of corank > 1. We look at some specific classes
of fat distributions in corank > 1 and study horizontal immersions and other classes of maps
into them. Let us briefly mention the contents of the chapters and the main theorems proved

therein.

Chapter 2

In this chapter we discuss the preliminaries of distributions and introduce the notion of its
curvature form. Given any distribution D, we can consider the quotient map A\ : TM — T M /D
as a TM/D-valued 1-form on M. It then induces a T'M /D-valued 2-form Q : A>°D — TM/D
defined as follows:

QX,Y)=-\X,Y]), forall X,Y eI'D

Q is called the curvature form of the distribution D; it plays a crucial role in the classification
of horizontal immersions and other classes of maps into D.

We also give a brief review of the sheaf techniques in the theory of h-principle, followed by the
Nash-Gromov Implicit Function Theorem for smooth differential operators and its implications
in sheaf theory. Differential equations or inequalities governing space of sections of a fibre-
bundle can be realized by a subset R in an appropriate jet space. A section of the jet bundle
having its image in R is called a formal solution of the differential relation. h-principle means
that a formal solution can be homotoped to a solution of the given relation, in other words,

presence of h-principle reduces a differential problem to an algebraic one.

Chapter 3

In this chapter, we revisit homotopy classification of K-contact immersions ([Gro86]) and, in
particular, that of horizontal immersions in a general distribution ([Gro86, Gro96]) following
the h-principle theory. Given a distribution D on M and a distribution K on 3, an immersion
u : 3 — K is called K-contact if the derivative map du : T — TM maps K into D. In
particular, for K = T'Y., the K-contact immersions are nothing but the D-horizontal immersions.

It is easy to see that a K-contact immersion must necessarily pull-back the curvature form
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of D onto the curvature form Qg of K in an appropriate sense. If K = T3 then Q0 = 0 and
the curvature condition reduces to the isotropy condition.

K-contact maps can be seen as solutions to a first order partial differential equations asso-
ciated to a differential operator © defined on the space of smooth maps C*°(X, M) and taking
values in T'M/D-valued 1-forms on ¥. The operator is known to be infinitesimally invertible
on an open subset of C°°(X, M) consisting of Q-regular immersions, which are defined by an
open condition on the 1-jet space. This brings us to the Nash-Gromov implicit function the-
orem discussed in Chapter 2. The role of £ in regularity is not always explicit; indeed, if the
distribution D is contact or Quaternionic contact then every immersion is {2-regular.

Complete h-principle can be obtained for {2-regular K-contact immersions provided X is
an open manifold. Explicitly, every formal Q-regular K-contact immersion satisfying the cur-
vature condition can be homotoped to a genuine (-regular K-contact immersion. However,
to obtain h-principle on a general X one requires certain extensibility criteria to be satisfied.
This is referred to as overregularity condition in [Gro96] by Gromov. Our goal here is to give a
detailed exposition on the homotopy classification of K-contact overregular immersions based
on the Nash-Moser Implicit Function Theorem and the general theory of h-principle discussed

in Chapter 2.

Chapter 4

The K-contact immersions in a contact manifold (M, D) are automatically Q-regular. They
are known to satisfy the C°-dense h-principle ([Gro86]). Moreover, if K is also contact then

we have the following existence result due to Gromov.

Theorem ([Gro86]). If ¢ is the standard contact structure on R*"*1 and K is a cotrivializable
contact structure on a manifold 33, then an arbitrary map ¥ — M can be C°-approximated by

a isocontact immersion (X, K) — (R?"+1 ¢), provided 2n +1 > 3dim X.

The special case of horizontal immersions into contact structures was also studied by
Duchamp in [Duc84].

In this chapter we consider certain fat distributions of corank p > 1, and obtain some new
results as a consequence of the h-principle proved in the previous chapter. The detailed proof
rests upon the internal structure of the distribution D.

Though fat distributions are not generic we have a good hold on them for the following
reason. For every 1-form « annihilating D, the restriction of the 2-form da to the distribution
is nondegenerate. Therefore, we can represent the curvature form locally by a p-tuple of non-

degenerate 2-forms at each point. This gives an equivalent characterization of ()-regularity,



Chapter 1. Introduction 7

which is easily tractable. We introduce a new invariant on the class of fat corank 2 distributions
called ‘degree’ and look at the degree 2 distributions. This is the real analogue of holomorphic
contact structures.

We obtain the following h-principle for horizontal immersions into degree 2 fat distributions.

Theorem ([BD20], Theorem 4.2.1, Theorem 4.2.4). Suppose that D is a degree 2 fat distribution
on a manifold M. Then D-horizontal Q2-regular immersions ¥ — (M, D) satisfy the h-principle,

provided kD > 4dim X + 4. Consequently, there exists a regular horizontal immersion ¥ —

(M, D), provided rk D > max{4dim ¥ + 4, 5dim ¥ + 2}.

Similar results have been proved for horizontal immersions in Quaternionic contact manifolds

as well.

Theorem (Theorem 4.2.14, Theorem 4.2.17). Suppose D is a quaternionic contact structure
on M. Then D-horizontal immersions > — (M, D) satisfy the h-principle, provided rk D >
4dim ¥ + 4. Consequently, there exists a D-horizontal immersion ¥ — (M, D), provided
rkD > max{4dim ¥ + 4, 5dim > — 3}.

We also prove the h-principle and existence of isocontact immersions in degree 2 fat distri-

butions.

Theorem (Theorem 4.2.23, Theorem 4.2.26). Suppose D is a degree 2 fat distribution on M
and K is a contact structure on ¥.. Then K -isocontact immersions (¥, K) — (M, D) satisfy the
h-principle, provided tk D > 2rk K + 4. Furthermore, there exists a K-isocontact immersion

(X,K) — (M, D), provided the following conditions holds :
e 1k D > max{2rk K + 4, 3rk K — 2}, and
e one of the following two conditions holds true,
— both K and D are cotrivial
- H?)X)=0
Chapter 5

In this chapter, we study partially horizontal immersions, introduced by Gromov in [Gro96].
An immersion u : ¥ — (M, D) is called m-horizontal if the inverse image of D under the
derivative map du : TS — T'M is a rank m distribution on 3. In particular, if m = dim X%,

then the m-horizontal immersions are precisely the D-horizontal ones. On the other hand, when
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m = dim X — cork D, the induced distribution on X has the same corank as that of D and
m-horizontal immersions are simply the immersions that are transverse to D.
We study m-horizontal immersions in generality following the ideas outlined in [Gro96] and

obtain the following results.

Theorem (Theorem 5.2.3). Let D be a corank p distribution on M. Then, transverse immer-

sions ¥ — (M, D) satisfy the h-principle, provided dim M > dim 3.

Theorem (Theorem 5.2.5, Corollary 5.2.7). Suppose D is a corank p fat distribution on M. For
m = dim ¥ — (p—1), the m-horizontal immersions ¥ — (M, D) satisfy the h-principle, provided
rk D > 2m. Furthermore, if D is cotrivial and ¥ admits a cotrivial subbundle of corank (p—1),

then there exists an m-horizontal immersion ¥ — (M, D), provided dim M > 3dim ¥ —p + 1.

Theorem (Theorem 5.2.8). Let D be a quaternionic contact structure on M. Form = dim ¥ —

1, the m-horizontal immersions ¥ — (M, D) satisfy the h-principle, provided rk D > 4m + 4.

Chapter 6

In this chapter we return to the horizontal immersion problem for a corank 2 fat distribution D
on a 6 dimensional manifold. Any such distribution is automatically a degree 2 fat distribution.
But the results of Chapter 4 do not give h-principle for immersed horizontal loops in D due to
dimension restriction.

However, this does not rule out the possibility of getting h-principle for horizontal immersions
when dim D > 4dim ¥, since the system is underdetermined. The result of [AFL17] also

supports this claim for holomorphic contact structures.

Theorem ([AFL17]). Let = be the standard holomorphic contact structure on C*"*1 and ¥ be
a connected, open Riemann surface. Then, the space of holomorphic Legendrian embeddings

¥ — C?*1 js weak homotopy equivalent to the space of continuous maps . — S4n~1

The real distribution D underlying a holomorphic contact distribution is fat. Moreover,
there are 1-forms A\!, A2 defining D such that ker d\; = ker d), is generated by a pair of vector
fields Z1, Z5, which further satisfy )\i(Zj) = d;; and [Z1, Z5] = 0. We shall refer to such vector
fields as Reeb-like vector fields.

Using the implicit function theorem due to Hamilton ([Ham82]) we prove the following.

Theorem ([Bho20],Corollary 6.4.4). Suppose D is a fat distribution on a RS, which admits
(local) Reeb-like vector fields. Then horizontal immersions ¥ — (M, D) satisfy the local h-

principle.



Chapter 1. Introduction 9

By solving the algebraic problem we get the main result of this chapter.

Theorem ([Bho20], Theorem 6.4.5). A distribution D as in the above theorem, admits germs

of horizontal submanifolds of dimension 2.

The existence of 2-dimensional horizontal germs suggests that we may get h-principle for

horizontal loops in D, possibly with a new regularity condition.






Chapter 2

Preliminaries : Distributions and

h-Principles

In the first half of this chapter we shall recall the preliminaries of distributions on a manifold
and recall some results that are pertinent to our work in this thesis. The second half of this
chapter is devoted to the sheaf-theoretic and the analytic theory of h-principle introduced by
Gromov in [Gro86)].

2.1 Distributions

All manifolds and maps, unless mentioned otherwise, are considered to be smooth. The back-

ground material for this section can be found in [Mon02, BCG"91, Gei08].

Definition 2.1.1. A distribution D on a manifold M is a smooth sub-bundle of the tangent
bundle TM. The rank of the distribution is defined as the rank of D as a subbundle and corank
of D is the integer dim M — rkD.

A vector field on M will be referred to as a vector field in D if it is a section of D. In short,
we shall write X € D to mean that X is a vector field taking values in D; that is, X (x) € D,
for every © € M. The space of smooth sections of D will be denoted by I'(D).

For any two local sections X,Y € D we have the local field given by their Lie bracket

[X,Y]. We can define a sheaf [D, D] by prescribing its stalk as follows :

D, D). = {[X. Y],

X,Y € D are local sections about a:}

Though [D, D], C T, M is a linear subspace, dim[D, D], need not be constant in z and hence
the [D, D] is not, in general, a distribution. Observe that, given any two sheaves &, F of vector

11
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fields, we may similarly define the sheaf [€, F] by taking Lie brackets of local sections of £ and

F respectively. Hence, we may recursively define the sheaves D¢ for all i > 1 :

Dl =D' + [D, DY, D'=D
In this thesis, we will only consider the distributions D C T'M for which each D' is again a
distribution. As we shall see, many interesting examples are of this type.

Definition 2.1.2. A distribution D C T'M is called involutive if we have [D, D] C D.

This leads to the notion of integrability.

Integrable Distribution

Let us begin with the definition.

Definition 2.1.3. A distribution D C T'M is called integrable if through each point zy € M,

there is an immersed submanifold N C M such that, T, N = D, for all x € N.

Clearly, any rank 1 distribution is involutive and through each point of M there exists an
integral curve to the 1-dimensional distribution. In fact, these two concepts are equivalent by a

famous theorem due to Frobenius.
Theorem 2.1.4. A distribution D C T'M s integrable if and only if D is involutive.

An involutive (or integrable) distribution defines a foliation F on M, by partitioning the
manifold into integral submanifolds which are referred to as the /eaves of the foliation. Indeed,

an integrable distribution is precisely the tangent distributions T'F of some foliation F on M.

Non-Integrable Distribution

A distribution D C T'M is non-integrable (or nonholonomic) if D is not involutive, that is if
we have [D,D] ¢ D. It turns out that a generic distribution is not only non-integrable, but

furthermore they are bracket-generating.

Definition 2.1.5. A distribution D C T'M is called bracket-generating if successive Lie brackets

of (local) sections of D span the tangent bundle T'M.

Thus, if D C TM is bracket generating, then for each z € M, there exists a positive integer
r(x), depending on x, such that
D@, = T,M
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If 7(z) = r for all z, then TM = D" and we say that D is (r — 1)-step bracket generating. We

shall discuss below some important classes of bracket generating distributions.

Definition 2.1.6. A contact structure & C TM is a corank 1 distribution on a manifold of
dimension 2n+1, such that ¢ is locally given as & = ker « for some (local) 1-form a € Q(M),
ocC.

satisfying the nondegeneracy condition,
a A (da)™ #0,
which is equivalent to saying that the 2-form do|¢ is nondegenerate. The 1-form « is called a

contact form and the pair (M, &) is called a contact manifold.

Every odd-dimensional Euclidean manifold R?**! has a canonical contact structure defined

by the 1-form
n
a=dz— Zyid:ci,
i=1

where {z,2%,y;,1 < i < n} is any global coordinates system on R?"*1 It follows from the

Darboux theorem that any contact structure locally looks like this.

Theorem 2.1.7. Given any contact structure £ C T'M on a manifold M of dimension 2n + 1,
we have that around each x € M there exists some coordinate neighborhood (U, z, y;, x*), such

that
&|lu = ker <dz — Z yidxi)

Any such choice of neighborhood as above is known as a Darboux neighborhood. Using

this we can then get a local framing for the contact structure as,
&l = <3y¢> Opi —yidz; 1<i< n>

Observe that the local frame {0y, ,...,0y,} is involutive.

Another interesting class of bracket generating distribution is given by the Engel structures.

Definition 2.1.8. An Engel distribution is a rank 2 distribution D on a 4-dimensional manifold

M such that, D? = D + [D, D] is rank 3 distribution and D3 = D? + [D, D?] is all of TM.
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In particular, an Engel distribution is 2-step bracket-generating. The standard Engel struc-

ture on R% is given as the common kernel of two 1-forms,
a=dz—ydr, and f=dw — zdzx,

where {x,7,z,w} are canonical coordinates on R*. We see that, D = ker a N ker 3 admits a
global frame,

D = <8y, Oz +y0, + z@w>
Similar to the contact structures, the Engel distributions also have canonical representations.

Theorem 2.1.9. Given any Engel structure D C T M on a 4-dimensional manifold M, we have

that around each x € M there exists some coordinate neighborhood (U, x,y, z,w), such that
D|y = ker (dz - ydx) N ker (dw - zdx)

Contact and Engel structures have many similar properties. In this connection, let us mention

a striking result by Montgomery.

Theorem 2.1.10 ([Mon93]). A generic distribution of rank r on a manifold of dimension n,
satisfying

r(n—r)>n
does not admit any local frame, which Lie bracket generates a finite dimensional Lie algebra.

To understand how this relates to contact and Engel structures, we observe that there are

only three possible solutions of r(n — r) < n.

e 7 = 1 : We have the line fields. Since these are clearly involutive, any Lie algebra

generated by a local frame is 1-dimensional.

e 7 =n—1: When n is an odd number, a generic distribution germ is a contact distribution.
From the discussion above, we have certain local frame fields, which Lie bracket generates

an n-dimensional Lie algebra, known as the (real) Heisenberg algebra.

When n is an even number, we have an analogous distribution, known as the even contact

structure, which exhibits very similar properties.

e 7 =2 and n = 4: Any generic distribution germ of this type is an Engel structure. Again
looking back at the local frame given above, we see that this frame Lie bracket generates

a 4-dimensional Lie algebra, known as the Engel algebra.
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In the range r(n — r) > n, there are infinitely many non-isomorphic distribution germs
of rank r on n-dimensional manifolds. This makes it considerably difficult to study a generic

distribution of higher corank.

Horizontal Curves and Loops

Given a distribution D C TM, we ask whether any two points a,b € M with a # b, can be
joined by a path ~ which is everywhere tangential to D. This question can be rephrased as a

boundary value problem for smooth functions «y : [0,1] — M :
Y(t) € Dy, Vt€[0,1], such that v(0) =a, ~(1)=>.

Any curve satisfying the above differential condition is called a D-horizontal curve.

If D C TM is integrable, then the answer to the question is in the negative. Indeed, any
horizontal path in an integrable distribution is restricted to some leaf of the underlying foliation.
Thus for a pair of points residing in different leaves, there is no horizontal path joining them.

On the other hand, for a bracket-generating distribution we essentially get that any tangent
direction on M can be obtained as a successive Lie brackets of vectors in D. Consequently, we

get a positive answer for bracket-generating distributions in the form of Chow's theorem.

Theorem 2.1.11 ([Cho39]). Suppose D C TM is a bracket generating distribution on a
connected manifold M. Then, for any two points a,b € M there is a smooth D-horizontal path

Jjoining them.

Chow'’s theorem has many interesting implications. Let a, b be two fixed points on M. Given
a distribution D C T'M, let , (D) denote the space of all smooth D-horizontal paths in M

joining a and b. That is,

Qup(D) = {7:10.1] = M | 7(0) = a, 7(1) = b, (1) € Dl |

Chow's theorem says that €, (D) # 0 if D is bracket-generating. The following result of Ge

shows that €2, (D), in fact, contains plenty of curves.

Theorem 2.1.12 ([Ge93]). If D is bracket-generating, then Qg (D) is weakly homotopy equiv-

alent to the space €1, of all smooth paths in M joining a to b. In fact the inclusion map,

Qa,b (D) — Qa,b
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induces isomorphism in each of the homotopy groups. In particular, any smooth path joining

a,b is path-homotopic to a D-horizontal path.

The paths in the above theorem are not immersed. So now we may modify the question as
follows : does there exists a smooth immersion (or an embedding), joining two points, or more
generally, whether there are closed horizontal immersed curves? We do have positive answer

for contact and Engel structures.

Theorem 2.1.13 ([EMO02]). Given a contact structure & C T'M, the &-horizontal immersions

S1 — M satisfy the complete h-principle.

Here h-principle means that the problem of finding an immersion S' — M can be reduced
to an algebraic problem. We recall the formal definition of A-principle in the next section of
this chapter.

In fact any embedded closed loop in R3, also known as knots, can be C%-approximated by
an embedded horizontal loop, where we consider the standard contact structure on R? ([Gei08,
pg. 101]). However the embedded Legendrian loops do not abide by the h-principle even in
the simplest possible case of S — R3, with the standard contact structure. Indeed, there are
infinitely many topologically trivial embeddings of loops, i.e unknots, which are not homotopic

in the space of horizontal embeddings ([EF09]).

Now let us look at our other prominent example, that is an Engel structure D C T'M. In
case of Engel structures, complete h-principle does not hold due to the presence of some rigid

curves. An Engel structure contains a line field W given by
W = {W€D2 ‘ (W, D?] cD2}

Locally, with respect to a choice of standard Darboux chart (Theorem 2.1.9), this line field is
given by 0,. The rigid curves are integral curves of this line field. Up to reparametrization,
there is a unique D-horizontal curve -, joining two points in the same leaf of W and satisfying
Owy # 0 ([BH93]). This exhibits a certain (local) rigidity of the D-horizontal curves. In fact
rigid curves are singular points for the horizontality operator.

The existence of rigid curves in the Engel structure, impairs the possibility of getting any
h-principle for D-horizontal loops. But we can restrict ourselves to a class of regular curves.
These are D-horizontal immersions «y : S — M which are not everywhere tangential to W; in

other words +y is transverse to VW at some point. Then we have the following theorem.
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Theorem 2.1.14 ([CdP18]). The h-principle holds for D-horizontal embeddings S' — M

which are not everywhere tangent to W .
Horizontal Maps
Definition 2.1.15. Given a distribution D C TM on M and a manifold X, any smooth
immersion u : > — M is called D-horizontal if the derivative map du maps into D, i.e, if
Imduy C Dy, foreachoe€X

Question. Given a distribution D, what is the maximum dimension of a D-horizontal subman-
ifold passing through a point in M?

The question of existence of horizontal immersions of higher dimensional manifolds is inti-
mately related to the curvature form of a distribution.

Curvature of a Distribution

Given a distribution D C T'M we have the natural quotient map,
AN:TM — TM/D,

so that D = ker \. We can treat A as a T'M /D-valued 1-form on the manifold M. We shall
denote the space of T'M /D valued 1-forms on M by

QY (TM,TM/D) =T hom(TM,TM/D)

Choosing a local trivialization of the bundle T'M /D over some open set U C M, we can
write TM/D|y = (e1,...,ep), where p =tk TM/D = corkD and {e;} are some sections of
the bundle TM /D over U. Then we may write, A = Zi’:l A ® es, where A% are local 1-forms
defined on U. We have, D|y = (i_, ker A*. Clearly, choosing a different trivialization, we will
end up with a different set of 1-forms defining D. Unless necessary, we will denote A = (A?)

without referring to the trivialization.

Let w® = dA\®|p, s =1,...,p. Then, for any pair of local vector fields X,Y € D,

W X,Y) =d\(X,Y) = XX(Y) — YA(X) — X¥([X,Y]) = —X([X,Y))
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Definition 2.1.16. Given a distribution D on M, the curvature form ) of D is defined as
follows:

QX,Y)=—-[X,Y] modD=-\[X,Y])
where X, Y are local sections of D.

It is clear that D is involutive if and only if = 0. Thus the curvature measures the defect
of D from being integrable.
From the discussion above, we see that for any choice of trivialization A = (\*) we have,

loc.
! = (w*) where w® = d\*|p. Let us first make the following observation.

loc.

Proposition 2.1.17. The curvature form Q is C*°(M)-linear.

Proof. Suppose X,Y € D are some local sections. For any f,g € C°°(M) we have,
[fX,9Y] = FX(9)Y +9lf X, Y] = fX(9)Y — gV (/)X + fg[X,Y]
which implies
Q(fX,gY) = —[fX,g¥] mod D= —fg[X,¥Y] modD = fgQ(X,Y)

This proves the claim. O

Hence, the curvature form € of D can be equivalently defined as a TM /D valued 2-form
on D,
Q:A*D - TM/D,

given by,
QX,Y)=-\[X,Y].), X,YeD,, zeM,

where X,Y are arbitrary local sections of D extending X,Y respectively.
Let us also discuss how to get the curvature 2-form €2 from the quotient map \ : TM —

TM/D directly.

Proposition 2.1.18. /f D = ker A then the curvature form of D is given as, Q0 = dv\|p, for

any choice of connection V on TM/D.

Proof. Fix some connection V on the bundle TAM/D. Then we have the T'M /D-valued 2-form
dy X\ defined as,
dyAM(X,Y) = VxA(Y) = Vy A(X) — A([X,Y])



2.1. Distributions 19

for (local) vector fields X, Y. Now if we restrict to D, i.e, if we have local sections X, Y € D =

ker A\, we see,
dvAM(X,Y) ==-\[X,Y]) =—[X,Y] mod D=Q(X,Y)
Hence we have, 2 = dy\|p. O

Dual Curvature

Given a distribution D C T'M, we can define a subbundle Ann(D) of the cotangent bundle

T*M, called the annihilator bundle of D, as follows :
Ann(D), = {a eT ;M ‘ « vanishes over D, }, forx e M
There is a canonical bundle isomorphism,
Ann(D) = (TM/D)*,

induced by the nondegenerate pairing Ann(D) x TM/D — R, defined by, (o, X mod D) —
a(X). Using this identification, we can dualize the bundle map Q : A2D — TM/D and get

the dual curvature map,

w : Ann(D) — A*D*.

Explicitly, we have,
w(a) = da|p, for any local secion av € Ann(D).

Hence, any choice of (local) frames {\!,..., AP} of Ann(D), defines a representation of (2 as
Q0 = (w(X%)).

Observation. If D is 1-step bracket generating, then 2 is an epimorphism and hence w is
an injective bundle map. Therefore, the components of the curvature form € are linearly

independent. And conversely.

Suppose that D = (V’_; ker A* for some global 1-forms \* € Q'(M). If u: X — M is a
D-horizontal immersion, then du, maps into D and hence A\° o du, = 0 for all s. Therefore, u

satisfies the following system of equations :
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Taking exterior derivative on both sides, we get

where w® = d\*|p. Hence, every horizontal immersion u satisfies
u'Q =0,

where 2 is the curvature form of D. We shall refer to this as the isotropy condition or curvature
condition.

This relation imposes certain obstruction to the existence of smooth horizontal immersions.
For example, if £ = ker « is a contact distribution on M, then da restricts to a symplectic form

on . Since any horizontal immersion > — M is da-isotropic, we must have dim > < % rank &.

Legendrian Immersions and h-Principle

Definition 2.1.19. Given a contact structure £ C T'M on a manifold M, a &-horizontal im-

mersion ¥ C M is called a Legendrian immersion if dim¥ = %rkf.

Example 2.1.20. Given any manifold M, there is a standard contact structure £ on the first jet
space J'(M,R) = T*M xR given as, £ = ker (dz—w*)\), where X is the tautological 1-form on
the cotangent bundle, z is the coordinate along R and 7 : J*(M,R) — T*M is the projection
map. Now, for any smooth map f : M — R, the 1-jet prolongation j} : M — J'(M,R) is a
Legendrian embedding. Indeed,

(ip)*(dz —7*X) =d(z 0 j;) — (o jp) A =df — (df)*A=df —df =0

We have a generalization of Theorem 2.1.13.

Theorem 2.1.21 ([Duc84]). Legendrian immersions satisfy the complete h-principle. In partic-

ular, any formal Legendrian immersion can be homotoped to a genuine Legendrian immersion.

A formal Legendrian immersion is by definition a bundle map F : T — T'M, satisfying

the following algebraic conditions :
e [ is a bundle monomorphism, with Im ' C £, and

e F*Q) =0, where (2 is the curvature form of &.
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The above h-principle does not extend to Legendrian embeddings. However a special class
of Legendrian embeddings, called “loose Legendrian embeddings”, are amenable to homotopy

classification.

Theorem 2.1.22 ([Murl2]). Loose Legendrian embeddings in a contact manifold of dimension

> 5 satisfy the complete h-principle.

Isocontact Immersions

Definition 2.1.23. Given contact structures £ C T'M and K C TX on the manifolds M and

Y respectively, an immersion u : ¥ — M is called isocontact if K = du~'(¢).
We have the following theorem by Gromov.

Theorem 2.1.24. [Gro86, pg. 339] Given the standard contact structure & on R*"! and a
cotrivializable contact structure K on Y, withdim Y = 2m+-1, an arbitrary map > — M admits
a fine C-approximation by isocontact immersions (¥, K) — (R?™+1 ¢€), provided n > 3m + 1

holds.

Isocontact immersions and more generally embeddings in arbitrary contact structures also

abide by the h-principle ([Dat97, EMO02]).

In this thesis we consider certain class of bracket generating distributions of corank > 1
and one of our goal is to study the existence of horizontal and isocontact immersions for such

distributions. This leads us to the general theory of h-principle.

2.2 h-Principle

We shall first recall the basic terminology and then briefly review the sheaf theoretic and analytic

techniques of the theory of h-principle following [Gro86].

2.2.1 Sheaf Theoretic Techniques in h-Principle

The goal of h-principle is to solve a differential system by homotoping a formal solution to
a genuine solution. Now, any differential system can be understood as a certain system of
algebraic equations or inequalities defined on the jet bundles of sections of some fibration. Let
us formalize these notions.

Throughout this section p : X — V will denote a smooth fiber bundle and the r-jet bundle

of sections of X will be denoted by p(") : X(") — V.
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Definition 2.2.1. An r"-order partial differential relation (or simply a relation) for sections of
p: X — Visasubset R ¢ X in the r-jet space X () An open subset of the jet space X ()

will be referred to as an open relation.

We shall denote the space of sections of p : X — V and p(™ : X() — V by I'(X) and
(X)) respectively. The space I'(X) will be endowed with the C'>-compact open topology
while the space T'(X (")) will have the C°-compact-open topology. There is a canonical 7-jet
map,

i T(X) = D(x ™),

which takes a section f to its r-jet prolongation Jf- A section of the r-jet bundle is said to be

a holonomic section if it lies in the image of j".

For any relation R, we shall now introduce some subspaces of I'(X) and I'(X (")),

Definition 2.2.2. A smooth section of X is said to be a solution of R if its r-jet prolongation
has its image in R. A continuous section of X(") whose image is contained in R is called a

formal solution of R.
We shall denote,
e SolR as the space of solutions of R.
e 'R as the space of formal solutions of R.

The r-jet map, 5" : Sol R — I''R identifies the solution space Sol R with the holonomic sections
of R.

Definition 2.2.3. A relation R C X (") is said to satisfy the ordinary h-principle if any formal
solution of R can be homotoped to a holonomic section while keeping the homotopy completely

within I'R; in other words if,
m0(j") : mo( S0l R) — mo(T'R)

is surjective.

Hence, h-principle reduces an analytical problem to an algebraic problem. We say R ¢ X ()
satisfies the parametric or complete h-principle if the map j” is a weak homotopy equivalence,
i.e, if the map,

mi(7") m(SolR) — (FR),
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is an isomorphism for each ¢ > 0. Therefore, the parametric h-principle completely classifies

the solution space of R.
Definition 2.2.4. A relation R € X () is said to satisfy the C°-dense h-principle if,
e the usual h-principle holds for R, and

e for any Fy € I'R with base map fy = bs Fy and for any arbitrary neighborhood U of
Im fp in X, we can choose the homotopy F; € IR joining Fy to a holonomic F} = j}l

in such a way, that the base map f; = bs F} satisfies Im f; C U for all ¢t € [0, 1].

Given any relation R we now define two topological sheaves: The sheaf of solutions of R
and the sheaf of sections of R, which will be often referred to as Sol R and I'R, respectively.
Before going any further, we recall some general theory of topological sheaves and define
some concepts which will be used later. Recall that a topological sheaf ® over a smooth

manifold V, assigns
e to each open subset U C V' a topological space ®(U), and

e to each pair of open sets (U,U’), with U" C U C V, a continuous map (known as the

restriction map) ®(U) — ®(U’).

For an arbitrary subset C of V', we define ®(C') as the direct limit,

®(C)=  lm  2(O)
U C V is open

Thus, an element of ®(C) can be represented by an element of ®(U), where U is some open
set containing C. Keeping up with the definition of direct limits, this open set is not kept fixed
and for notational convenience we denote this by Op(C). In a similar fashion, we define Op(v)
for any v € V as some arbitrarily small (and not fixed) open neighborhood of v. We shall
not consider the direct limit topology on ®(C'), rather we shall work with the weaker notion of
quasi-topological structures ([Gro86, pg. 36]) on them, which is sufficient for our purpose. In
particular, by a ‘continuous’ map f : Q — ®(C), we shall mean that there is an open subset U

containing C' such that f, € ®(U), for all ¢ € Q.

Definition 2.2.5. A sheaf homomorphism o : ® — W is called a local weak homotopy equiv-
alence, if the induced map «, : ®, — W, at the stalk level is a weak homotopy equivalence
for each v € V.. The map « is a weak homotopy equivalence if ay : ®(U) — U (U) is a weak

homotopy equivalence for any open U C V.
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For our purpose it is enough to consider sheaves that arise in connection with space of
sections of a fibration in which case the morphisms assigned to a pair of open sets are the
obvious restriction maps. More specifically, we shall be interested in the sheaves ® = Sol R

and ¥ = IR, associated to some relation R.

Flexible and Micro-flexible Sheaves

A (topological) sheaf ® on V is said to be flexible if for every pair of compact sets (B, A),
with A C B, the restriction map ®(B) — ®(A) is a Serre fibration. Flexibility is an important

property of a sheaf as apparent from the theorem below.

Theorem 2.2.6 (Homomorphism Theorem). [Gro86, pg. 77] Let o : & — ¥ be a sheaf
homomorphism between two flexible sheaves. Then « is a weak homotopy equivalence if « is a

local weak homotopy equivalence.

Now let us look at the sheaves ® = Sol R and ¥ = I'R, for some relation R ¢ X (). It turns
out that WU is always flexible. Moreover, for many relations, the r-jet map j” : SolR — I'R is
easily seen to be a local weak homotopy equivalence. Hence, the h-principle for R would follow
if we can prove that the solution sheaf is flexible. However, the solution sheaf ® = Sol R fails
to be flexible in general and it is not easy to get around it. A property called microflexibility,
which is weaker than flexibility, comes to the rescue.

A continuous map p : X — Y is called a micro-fibration, if for an arbitrary polyhedron P

and for any commutative diagram,

there exists an ¢ > 0 and a continuous map F': P x [0,e] — Y such that

poF = flpxpg and Flpxo = fo.

Note that if € can be chosen to be 1 then p is a fibration.

Definition 2.2.7. A topological sheaf ® is called microflexible if the restriction map ®(B) —

®(A) is a microfibration for each pair of compact sets (B, A), with AC B C V.

Example 2.2.8. It is easy to see that every open relation is locally integrable (i.e, every jet in

R extends to a local holonomic section of R) and hence the solution sheaf is microflexible.
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Solution sheaves of many non-open relations are also microflexible, e.g., we shall see later in
this section that the sheaf of ‘regular’ solutions of a partial differential equation is microflexible
if the associated differential operator is ‘infinitesimally invertible’.

The passage from microflexibility to flexibility depends on the local symmetry of the relation

under consideration.

Action of the Pseudogroup Diff (V)

Let Diff (V') denote the pseudogroup of local diffeomorphisms of a manifold V' and I" be the
sheaf of sections of a fiber bundle over V. A pair of elements (¢, f) € Diff (V) x I is said to be
compatible if f is defined on the image of ¢. By an action of Diff(V') on I" we mean a partial
map ¢ : Diff (V) x I' — T, defined only on compatible pairs and having all the properties of an
ordinary action. In other words, if ¢ : U — U’ is a diffeomorphism between two open subsets
of V and f € T'(U’) then the element ¥ (¢, f), denoted by ¢.f, belongs to T'(U). We can
similarly define an action of a sub-pseudogroups of Diff(V)on T'.

The simplest example of a Diff(V')-action is seen on the space of C'*°-maps between two
manifolds, C>°(V, W), which is given by (¢, f) — fop, where f € C*>°(V, W) and ¢ € Diff (V).

A subsheaf @ of T" is said to be Diff(V)-invariant if ¢ : U — U’ maps ®(U’) into ®(U),
under an action described as above. If @ is the solution sheaf of some relation R then an action
on ® induces an action on I'R.

Consider the product manifold V' x R and let 7 : V x R — V be the canonical projection
map. Define Diff(V x R, 7) to be the space of all fiber-preserving (local) diffeomorphisms of
V x R; in other words, f € Diff(V x R, 7) if mo f = 7.

Theorem 2.2.9 (Flexibility Theorem). [Gro86, pg. 78] Suppose ® is a microflexible sheaf over
the manifold V- x R and ® is Diff (V' x R, x)-invariant. Then the restriction sheaf ®|y ¢ is a

flexible sheaf over V. =V x 0.

Note that V' x 0 C V' x R is a closed subset. Thus a section of ®|y over some open set
U C V is understood as a section defined over an arbitrary open neighborhood of U x 0 in
V x R. An immediate consequence of the flexibility theorem is the following h-principle ‘near’

V.

Theorem 2.2.10. Let R be a relation defined for sections over V x R. Suppose, the solution
sheaf ® of R is microflexible and Diff(V x R, m)-invariant. If R satisfies the local parametric

h-principle then it satisfies the parametric h-principle near V' x 0.

This leads us into Gromov's famous h-principle theorem on open manifolds.
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Theorem 2.2.11. [Gro86, pg. 79] Any Diff(V')-invariant, open relation R, over an open

manifold V', satisfies the parametric h-principle.

Remark 2.2.12. It is easy to note that the openness condition on R in the above theorem can
be relaxed by the following two conditions: (a) the solution sheaf of R is microflexible, and (b)

‘R satisfies the local parametric h-principle.

On the other hand, the openness condition on V' in Theorem 2.2.11 may not be relaxed and
there are easy counter-examples where the A-principle fails. However, this theorem is a crucial

step towards getting an analogous result for certain relations on closed manifolds.

h-Principle For Closed Manifolds

In order to deal with relations R over closed manifolds V, the idea is to embed the manifold in
question in the open manifold V = ¥V x R and transform the problem in hand to an h-principle
problem of an auxiliary relation R on V. This is where the flexibility theorem plays a crucial
role.

Let us first formally introduce the notion of an extension of a relation. For simplicity we
shall assume that the fiber bundles X — V are natural bundles ([Gro86, pg. 145]), so that

there is a natural action of Diff (V') on the space of sections I'(X).

Definition 2.2.13. Let R C X () be a relation. By an extension we mean a bundle X — V over
the manifold V = V x R, along with a relation R ¢ X("), such that the following conditions

are satisfied.

1. There is a fiber-preserving morphism,
ev : I’X\on —TX,
such that the induced map,

ey : X(r)|VX0 - x™
]; = ]gv(x)
maps R|yxo into R.

2. There is an open cover O of ¥ by contractible coordinate charts, closed under finite

(nonempty) intersections, such that,

ev[o : Fﬁ’oxo — FR|O
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is surjective for each O € O. This will be referred to as the ‘local surjectivity’ of the

extension.
Notation : If R has an extension R then we adopt the following notations for the sheaves.
®=S0lR and V¥ =TR.

To keep the notation light, we shall denote the induced sheaf morphisms (i)|V><O — & and
\il|VX0 — W by ev as well. The map ev and the covering O will not be mentioned explicitly,

unless necessa ry.

Remark 2.2.14. We should point out that this notion of extension is in the similar vein of

[dP76], where the author considered open relations only.
As an application of the flexibility theorem we now get the following.

Theorem 2.2.15. Let R be an rth-order relation over V, which admits an extension R over

V=Vx R, such that,

1 <i>|VX0 is flexible, and

2. R satisfies the local h-principle.
Suppose further that,

3. for each compact set C C O € O and for each solution u € Sol R|op ¢, the jet map
T rev N u) = ev TV (F =47)

in the following diagram,

ev Hu) —— Plopoxo —— Plopc u
ev_l(F) — F’]é’opcxo v PR|OpC F=j,

induces surjective map on the set of path components.
Then the relation R satisfies the C°-dense h-principle.

Let us give a proof of this h-principle, which is essentially done via a cell-wise induction.
We fix the extension R of the relation R, along with the open cover @ of %, so that the map

ev : ‘if\oXo — W|p is surjective on sections for each O € O.



28 Chapter 2. Preliminaries : Distributions and h-Principles

Next we fix a triangulation {A“} on V, so that each simplex A satisfies,
A% C O, for some O, € O.

For any simplex A = A® we denote,
Or= () Op
ACAP

Since any A is contained in at most finitely many simplices, the intersection is finite and thus

Oa € O. Let us also fix some convention about arbitrarily small open sets.

Convention about Op(-) and Op(:) For any subset A C V, Op(A) will denote an unspeci-
fied open neighborhood of A, which may change in the course of the proof of Theorem 2.2.15.
Similarly, OpA will denote an arbitrary open neighborhood of A in Op(A) x R. Furthermore,

we will also assume that Op A C Oa and Op dA C Oa, for any cell A of the triangulation.

The following lemma is the base case for the induction involved in the proof.
Lemma 2.2.16. Fix some 0-simplexv € X. Given any F' € W, there exists a C°-small homotopy
F, € U and open sets Vi, Vs, satisfying,

vCVicViCVaCVaC O,,

where V; is the closure of V;, such that,
e [h,=F
e F is holonomic on V
e F} is constant and equals F on {v} U (V \ V3).

Proof. Since R is an extension of R, we get some arbitrary lift F' € \i/|v of F € ¥|,, along
the sheaf map ev : ¥|y o — U. Then from the hypothesis (3) applied to the compact set
C = {v}, we get a path G; € ¥/, joining F to a holonomic section G, such that Gy|, = F|,
is fixed. Set, F' = ev(Gy). Then F!|, = F|, and F} is holonomic on Op(v).

We now need to extend this homotopy to all over 3. Fix open sets Vi, Vs, with v C V] C

Vi C Vo C Vo C O,. Next get a cutoff function p : V' — [0, 1], which is identically 1 on V; and
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supp p C Va. Define,
FU
Ft(O') — plo)t
F(o), ifoeV\V,

(o), ifo ey

It is then easy to see that F; is the required homotopy. The homotopy can be made arbitrarily

CP-small by choosing the open set O, sufficiently small. O

The next lemma is the crux of the proof, i.e, the induction step. Note that we are considering

top-dimensional simplices of V' as well.
Lemma 2.2.17. Suppose A C V is somei+1-cell, fori > 0. Given F' € ¥ such that F|opan is
holonomic. Then there exists a C°-small homotopy F; € ¥ and open sets V;, Vo, W, satisfying,

ACVicVicVaCVhCcOa and OACW, C W, CViNOpdA C Oa,

such that,
e Fy=F
e [} is holonomic on V
e I} is constant and equals F' on W1 U (V \ Vg).

Proof. Since R is an extension, we first obtain some arbitrary lift ' € ¥|s of Flopa € U|a,
along the map ev. This is possible since the simplex A is contained in some O € O. Now, as
we are given that F'|opaa is holonomic, using the hypothesis (3) for the compact set C' = 0A,
we obtain a homotopy

“OA _ =
G{™ € ¥loa

joining F‘OpaA to a holonomic section (NJ‘?A € \il|3A. Let us denote,
“oA .
G? == ngA)

for some regular solution @2 : OpdA — M. Furthermore, under the map ev : \i’|8A = ¥lsa
we have that ev(G;) = F|opaa is constant.

Next, recall that the sheaf \i/|A is flexible. Consider the diagram,
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We then have a homotopy lift G2 : [0,1] — W|a, which is fixed on OpdA. In particular we

have,

TA _ OA
Gy |(5paA =G~ = Jgon -

Now we consider the map of fibrations as follows.

n_1(aaA) 5 B . TP @’
Jl L’ l‘] I
X G 5p0n) — la —— Yloa Jroa = GTlopon

Here n is indeed a fibration, as é[v is assumed to be flexible. Now the rightmost and the middle
J = j" are local weak homotopy equivalences by the hypothesis (2). Hence they are in fact
weak homotopy equivalences by an application of the homomorphism theorem (Theorem 2.2.6).

By the 5-lemma argument, we then have,
J n_l(ﬂ) —x ! (jgaa)
is a weak homotopy equivalence. Now,
GlA € X_l(jgaA)
Hence we have a path
Hy € x ' (jion)

joining élA to some holonomic section Hy = jl ., where @2 : OpA — M is a regular solution.

In particular, this homotopy is fixed on OpdA. We have the concatenated homotopy,
.. “A .
Ft : F NétA Gl ~H, ]}A'

Set FA = ev(F}). Then, F{* = F|a and F/ is holonomic on Op A. Furthermore, as observed,
FA is fixed on Op 0A.

Lastly, we need to extend F/ to all of V, keeping it F outside Op A. Fix open sets,
AcVicVicVoc Vo OpAand A ¢ Wy € Wy € Vi NOpIA. Next get a cutoff
function p : V' — [0, 1] which is identically 1 on V; and supp p C V. Define,

FA
Ft(O') —_ p(o)t
F(o), foceV\W

(o), if o €Vh
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It is easy to see that F; is the required homotopy. The homotopy can be made arbitrarily

C%-small by choosing the open set O sufficiently small. O
We may now proceed to prove the h-principle.

Proof of Theorem 2.2.15 . We show that for a given F' € WU, there is a homotopy F; € ¥ such

that Fy = F and F} is a holonomic section. The proof is done by a cell-wise induction.

Step 0 :  For each 0-simplex v € V, using Lemma 2.2.16, we get a homotopy F}’ € ¥, which
is holonomic on Op(v) and is identically ' on V' \ Op(v). But then all these homotopies
patch together nicely and we have a homotopy FY € W such that F) = F and F}
is holonomic on Op V() neighborhood of the O-skeleton V(9. Clearly, F? = F on
V\OpV©,

Step 1 : For each 1-simplex A of V, using Lemma 2.2.17, we get a homotopy FtA € Ula
such that F? is holonomic on Op(A). Also, F~ = FY on OpdA U (£ \ Op A). Hence
all these homotopies patch together nicely and we get, F} € ¥ such that Fj = F} and
F is holonomic on Op V1), neighborhood of the 1-skeleton V(1). Clearly, F}} = F} on
¥\ Op V™

Step i +1: Suppose we have Fi € W which is holonomic on Op V@), For each i+ 1-simplex
A, using Lemma 2.2.17, we get a homotopy F/* € W such that F{> is holonomic on Op A.
Also, FA = F} on OpOA U (£ \ OpA). Hence all these homotopies patch together
nicely and we get, Ff“ € U such that FZH = I} and Ff“ is holonomic on Op V(+1),

neighborhood of the i 4 1-skeleton V*1) . Clearly, F/™ = Fi on V' \ Op V(+1),

The induction stops once we have performed step k& where £k = dim V. We end up with a

sequence of homotopies in W. Concatenating all of them we have the homotopy,
) 0 1 k—1 k
Ft.FNFtO F]. NFtl F]. N...NFtk71 Fl NFtk Fl.

Clearly F; € W is the desired homotopy joining F' to a holonomic section F} = Flk e v,
Since at each stage the homotopy can be chosen to be arbitrarily C%-small and since there are
finitely many stages, we see that F; can be made arbitrary C%-small as well. This concludes

the proof. ]

Remark 2.2.18. Note that the setup of Theorem 2.2.15 requires the extension relation R to
be defined over the manifold V = V x R, even though in the course of the proof we are only

using the fact that we have local lifts along ev : F7~€|O — I"'R over some contractible open set
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O C V. In fact, given a section F' € ¥ we require a good open cover of V', depending on F,
say, O = {O;}ien for some index set A, which has the following property : For each i € A

there exists,
a natural bundle XZ- — OZ- = 0; x R and a relation 7~Zi cx™

so that, (a) R; is an extension of R|p, and (b) R; satisfies the hypothesis of Theorem 2.2.15
for the manifold O;. Then the proof of Theorem 2.2.15 goes on without any change. Conse-
quently, R satisfies the C%-dense h-principle. We will apply the theorem in this general setup

in Chapter 5.

2.2.2 Differential Operators

In this section we shall see that solution sheaves of a large class of non-open relations, which ap-
pear in connection with differential equations, are microflexible and furthermore those relations

satisfy the local h-principle.

Definition 2.2.19. Let p : X — V be a smooth fibration and G — V be a smooth vector
bundle. A differential operator of order r is a map © : '’ X — I'G given by a smooth bundle
morphism A : X — G which satisfies, ®(x) = A o 57 for any (local) section 2 € T'X.

Therefore, we have the commuting diagram,

The bundle map A is known as the symbol of the operator ©. For a > 0, we define a
bundle map A : X (+e) _ G(9) given by,

A (G (0)) = G ().

Unless mentioned otherwise, X — V will denote a smooth fibration, G — V will denote a

smooth vector bundle and ® : '’ X — I'G a smooth differential operator.

Linearization of a Differential Operator

Given a differential operator ® : I'X — I'G, the derivative at a point should quantify the
infinitesimal change in the value of the operator for small perturbation of the source. First we

need to define the tangent space of ['X at some “point” x € 'X.
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Tangent space of I'(X) : We first consider the case X = M x N — M, so that we have
the identification I'’X = C*°(M, N). A curve in C*°(M, N) is a continuous map v : [0,1] —
C>°(M,N). By a smooth curve we mean that the homotopy f : M x [0,1] — N defined by
f(x,t) = y(z) is smooth. Differentiating f at t = 0, we get a vector field £ along fy, given by
&= %‘tzoft' In fact, we can identify the tangent space to C°°(M, N) by the section space of
the vector bundle f*TM.

We carry out the same idea for the general case of a fiber bundle 7 : X — V as well. For
some z € I'X, consider a smooth family of sections {z;}/c(—c¢) so that o = 2. Now for any
fixed point v € V, t + x4(v) is a smooth curve in the fiber X, = 7= 1(v). Hence, taking
derivative at t = 0, we have that {(v) = %‘t:oxt(v)' which is a tangent vector to the fiber
771(v) of X, at v € V. The tangent vectors to X which are tangential to the fibers are referred
to as vertical tangent vectors. The space of all vertical tangent vectors form a subbundle of
T X which will be denoted by TV¢"* X . It is easy to note that TVt X = kerdnr. Clearly, ¢ is
then a section to 7Yt X, defined along x : V' — X. Thus we have the following identification

of the tangent space of I'(X) at z € T'X as,
T,TX =T2*(T"""X)

Now the linearization of ©® : '’ X — I'G at some section x € I'X is a linear map between

their respective tangent spaces,

We have identified, T,I'X = I'z*T*"*X. Since G is a vector bundle, I'G is a vector bundle
as well and we may canonically identify T5(,)['G = I'G. Now, for any § € Lz*T?*"t X, choose
some representative family of sections {};c(_c¢), such that zgp = = and {(v) = %h:oxt(v)
for v € V. Then, the differential 7,® : Tz*Tv"*X — I'G is given as,

T, (€) = lim (2(2) - D(@)),

t—0 t

which is a linear differential operator of the same order as ©. We will call T,;® the linearization
of the operator ® at x. The linearity here means R-linearity and not to be confused with

C>°(V)-linearity.

Remark 2.2.20. By choosing a suitable topology, we can make sure that the differential defined

above makes sense in an infinite dimensional manifold setup. For a rigorous treatment, one may
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look into the beautiful monograph by Palais ([Pal66]). In this thesis, we may safely work under
the assumption that most of the natural operations from finite dimensional differential topology

can be performed in the infinite dimensional setup as well.

Universal Inversion of a Linear Differential Operator

A differential operator L : I'’X — I'G, where both X — V and G — V are vector bundles,
is called a linear differential operator if L(z + y) = L(z) + L(y) and L(Ax) = AL(z) for all
z,y € I'(X) and A € R. Note that in this case both I'(X) and I'(G) are infinite-dimensional
vector spaces.

A linear differential operator L is underdetermined if we have rk X > rk G. Similarly, we
say L is overdetermined if tk X < rk G and is determined if tk X = rk G.

Observe that given two vector bundles X, G over V, any linear differential operator I'’X —
I'G of order r, is determined by the symbol map X" — G. In fact, the space of linear
differential operators of order r can be identified with the space of sections I'H, where H =
hom(X (™) G) is a bundle over V.

Let L : X — I'G be an under-determined linear differential operator of order r. A linear
differential operator M : I'G — I'’X of some order s, is called a right inverse of L if Lo M = Id.

Let A ¢ H®) be an open subset of the jet bundle and A = Sol A. Hence, A is an open
subspace in the space of all r-th order linear differential operators I'(X') — I'(G). By a universal
right inversion of the operators A, we mean a differential operator MM : A x 'G — I'X such

that for any L € A we have, LoM(L,_) =1d, i.e,
L(Dﬁ(L,g)) =g, forany g e I'G
Similarly we can define a (universal) left inversion as well.

Infinitesimal Inversion of a Differential Operator

Definition 2.2.21. A differential operator © : '’X — I'G of order r, is said to be infinitesimally
invertible over a set A C T'X if we have a family of differential operators M, : TG —

Tx*Tve"t X of order s, such that the following holds.

e There exists an open set A C X(@ such that A consists of precisely the C'*-solutions of

A, ie., A=Sol(A).
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e The global operator M(x,g) = M,(g) for x € A and g € I'G is a differential operator
which has order d in x € S and order s in g € I'G. This is defined by a smooth map
A®GE) — Tvert X,

e The operator M, is a right inverse to L, = T,9, i.e, we have

Ly(My(g)) =g, forzeAandgelG

The number d is called the defect of the inversion and the class of maps, over which
inversion exists, will be often referred to as .A-regular maps. Note that A is an open subset in
the fine C"°°-topology. We have that M is an universal right inversion of order s for the family

{L, |z € A}
Observation 2.2.22. Let us make a few observation about the definition.

e In contrast with the classical implicit function theorem in the finite dimensional case,
where we only ask for the surjectivity at one point, here we demand that 7, be (right)
invertible for all = which belongs to the open set of maps A. Indeed, it is crucial that the

set of maps is the solution space for an open relation A ¢ X (4.

e The requirement that M (x, g) = M,(g) be a differential operator takes into account that

the family of right inverses { M, } is smooth in z in a certain sense.
Now we can state the main theorem concerning infinitesimal inversion.

Theorem 2.2.23. [Gro86, pg. 117] Given that ® : I'X — I'G is a smooth differential operator
of order r. Suppose ® is infinitesimally invertible, with defect d and order s, over the set
A CT'X. Then, for each x € A, there exists a family of open sets B, C I'G and operators

D1 B, — A such that the following holds.

e Neighborhood Property : Each B, contains some open subset of the 0-section in I'G.

Furthermore, the union B = J,cs{7} x B, C A x I'G is an open subset.

e Normalization Property : ©,'(0) = x for each x € A, where O represents the zero-

section.

e Inversion Property : For each x € A and g € B, we have, i.e, for (z,g) € BB, we have
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e Continuity Property : For any smooth g € B,, the section D, '(g) is smooth. Further-

more the operator D! : B — A defined as @~ (x,g) = D, '(g) is jointly continuous

e Locality Property : There exists some auxiliary metric on the manifold V', such that the
value of the section ®;1(g) : V. — X at any v € V depends only on the value of the

sections x, g on the unit ball B, (1) of radius 1 around v. In other words,
(z,9)|5,0) = @, 9B,y = Dz (D) =D (9)]o-

As a consequence, we get the following implicit function theorem.

Theorem 2.2.24 (Nash-Gromov Implicit Function Theorem). [Gro86, pg. 118] Suppose D :
I'’X — I'G is a differential operator of order r, which is infinitesimally invertible over A =
Sol(.A), where the inversion has order s and defect d. Set, s = max{d,2r + s}. Then for any
any xo € A, there exists a C*T5t1_open neighborhood By C I'G of the O-section, such that for

any smooth g € By, there exists a smooth solution © € A for the equation,

In particular ® is an open map when restricted to A-regular maps.

Remark 2.2.25. Note the importance of the fine topology in the implicit function theorem.

We get that the open neighborhood By in the above is C'?-small, where
c=s5+85§+1=s+1+max{d,2r + s}.

In other words, the implicit function theorem states that for any g € A, we are able to solve

the equation ©(z) = g, whenever g is C?-close to D (xy).

The above theory of Differential operators was developed by Gromov based on the seminal
work of J. Nash on smooth isometric embedding ([Nas56]). Nash's method of inversion was
really elegant, and it was expounded upon by J. Moser in [Mos61, Mos66]. In simple terms, the
inversion is obtained through an iterative process like Newton's method of finding a solution of
an (nonlinear) equation, which incorporates certain smoothing operators so that the sequence

of approximate solutions do converge to a genuine smooth solution in the limit.
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Existence of Local Solutions

Let R C X () be an arbitrary relation. By a local solution of R around some v € V, we mean
a local section x € I'X defined over some Op(v), so that j2 : Op(v) — R. A local section
x : Op(v) — X is called an infinitesimal solution to R at v € V if jZ(v) € R. Note that a local
solution is clearly an infinitesimal solution at each point of its domain of definition. On the
other hand, if R is an open relation, then shrinking Op(v) as necessary, we can make sure that
an infinitesimal solution of R at v is in fact a local solution. A relation R is locally integrable
if every jet in R extends to a local solution of R.

Let us now define these notions in the context of an r-th order differential operator © :

I'’X — I'G. Fix some g € I'G.

Definition 2.2.26. A section x € I'X defined on Op(v), is called an infinitesimal solution to

the equation ©(z) = g, of order «, at the point v € V' if

j%(:v)fg(v) = 0.

The section is a called a local solution, if ©(z) = g holds on Op(v).

Note that the equation is defined on the (r 4+ «)-jet space of section of X. Now for every

a > 0, we define a relation R® = R*(9D, g) as,
R = {j;“La(v) e X+ | 1 is an infinitesimal solution to ®(z) = g of order a, at v € V}

Observe that the C'°°-solutions of R® are precisely the smooth solutions of the equation ®(z) =
g. In particular, the relations R have the same set of C"*°-solutions for all o > 0.
Now assume that @ is infinitesimally invertible over an open relation A € X(@_ Then we

consider the relations R, for « > d — r, as follows :

Ro = Ra(®,9,4) = RUD, 9) N (p;7) " (A) c X7+,

where pTO‘ : X(rto) — X(d) js the jet projection map.

The relations R, are of primary interest to us. We note that C'°*°-solutions of R, are
precisely the solutions of the equation ©(x) = g which are A-regular as well. As before, the
solution spaces Sol R, are all the same for o > d —r. On the other hand, the space of sections

IR, are distinct, as the relations R, are sitting inside different jet spaces. Let us now denote,

® =S0lR, and VY, =IR,, fora>d—r
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We also have the jet map 5" 7% : ® — W, for each o > d — r. We then have the following.

Theorem 2.2.27. [Gro86, pg. 120] The sheaf & = Sol(R,) of A-regular solutions to the

equation ®(x) = g is microflexible for a« > d — r.

Theorem 2.2.28. [Gro86, pg. 119] ;"™ : & — W, is a local weak homotopy equivalence
whenever we have,

a > s+ max{d,2r + s}
The above discussion culminates in the following h-principle over open manifolds.

Theorem 2.2.29. Let V' be an open manifold. Suppose® : I'’X — I'G is a differential operator
of order r, which admits infinitesimal inversion over some A = Sol A, so that the inversion is
of order s and defect d. For any fixed g € T'G, denote by Ry = Ra(D,g,.A) the relation
of A-regular, a-infinitesimal solutions to the equation ©(x) = g. Suppose the solution sheaf
O of Ry is Diff (V')-invariant. Then for « > s + max{d, 2r + s}, the relation R, abides by
the parametric h-principle. That is, the jet map j" 7 : Sol(R,) — 'R, is a weak homotopy

equivalence.

The proof is immediate from Remark 2.2.12.

A Stronger Version of the Implicit Function Theorem

Let us look back at the jet prolongation map again. Specifically, observe that in Theorem 2.2.28,
as we deform a given infinitesimal solution 527 (v) € R,|, at some v € V to a local solution
x1 over Op(v), we have no control over the value of the section x;(v) at the point v. Can we
get a local homotopy which is stationary at v?

More generally, we may also ask whether we can we get a solution to the differential equation
in a neighborhood of a submanifold V4, provided there is a C"*° map which solves R, at all
points of V. This is not totally unreasonable to expect, as this can be viewed as a Cauchy

initial value problem. Indeed, we have the following stronger version of Theorem 2.2.24.

Theorem 2.2.30. [Gro86, pg. 143] Let © : 'X — I'G be a differential operator of order
r, which is infinitesimally invertible over A = Sol(.A), with inversion of defect d and order s.
Suppose oy € A, go = D(xg), and Vi C V is a closed submanifold V' of positive codimension,

without boundary. If g € T'(G) is such that Jgo = Jg on points of Vy for

a > 2r+3s+5=2r+ 3s+ max{d, 2r + s},
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then there exists an x € A satisfying ®(x) = g on Op(Vy) and

j%g“_l = j2r+s=1 " on points of Vj.

Taking Vj to be a single point we get the following corollary.

Corollary 2.2.31. Every infinitesimal solution xoy of R, at v € V is homotopic to a local

solution x1 of R, given that
a > 2r + 3s + max{d, 2r + s}.

Furthermore, the homotopy w; satisfies the condition j2' 5~ (v) = j2"*s=1(v) for all t € [0,1].

In the next chapter, we shall see how the results of this section come into play in proving

the h-principle for horizontal and (iso)contact immersions.






Chapter 3

Revisiting h-Principle for K-Contact

Immersions

Unless mentioned otherwise, M will denote a smooth manifold, with a fixed corank p-distribution
D, having curvature form €. The goal of this chapter is to discuss the h-principle for horizontal
immersions and other classes of maps into (M, D). The results proven in this chapter are not
new and an outline of these results and their proofs can be found in [Gro86, EM02]. We shall
present here a detailed proof using the general theory of h-principle that have been discussed

in Chapter 2. The main result of this chapter is stated in Theorem 3.2.7.

3.1 K-contact Immersions

Recall that a smooth immersion u : ¥ — M is D-horizontal if the differential du maps T'X into
D. In other words, a horizontal map wu satisfies the equation du~!(D) = T'X. This viewpoint
gives rise to a natural generalization of horizontal maps where we fix a distribution K C T%
and ask for maps u : % — M such that du maps K into D. We are thus led into defining

K-contact maps.

Definition 3.1.1. [Gro86, pg. 338] Given a distribution K C T'3, we say amap u : ¥ — (M, D)

is K-contact, if we have that
du(Ky) C Tys)D, for each o € X

In other words, u is K-contact if K C du™!(D). If K = T, then K-contact maps u : ¥ —

(M, D) are precisely the D-horizontal maps.

41
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In what follows below, > will denote an arbitrary manifold and K will denote an arbitrary

distribution on it, unless mentioned otherwise.

Definition 3.1.2. A K-contact map v : (X, K) — (M, D) is called K-isocontact (or, simply

isocontact) if we have K = du~'(D).
Now observe that for any contact map u : (3, K) — (M, D), we have an induced bundle

map,

du:TS/K — w*TM/D

X mod K — du(X) mod D

which is well-defined since du(K) C D. In fact, we have the following commutative diagram,

Ty — ™ TN

al |

TS/K — TM/D
U

where A and p are the quotient maps, defining D and K respectively. We now observe a
simple characterization of K-isocontact immersions, which follows from easy dimension counting

argument.

Observation 3.1.3. A contact immersion u : (X, K') — (M, D) is isocontact if and only if the

bundle map du is injective.
Hence, for an isocontact immersion (3, K) — (M, D) to exist, the following numerical
constraints must necessarily be satisfied,

rk K <rkD and cork K < corkD.

The Curvature Condition for (Iso)contact Maps

K-contactness automatically imposes a differential condition involving the curvatures of the

distributions.

Proposition 3.1.4. Given a K-contact map u : (X,K) — (M,D) we have the following

commutative diagram,

e | |

TS/K — TM/D
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where Qg ,Qp are the curvature forms of K and D respectively. In other words we have,
wQp|i = duo Qg

Proof. Let X, Y € K|,. Choose some local extensions X.Y € K of X,Y respectively, around

o € ¥. Let U be a trivializing neighborhood for the subbundle D around u(c) € M, so that

we may write, D|y = (_; ker A* for some local 1-forms \* € QY (U). Then, Qp|u = (w*),
ocC.

where w® = dA\*|p. Since u is K-contact, in particular, we have u*\%|x = 0. Consequently,
WrdN(X,Y) = d(u\)(X,Y) = —u* N ([X,Y],)
On the other hand, from Definition 2.1.16 we have,
Qr(X,Y)=—[X,Y], mod K,
Hence for X,Y € K, as above,

duoQi(X,Y) =du( —[X,Y], mod K,)=—u,[X,Y] mod D,
= (-l ) = (2~ 12 7)) = (wan(x,))

_ <u*w5(X,Y)) = u*Qp(X,Y)

Since X,Y € K, is arbitrary, we have proved the claim. ]

If K =1T%, then Qg = Qs = 0 and hence for a horizontal immersion v : 3 — M we get

back the isotropy condition, namely,
u*Qp = du o Qpy, = 0.

Contact Immersion Operator

We shall now see that the (iso)contact immersions (X, K) — (M, D) appear as the solutions
of certain first order partial differential equation. For simplicity, let us assume that D =

P _, ker \* for global 1-forms A\* € Q}(M). It is easy to note that for any map u: ¥ — M,

du(K) CD & u'N’|g =0foreach 1 <s<p
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Now, consider the operator,

DCont . 0°°(x, M) — I"hom (K, RP)

u— (WX k)

so that u is K-contact if and only if D" (y) = 0.
Fixing some coordinates {2’} any {y*} respectively on ¥ and M, we may write, \* = A dy*
ocC.

and then we have,

'\ =u* ()\Zdy“) = ()\Z o u) dyutdat

We see that D" is indeed a first order differential operator in the sense of Definition 2.2.19

and it is determined by the bundle map A : J'(X, M) — hom (K, RP) given by,

A(ji(@)) = (X = (0 0 w) (@) dat (X))

s=1

), where X € K.

In other words, if (z,y, F : T,X — T,M) € J'(, M) then we have

)
A(z,y, F) = (x (F*Asny)).

Linearization of DCcont

We shall denote the linearization operator of D" at a map u : ¥ — M by £5°"t. Since

T,C>(3, M) = T'u*T M, we have that
glent — 7 oot . Py *TM — T hom(K, RP).

Suppose & € Tu*TM. Let u; : Op(0) — M be a smooth family of maps such that ug = u on

Op(o) and &(0) = %|t:0ut(a). Then the linearization operator is given as,

glont(e)(Xx DO (44, (X ufA*(X), for local section X of K.

d d
)_%Lzo )_ﬁltzo

By the Cartan formula,

%’tzou;v(x) = u (dAS(g,u*X) + d(AS(S))(X)).
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We shall write down the operator £5°™ succinctly as,
28 () = (1ean + d(1\))|

Note that since § € I'u*T'M is a vector field along the map u : ¥ — M, the contraction tcd\®

is interpreted as a 1-form on 1'%, defined by the formula,
(1edX®) (X) = (dX°)y(0)(&or dug (X)), for X € T,X.
Similarly we interpret, (¢\°|; = A°|y(5)(&5) for o € 3.

Infinitesimal Inversion of DCont

Having identified the linearization operator £5°" : Tw*TM — T hom(K, RP), we restrict it to
the subspace I'u*D. Note that for any { € I'u™D we have, 1¢A® = 0 and thus the restricted

linearization operator has the following simple description :

£ Tu*D — T hom (K, RP)

¢ s (Lgdv)

= (X o d)\s(g,u*X)>

Observe that £ is, in fact, C°°(X)-linear and hence is given by a bundle map, u*D —
hom(K,RP). If this bundle map is an epimorphism, then it has a right inverse, also given by
a bundle map; in other words, we have a 0th-order inversion for the differential operator ESO”".
In fact, by using a Riemannian metric on M, we can get a continuous family of right inverses,

over the set of maps,
A= {u X > M ‘ u is an immersion and £5°”t is a bundle epimorphism}.

Observe that A is precisely the solution space of the relation A C J!(X, M) consisting of tuples
(0,y,F : T;X — T, M), such that,

e F'is injective, and
e the linear map,

D, — hom(kK,RRP)

€ s <X o d)\s(g,FX)>
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is surjective.

If we wish to study K-isocontact immersions, then in the light of Observation 3.1.3, F' must

also satisfy,
e k(Ao F) > cork K

Clearly, A is an open relation, and as we have already noted, the operator pCont g infinitesimally
invertible over A = Sol(.A).

A smooth solution u of A (that is, u € A) will be referred to as a (d\*)-regular immersion.
In general, (d\*)-regularity depends on our choice of defining 1-forms A® for D. But it turns
out that the space of (d\®)-regular, K-contact immersions (3, K) — (M, D), is independent
of any such choice. Suppose u : ¥ — M is a K-contact immersion. In particular, we have

that, du(K) C D. Then from Definition 2.1.16 it is clear that

£57(6) = u (162) |

where ) is the curvature 2-form of D.

Definition 3.1.5. A K-contact immersion u : (X, K) — (M, D) is called Q-regular if the

bundle map,

£ y*D — hom(K, u*TM/D)

£I—>L§Q|K

is an epimorphism.

Remark 3.1.6. In simple terms, Q-regularity of a K-contact immersion u : ¥ — M is equivalent

to the solvability of the following algebraic system in local vector fields £ € I'D :

where G; are arbitrary smooth functions on . Here (X;) is some choice of local frame of K.
In particular, if K =T%, then for every o € X, the subspace Im du, is Q-isotropic in Dy(4).
Therefore, in order to solve the algebraic system for arbitrary G;, we must have ([Gro96, pg.
251]),

kD —dim ¥ > corkD x dim X.
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When D C T'M is not cotrivial

For a general distribution D C T'M, we may write D = ker A\, where the quotient map A :
TM — TM/D is treated as a T'M /D-valued 1-form. Then for any map u : ¥ — M, we have
that u*\ is a w*T'M /D-valued 1-form on 3. We wish to study the operator u — u*\| i, whose
zeroes are precisely the K-contact maps (X, K) — (M, D).

Consider the space of maps, B = C*°(X,M). For each u € B, we have the infinite
dimensional vector space,

&, =Thom(K,u*TM/D).

Let &€ — B be an infinite-dimensional vector bundle over B, having &, as the fibre over u € B.
The operator u — u*A|x can then be viewed as a section of this bundle. Next, we fix a
connection V on T'M/D. This enables us to get a parallel transport on & — B. Recall that,
T,B = Tw*T'M, and the vertical tangent space at u*\|x is isomorphic to &,. We can then

define the linearization operator at u € B as,

geont . Py*TM — T'hom(K, u*TM /D)

& (LgdvA + de)\) ‘K
As before, we restrict £5°“t to the subspace I'u*D to get the operator

£ : Tu*D — T hom(K, u*TM/D)

f'—) Lgdv)\’]{

which is C°°(X)-linear, and hence is given by a bundle map, «*D — hom(K,uw*T'M /D). We
say an immersion u € B is dy\-regular if the bundle map defined by the operator £S° is
surjective. We do not distinguish between notations for the operator and the bundle map.
The notion of dyA-regularity depends very much on the choice of the connection V on
TM/D. Butifu: (X, K) — (M, D) is K-contact, then as a consequence of Proposition 2.1.18,
the dy A-regularity is equivalent to €2-regularity, and hence the notion is independent of the

choice of connection.

The relation RCont

We now define a first order relation in J1(X, M).

Definition 3.1.7. Given subbundles K C TY. and D C TM, we define R<°" C JY(X, M) as

the first order relation consisting of 1-jets (x,y, F' : T, X — T,,M) satisfying the following :
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1. F(K;) CD,
2. Fis injective and Q-regular

3. F abides by the curvature condition,
F*Q|g, = FoQg,,

where and Qg is the curvature form of K.
We also have a subrelation R'5°Cont  RCont which further satisfies,
4. The induced map F : TY/K|, — TM/D|, is injective.
As a special case, for K = T'S, we shall denote the corresponding relation Rt as RHor,

We shall refer to a section of R as a formal Q-regular, K-contact immersion (X, K) —

(M, D). We shall be needing the following lemma later, in the proof of Lemma 3.2.6.
Lemma 3.1.8. The following holds true for the relation R ",

1. For each (z,y) € ¥ x M, the subset R(Cxo’;g is a submanifold of J(lxyy)(E, M)

2. R js a submanifold of J' (X, M)

3. The projection map p = p} = JY (S, M) — JO(X, M) restricts to a submersion on Rt

Proof. Note that J'(3, M) and hom(K,TM /D) are both vector bundles overs J°(2, M) =
> x M. Consider the bundle map,

21 JY(S, M) hom (K, TM/D)

\/

JO(2, M)
defined over (z,y) € JO(X, M) =X x M by,

Eil(a) : Ty (5 M) = hom (K, TM/Dl,)

(2,9, F) = F*Mg, = Ao Flg,
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From the commutative diagram,

Flg,
K, —™ 5 7,M

TM/D,

it is immediate that =], ) is in fact surjective, since A is an epimorphism. Consequently, =,

is a bundle epimorphism; ker =1 is a sub-bundle over JO(Z,M), given as,
ker Z1(z) = {(z,y, F) | F(K;) C Dy}.

Let us now consider a fiber-preserving map, Zo : kerZ; — hom(A%2K,TM/D), over

JO(2, M), given by,

Eo|(a,y) : ker Z1(z,) — hom (A2Kz,TM/D\y)

Fos FQl, — FoQ, = (X/\Y — Q(FX,FY) — FoQKI(X,Y))

where F: TS/ K|, — TM/D|, is the induced map and Qg : A2K — TX/K is the curvature

2-form. Note that the relation R°" is then given as,

R(C;Zt) = :2|&17y) (0) N {Q-regular injective linear maps T,,¥ — T,,M }.

In order to prove that R(C;gt) is a manifold, we shall show that each point is a regular point of

the map Za|(;.,)-

The derivative of =], at some (z,y, F) € ker =1, is given by,

d(x7y,F)32’(x’y) : ker El‘(m,y) — hom (AszZ, TM/D|y)

G (XANY = QFX,GY)+QGX,FY) — G oQg,(X,Y))

We then have the diagram,

ker Z1 (4, GOl hom (K, Dy) 27, hom (Kz, hom(K,, TM/D|,))

a \ LA (*

hom(T% /K|, TM/D|,) hom (A*K,,TM/D|,)

o QK
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where, Qr(G)(X)(Y) = Q(FX,GY )and A is the skew-symmetrization map given by, A(F)(X,Y) =
F(X)(Y) — F(Y)(X), for X,Y € K,. Indeed,

(A0 Qp(G))(X AY) = Qp(G)(X)(Y) — Qp(G)(Y)(X)
= Q(FX,GY) — Q(FY,GX)

=Q(FX,GY)+ QGX,FY)
and hence we see that,
dpZa(G) = Ao Qp(Glk,) — G o Qx,.

Now suppose (z,y, I') € ker Z1](, ) is such that F' : T,3 — T, M is injective and -regular,

ie,

Q:D, — hom(K,,TM/D|,)

is surjective and F' is injective. Applying the hom (K, -) functor we then have that the map Qp
is surjective. But then from the diagram () above, it follows that for Q-regular F, drZ2|(, ) is
surjective. Indeed, given any P : A2K, — TM/D|,, we can arbitrarily fix some injective linear
map Gy : TY /K|, — TM/D|, and then solve AoQp(G1) = P+G10Qk, for Gi : K — D,.
Then we may get G : T,,¥ — T, M so that G = G5 and hence drpZ2(G) = P. Consequently
R(C;';t) is a submanifold of J(lgw)(E,M).

Recall, 21 : hom(7T%,TM) — hom(K,TM/D) is an epimorphism, over the manifold
JO(2,M) =% x M and kerZy = {(z,y, F)|F(K,) C Dy} is a subbundle of hom(T'¥,TM).

Now,

2y : ker 21 — hom(A%K, TM/D)

is a fiber-preserving map, so that = restricted to each fiber over (z,y) € J°(X, M) is regular

Cont

at each point of R(z Z). Since,

RCont —_ 52—1 (0) N RQ

where 0 = Oxx s = hom(A2K, TM/D) is the O-section and Rq is the space of Q-regular
linear maps, we have that = is a submersion at Q-regular points. Consequently, R is a

submanifold.
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Lastly, we have the commutative diagram,

[1]
¥

REOM" C ker =4 hom(A%2K, TM/D)

m /

JO(3, M)

Since =3 is a submersion at the Q-regular points in 25 (0), we have p}|gcont is a submersion. [

3.2 A 1-jet h-Principle for Regular K-contact Immersions

We have seen that the operator ®%°M is infinitesimally invertible, in the sense of Defini-
tion 2.2.21, on A C JI(E,M), the space of dyA-regular K-contact immersions; clearly, the
inversion is of order 0 and defect 1. Following the discussion in the last chapter, we define the
relations RSO = RSO (Dot A 0) € JoH (2, M) for the operator DM Jets in RSO are
represented by Q-regular, infinitesimal solutions of D", of order a (Definition 2.2.26). The
relations RS™ have the same solution space for all @ > 0, namely, the space of Q-regular,
K-contact immersions ¥ — M. Let us denote this sheaf of solutions as ®“°" = Sol(RS°™)

for any a > 0. Now by appealing to the discussion in section 2.2.2, we conclude the following :

e The relations RSO satisfy the local h-principle for a > 2, i.e, the jet map
ja+1 . q)cont N FRgont
is a local weak homotopy equivalence, by Theorem 2.2.28.

e The solution sheaf ®C°"t is microflexible, by Theorem 2.2.27.

Therefore, in order to conclude the existence of local K-contact immersions, we need at least
a formal solution of Rgont, which is a relation of order 3. We shall now identify the image of
REO™ under p¢ Tt JeH(E, M) — JX(, M), which will enable us to state the local h-principle
in terms of the 1-jet map.

It is immediate from Definition 3.1.7 that R°" is a subrelation of Rgm‘t. Note that
Sol(RE°") = Sol(RS°™),  forall a >0

The following lemma relates RS°™ with R for @ > 1.
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Lemma 3.2.1. For any a > 1, the jet projection map p = pOH_l JOHY S, M) — JY(Z, M)
maps the relation REP™ surjectively onto R°™. Furthermore, for each (x,y) € ¥ x M, the
map p : Rg"”ﬂ(m’y) — Rcontl(%y) is a fiber bundle with contractible fiber and any section of

R defined over a contractible chart in ¥ can be lifted to RE°™ along p.

We postpone the proof of the above lemma to section 3.3. As a direct consequence, we get

the following corollary.

Corollary 3.2.2. For any a > 1, the sheaf map p : TRS°™ — 'R induced by the jet

projection map p = pf{‘“ is a weak homotopy equivalence.

Proof. It is immediate from Lemma 3.2.1, that p : TRS°™ — IR is a surjective sheaf
map with contractible fiber. Consequently, the sheaf map is a local weak homotopy equiva-
lence. Now both the sheaves are flexible. Hence an application of the homomorphism theorem

(Theorem 2.2.6) gives us that p is indeed a weak homotopy equivalence. ]

Corollary 3.2.2, in conjunction with the earlier observation then implies that the relation
RCon satisfies the local parametric h-principle. The same is true for R!s°Cont « RCont and for
RHo" as well (Definition 3.1.7). At this point, we have an intermediate result for Q-regular,

D-horizontal immersions X — M, for ¥ open.

Theorem 3.2.3. If ¥ is an open manifold, then the relation RH°" satisfies the parametric

h-principle.

Proof. Let ®H°" denote the sheaf of Q-regular, D-horizontal immersions, i.e, ®Ho" = Sol(RH°").
It is easily seen to be invariant under the natural action of Diff (X) on C*°(X, M). Indeed, for
any horizontal u and any diffeomorphism (, uwo( is clearly horizontal. Furthermore, 2-regularity

is preserved, as it is apparent from the commutative diagram,

u*D — hom(TX,w*TM/D)

\ ldc

hom (7%, uw*T M /D)

Now, we have already observed that ®"°" is a microflexible sheaf and j3 : ®Hor — TRElr
is a local weak homotopy equivalence. Hence, it follows from Remark 2.2.12 that j3 is a weak
homotopy equivalence. Now by Corollary 3.2.2, we have that p3 : I'RHor — TRM" is a weak
equivalence as well. Hence,

jl — pii Oj3 . (I)Hor N FRHor
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is a weak homotopy equivalence. Thus, the relation RH°" satisfies the parametric h-principle

on open manifolds. ]

Extension h-principle

As before, & is a manifold with a given distribution K C TY. Let ¥ = ¥ x R be the product
manifold with the natural fibering 7 : ¥ x R — ¥. Consider the distribution K = drx~'(K) on
3 so that corank of K is the same as that of K.

We can now define an operator ©°" for the pair (3, K), as we did in the case of (X, K). Let
us denote the associated relations on ¥ by ﬁgO”t, a >0, and RNt 7@0&”“. Let ®COnt be the
sheaf of Q-regular, K-contact immersions. As noted earlier, ®“°" = Sol(RE") = Sol(RM).

Note that the derivative of any fibre-preserving local diffeomorphism ¢ of ¥ x R takes
K isomorphically onto itself. Therefore, if w is K-contact then so is wo ¢, for any ¢ €
Diff (X xR, 7). Also Q-regularity is Diff (3 x R, )-invariant as well. This implies that the sheaf

®Cont is invariant under the natural Diff (¥ x R, 7) action on ¥ x R.

Theorem 3.2.4. [Gro86, pg. 339]| The first order relation RCont satisfies the parametric h-

principle near > x {0}.
Proof. We have the following :
e The sheaf ®Cont = Sol RO = Sol REO™ is microflexible by Theorem 2.2.27

e The map j! : dCont — TRCM is 3 local weak homotopy equivalence, as argued in the

proof of Theorem 3.2.3.
e The solution sheaf ®° is invariant under the action of Diff(%, 7)

Hence an application of Theorem 2.2.10 gives us that the map j' : @[y — PRy is a
weak homotopy equivalence. In other words, we have the parametric h-principle for R near

> x 0. O]

Observe that ¥ is an open manifold and it admits a deformation retraction into an arbitrary
small neighborhood of ¥ x 0, by an action of Diﬁ(i,ﬂ'). Hence, pullback of any K-contact,
Q-regular immersion near ¥ x 0, by a deformation retraction gives a global K-contact, {2-regular

immersion on X. Consequently, we get the following.

Corollary 3.2.5. Q-regular K-contact immersions (3, K) — (M, D) satisfy the parametric

h-principle. In fact, R°™ satisfies the h-principle over > = % x R.
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We put forward the relation R < J'(X, M) as a suitable candidate for an exten-
sion of the relation RE°" (see Definition 2.2.13). Note that the natural restriction mor-
phism COO(S,M) — C°(X, M), taking @ — w|nxo, gives rise to a map in the jet level,
ev: JU(X, M)|s — JY(X, M), given by,

((m,t), y, F: T(m)f] — TyM) — <£C, v, F\ng>

Now if @ is K-contact, let u = i|s; then for any (0,0) € ¥ x 0 we have d,u = d(,0)U|T, 20
and hence,

dot(Ko) = diy0)iil7,5(K(0,0) N To) C Di(o0)y = Puo)

Thus, u is then K-contact. It follows that we have induced sheaf maps,
ev : Sol 7~€C°"t|g><0 — Sol Rcont7 ev : I’7~€C°”t|g><0 — [RCont

The next lemma justifies the hypothesis (3) of Theorem 2.2.15.

Lemma 3.2.6. Let O C X be a coordinate chart and C C O is a compact subset. Suppose
that U C M is an open subset such that D|y is trivial. Then, given any Q-regular K-contact

immersion u : OpC — U C M, the 1-jet map

j1 : evil(u) — evil(F = ji)

induces a surjective map between the set of path components. Furthermore, the homotopy can

be kept C°-small.

Proof. We have the commutative diagram

ev—l(u) c i)Cont‘Cxo @Cont‘c

L

with the sheaves,

<

o
S
G
S
&
Q
X
o
LS|
&
Q
|
I

Ju

(I)Cont — Sol RCont \IjCont _ FRCont (i)Cont — Sol 7’-\3/Cont \ijCont — I-v,'-\S/Cont'

Fix some neighborhood V of C, with C C V' C O, over which u is defined and then fix an

arbitrarily small open neighborhood U, of u(V'). The proof now proceeds in a few steps.
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Step 1 Given an arbitrary extension F' of F' along ev, we construct a regular solution @ on

OpC, so that j%t‘OpC = F‘OpC-

Step 2 We get an homotopy between j. and F, in the affine bundle JYW,U,), which is

constant on points of C.

Step 3 Using Lemma 3.1.8, we then push the homotopy obtained in Step 2 inside the relation

R thus completing the proof.

Proof of Step 1: Suppose F' € WC| . is some arbitrary extension of F. Using Lemma 3.2.1,
we then get an arbitrary lift F e F7~QS°”t|C of F, for « sufficiently large (in fact, @ > 4 will

suffice). The formal maps are represented in the following diagram.

ffzgont‘z

) RCont
F

We can now define a map @ : Op(C) — U, so that jg‘“(p, 0) = F(p, 0), by applying a Taylor
series argument. In particular, we have @|cxo = u and 4 is regular on points of Op(C') x 0.
Since C is a compact set and regularity is an open condition, we have that 4 is regular on
some open set W satisfying, C C W C W C Op(C). We also have 4 is a regular infinitesimal
solution, along the set Wy = (V x 0) N W < Op(C), of order,

a>21+3.0+max{1,2.1+0} =4,

for the equation ® = 0, where ® = D" : ¢ v*\°| - is defined over C*°(W, Uc). Now, from
Theorem 2.2.30, we can get an inversion 35;1 on W; we have an Q-regular map u : V — U,

such that, ’}5(@) = 0 and furthermore,
1 .1 .
Ju = Ji on points of Wj.

In particular, j%(p,0) = F(p,0) for (p,0) € W and so u on Op C' is extended to @ on W.
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Proof of Step 2 : Let us denote i = bs F' and define, v;(x,s) = a(z,ts) for (z,s) € W.
Note that,
UO(:Ev S) = ’L_L(l', 0) = ﬂ(l’, O) = ﬂ(l‘,O)

and so v; is a homotopy between the maps @ and 7*(@|opc)|w, where 7 : ¥ xR — X is
the projection. Now, with the help of some auxiliary choice of parallel transport on the vector

bundle JI(T/V, Uc), we can get isomorphisms,
0(2,5) : I 0) a(e0) Wi Ue) = g ate Wi Ue),  for (z,5) € W, for s sufficiently small,
so that ¢(z,0) = Id. We then define the homotopy,
Gil@s) = (1= 1) - p(@,t5) 0 Fla0) + 1 - ja(@,ts) € iy 15) niess) (Ws Ue)-
Clearly G covers vg; we have

GO‘(x,S) = (P(Z,O) © F’(:}:,O) - F‘(z,O) - F|(x,s) and Gl‘(z,s) = ]%L(st)

Thus we have obtained a homotopy G between W*(F’OPC)‘GPC and ji. Similar argument
produces a homotopy between F and 7*(F|op ) |w as well. Concatenating the two homotopies,
we have a homotopy H; between F and ji, in the affine bundle J* (W, U.) — W x U.. However,

H, need not lie in RO,

Proof of Step 3: We now get an tubular neighborhood N ¢ J' (W, U,) of Im F', which fiber-
wise deformation retracts onto R N A/, Indeed, this follows from Lemma 3.1.8. Suppose

p: N — R is such a retraction. Now, note that on points of C,
Hi|goy = (1 =) - Flo) + - a(,0) = Fl(z.0)-

Since C' is compact, we may get a neighborhood W, satisfying C ¢ W/ C W, such that the
homotopy Hi|y takes its values in the open neighborhood A of Im F. Then composing with
the retraction p, we can push this homotopy inside the relation RNt obtaining a homotopy
F, € ‘i’]c joining F to ji. Observe that the homotopy remains constant on points of C. In
particular we have that, ev(F;) = F on points of C. Since U, is taken to be arbitrarily small,

the homotopy in the base maps are always kept C-small. This concludes the proof. ]
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In the light of Lemma 3.2.6, we see that in order to achieve the h-principle for (2-regular
K-contact immersions of an arbitrary manifold X, we only need to get a suitable extension of
the relation RC°". Then a direct application of Theorem 2.2.15 gives us the desired h-principle.

We now state the main theorem of this Chapter.

Theorem 3.2.7. If ev : R |5, — R s locally surjective, i.e, if R is an extension

of R, then R satisfies the C°-dense h-principle.

Proof. From the hypothesis we have that R is an extension of R in the sense of Defi-

nition 2.2.13. Furthermore,

e Sol RM is microflexible by Theorem 2.2.27 and the sheaf is invariant under the Diff (3, 7)

action. Hence the restricted sheaf Solﬁco"t\g is flexible by Theorem 2.2.9.

o RCoM satisfies the local h-principle by Theorem 2.2.28 and Lemma 3.2.1.

Thus, the first two hypothesis of Theorem 2.2.15 are satisfied; Lemma 3.2.6 justifies the last
hypothesis. Hence R satisfies the C%-dense h-principle by a direct application of Theo-
rem 2.2.15. O

Remark 3.2.8. The above theorem should be compared to the approximation theorem of
Gromov ([Gro96, pg. 258]) for ‘overregular maps’. Recall that Gromov defines overregular
maps, in the context of D-horizontal maps, as those formal -regular, D-horizontal maps
F :T% — TM, covering some u : 3 — M, for which the subspace F(T,%) C Dy, is
contained in an Q-regular, Q-isotropic subspace. In other words, F' is overregular if it admits
(point-wise) extension to formal Q-regular maps ¥ — M. Gromov proceeds to state that :

“Overregular maps satisfy the C°-dense h-principle”.

In the next chapter, we shall turn our focus on to a special class of distribution D, known as
fat distributions. We shall see that the local extensibility property is satisfied in many interesting

situations. We end this chapter with the proof of Lemma 3.2.1.

3.3 Proof of Lemma 3.2.1

To simplify the notation, we assume that K = T3, i.e, we prove the statement for the relation
RHor - The argument for a general K is similar, albeit cumbersome. As the lemma is local in
nature, without loss of generality we assume that D is cotrivializable and hence suppose that

D = _, ker \*. We denote the tuples,

A= (\%) € QY (M, RP) and d\ = (dX\¥) € Q*(M,RP).
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We need to consider the three operators :

o U ut\,

o U urd),

e d: QX RP) — Q2(X,RP), the exterior derivative operator,
and their respective symbols :

e we have the bundle map, Ay : J'(Z, M) — Q1(Z,RP) so that Ay (j1) = w*A = (u*X¥).
Explicitly,
Ax(z,y, F: T,X — TyM) = (z,F o A|y).

e we have the bundle map, Agy : JH(Z, M) — QY(E,RP) so that Agy(js) = u*dA =
(u*dX®). Explicitly,

Aoy (z,y, F : 1,5 = TyM) = (z, F*d\|,).

e we have the bundle map, Ay : Q'(2,RP)M) — Q2(X, M) so that Ay(jl) = da. Explicitly,

Ag(z,0, F : T, X — hom(T,5,RP)) = (z,(X AY) = F(X)(Y) — F(Y)(X)).

Jet Prolongation of Symbols : Recall that given some arbitrary rtP-order operator © :
I'X — T'G represented by the bundle map A : X" — G as, A(j7) = D(u), we have the a-jet
prolongation, A@) . x(r+a) 5 (@) defined as,

A (G () = G5 (@)

We can immediately observe that the diagram,

x(rta) _AY (o)

4o
pr+5l

X8 . a®
AB)

commutes for any a > (5. Indeed, we have,

p§ o A (1 (2)) = p§(j9,(2)) = jg, (@) = AP (i) = A® o pra(jite(x))

We now observe the following interplay between the symbols of the operators introduced above.
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e We have the commutative diagram,

A(‘l)
JHHS, M) —2— Q1(%,RP) (@)

p‘é“l

Indeed, we observe,
ALY o A (ot () = ALY (o, (2)) = o7 (@) = jeh (@) = ALV (o),

and hence we get,

A&ail) o Ag\a) = Agg\il) o pg+1.

e We have the two commutative diagrams,

(o) (o)

A A
JOHY (S, M) —2— QY(%,RP)(@) JOHL(E, M) ——2 Q%(%, RP)(@)
ngrlJ Jpg_l and ngrlJ Jpg_l
JHEM) — Q'(%,RP)(@-1) JHEM) —— Q% (%,RP)(@-1)
A;k AdcY

Now let us fix Rgy C JL(X, M) representing the (d\®)-regular immersions ¥ — M, i.e,
Rar = {(x,y,F (1Y — TyM) ‘ F is injective and (d)\s)—regular}.
Next recall that R, C J*"1(X, M) is given as,

Ra = {jg“(a:) e JOTYS, M), | 7% (z) =0 and u is (d)\s)-regular}.

Hence we can identify R, as,
Ra = ker (A) 1 (p8+) 7 (Rap) € JOTU(E, M).

We denote a sub-relation,

Ro = Ro Nker (AL)) C R

In particular, observe that Ry is then precisely RHor ie, the relation of Q-regular, horizontal

immersions > — M.
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The proof of Lemma 3.2.1 follows from the next two results.

Sublemma 3.3.1. For any o > 0, we have, R, = pgﬁ(RaH) and the fiber of pgﬁ :

Rat1l@y) = Ral(wy) is affine for each (x,y) € ¥ x M. Furthermore, any section of Rqlo,

a+2

over some contractible charts O C %, can be lifted to a section of Ra+ 1|0 along pg 17

Sublemma 3.3.2. For any o > 0, the map pgﬁ : ﬁa+1’(w’y) — ﬁa|(x,y) is surjective, with

affine fibers, for each (z,y) € ¥ x M. Furthermore, any section of R, |o over some contractible

chart O C X can be lifted to a section of Roy1|o along pgﬁ

Assuming these, let us first give a proof of the jet lifting lemma.

Proof of Lemma 3.2.1. We have the following ladder-like schematic representation,

a+1 2
JotL(s M) 22y (s, M) JAS, M) —2s JY(S, M)
U U U U
Ry Ro

For any a > 1, we have,

Pt =pfopttl =p

at+l _ 2 a+1
10...opa

From Sublemma 3.3.1 we have that p2*! maps R, surjectively onto R,_1. Also, using Sub-
lemma 3.3.2 inductively, we have that p§ : Ro—1 — RH" is a surjection as well. Combining
the two, we have the claim.

Since at each step of the induction, we have contractible fiber, we see that the fiber of pi”l

is contractible as well. In fact, we are easily able to get lifts of sections over contractible charts

as well. This concludes the proof. O
We now prove the above sublemmas.

Proof of Sublemma 3.3.1. We have the following commutative diagram,

A(a+1>
Rasr1 — JOT2(S, M) A Q' (%, RP)(e+D)
pt? pg%gp (+)

Ro — JOTL(E, M) QL(Z,RP)@ @ O2(3, RP)()

SO

)



3.3. Proof of Lemma 3.2.1 61

AE\aJrl)

Since we have R,11 C ker , we get that,

P23 (Ray1) C ker Ag\a) N ker Agg\).

Also,

Rat1 C (037 7 (Ran) = 0253 (Ras1) € (037 T (Ran).

Hence we see that, (pgﬁ)(RaH) C Ra.

Conversely, let us assume that we are given a jet,
(z,y, P : Sym' T,% — T,M, i=1,...,a+ 1) € Ral(z,y)-
We wish to find Q : Sym®*2 7,2 — T, M so that,
(2,9, Pi, Q) € Rat1l(ay)-
Recall that Ay (z,y, F : T,% — T,M) = (2, Ay o F : T, — RF). Then we may write,
AP (2,9, B, Q) = (2,0 F, Ry : Sym! T, — hom(T, X, RP), i = 1,...,a + 1),

so that R,y1 : Sym®™ T, — hom(T, X, RP) is the only symmetric tensor which involves Q.

In fact we observe that R, is given explicitly as,
Rot1 (Xl, e Xa+1)(Y) =\o Q(Xl, ooy Xat, Y) + terms involving P;
Now from the commutative diagram (x) we have,

(:U,)\ oF Rii=1,... ,a) = p2tlo Ag\a+1)(a:,y,PZ-, Q)
= A 0 p2*2(a,y, P, Q)
= A()\a)(:r,y,Pi)

=0

That is we get that, R; =0 fori=1,...,a. We need to find @ so that R,+1 = 0 as well. We

claim that the tensor,

;Jrl : (Xl,. . .,Xa+1,Y) — Ra+1(X1,...,Xa+1)(Y),
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is symmetric.
Let us write A[(f‘) (x,y,\oF,R;) = (ac,w, S; : Sym’ T, ¥ — hom(A%T,%,RP),i=1,..., a),

we then get the pure a-jet as,
Sa(X1,.. ., X)) Y NZ) = Ros1(X1,..., X0, Y)(Z) — Rog1(X1,..., X0, Z)(Y).
Again going back to the commutative diagram (x) we have,

A&a) (:c, Ao F, Ri) = A((ja) o AE\O‘H)(:/U, v, P;, Q)
= A (2,y, P)

=0

and so in particular, S, = 0. But then we readily have that fo+1 is a symmetric tensor.
Let us now fix some basis {01,...,0k+1} of T,% so that, 7,3 = (01,...,0k+1), where
dim¥ = k + 1. Then we have the standard basis for the symmetric space Sym®*? T, %, so

that,
Syme 2T = (0 = 0, 0 ©0),,, | J = (1< 1 <+ < Jara Sh+1)).
Then for each tuple J = (j1,...,ja+2), We see that the only equation involving Q(0y) is,
0= Rat1(01,--,0jur1)(0jurs) = Ao Q(0y) + terms with P;.

This is an affine equation in Q(9;) € T,M, which admits solution since A|, : T, M — RP has

full rank. Thus we have solved Q.

a+2

071 (Rat1) = Ra- Since Q is solved from an affine system

This concludes the proof that p
of equation, it is immediate that the fiber (pgﬁ)_l(m,y, Pi) is affine in nature. In fact, we see
that the projection is an affine fiber bundle. Furthermore, since A = (A?) has full rank at each
point, we are able to get lifts of sections over a fixed contractible chart O C 3, where we may

choose some coordinate vector fields as the basis for Y. O]

Next we prove that pgﬁ(ﬁaﬂ) =R, for any a > 0.
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Proof of Sublemma 3.3.2. We have the following commutative diagram,

(a+1) (a+1)
AA ’ Ad>\

1 JOTE(S, M) QL RP) @D @ (5, RP) (@D
pgﬁl p%”}ﬁ“ (€]
QL(Z,RP)(@) g Q?(Z,RP)@)

&
S

<444444

Pl

Q

<
Q
t

(2, M)

(@) Ala)
AN Ao

We have already proved that pgﬁ maps Ra41 surjectively onto Ry; since Ror1 C Rar1 wWe

a+2

oT1 maps Ra41 into Ry. We show the surjectivity.

have that p
Suppose 0 = (z,y, P : Sym' T,¥ — T,M, i =1,...,a+1) € Ral(x,y) is a given jet.
We need to find out Q : Sym®™ 7,2 — T, M such that, (z,y, P;,Q) € 7_Qa+1\(x’y). We have

seen that in order to find Q) so that (z,y, P;, Q) € Ra+1|(z,y), Wwe must solve the affine system,
Ao (@ = terms with P;.

which is indeed solvable since A has full rank. Now in order to find (z,y, P;,Q) € Rat1 =

Ro Nker Agf\ﬂ), we need to figure out the equations involved in AE&H). Let us write,

AL (2, P, Q) = (, PfdA, R : Sym! TyX — hom (AT, S, RP),i =1,...,a +1).

Then the pure a4 1-jet Ryy1 : Sym®™ T, ¥ — hom(A2T, X, RP) is the only expression that

involves ). In fact we have that R, is given as,

Rot1(X1,. ., Xar1) (Y A Z) = dNQ(X1, ..., Xat1,Y), P1(Z))
+dA(PI(Y), Q(X1,. .., Xat1,2))

+ terms involving P; with ¢ > 2
Now looking at commutative diagram (), we have,

(2., P{d\, Riyi=1,...,0) = plo™) 0 Al (2,4, P, Q)
=AY o piti(2,y, P.Q)
=AY (@,y. P)

=0

That is we have, R; = 0 for : = 1,...,a. In order to find @ such that Ry,11 = 0, let us fix

some basis {01, ...,0k+1} of T, 2, where dim ¥ = k + 1. Then we have the standard basis for
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the symmetric space Sym®*™2 7,3, so that,
Sym* T2 T,% = Spcm<8J =0;, 000, |J=(1<h < Sjap2<k+ 1)>

Now for any tuple J and for any 1 < a < b < k4 1, we have the equation involving the tensor

Q given as,

0= Raﬂ(&;)(aa A 8;,) = dA(Q(@Ha), Pl(ab)) + d)\(Pl(aa), Q(8J+b)

+ terms with P; for ¢ > 2,
where J + a is the tuple obtained by ordering (j1,- .., ja+2,a). Now observe that,
a<b=J4+a=<J+Db

where < is the lexicographic ordering on the set of all ordered a + 2 tuples. We then treat the

above equation as,

<//P1(8a)d)‘> o Q(aJer) = (Lpl(ab)d)\> o Q(6J+a) + terms with Py.
Thus we have identified the defining system of equations for the tensor () given as,

Ao Q(0r) = terms with P;, for each o + 2 tuple T

Lp, (aa)d)\ 0 Q(0y1p) = Lpl(ab)d)\ o Q(a[+a) + terms with F;, (1)

for each a + 1-tuple Jand 1 <a<b<k+1

But this system can be solved for each Q(9r) € T}, M in a triangular fashion, using the ordering
< on the basis, since we have that Py : T, — Ty, M is Q-regular. Indeed, it follows from
Q-regularity, that for any collection of independent vectors {vy,...,v,} in T,;3, the collection
of 1-forms,

Lp () d\°|p,, 1<i<r 1<s<p,
are independent. As D is given as the kernel of A, ..., AP, we see that this is equivalent to the
following non-vanishing condition:

D r

(/\ )\S) A <Lv1d)\1 Al A Lvid)\s) £0.
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But then clearly, at each stage of the triangular system, we have a full rank affine system.
Consequently, the solution space for @) is contractible.

We have thus proved that pgﬁ : Ratil(zy) = Ral(zy) is indeed surjective, with con-
tractible fiber. In fact, the algorithmic nature of the solution shows that, if O C X is a
contractible chart, then we are able to obtain the lift of any section of Ry|o to Ray1, along

pgﬁ This concludes the proof. ]

Remark 3.3.3. In the above proof of Sublemma 3.3.2, the full strength of Q-regularity of F' has
not been utilized. Note that, with our choice of the ordered basis of T,,%, the vector P;(0k41)
does not appear in the above triangular system (}). In fact, we can prove Lemma 3.2.1 only
under the milder assumption that Im F' contains a codimension one Q)-regular subspace, which
in our case is the subspace (F'(01),...,F(0;)) C TyX. In Chapter 6, we shall come back to

this observation.






Chapter 4

K-contact and Horizontal Immersions

in Fat Distributions

This chapter concerns with h-principle and existence of K-contact maps into ‘degree 2’ fat
distributions and Quaternionic contact distributions for some specific K on the domain manifold.
The main results of this chapter are Theorem 4.2.4, Theorem 4.2.17 and Theorem 4.2.26, which
can be found in section 4.2. We first recall the preliminaries of fat distributions and introduce

an invariant, called ‘degree’, for corank 2 fat distributions.

4.1 Fat Distributions and their Degree

We have already come across a class of fat distributions, namely contact distributions. It is
also known that that holomorphic and quaternionic counterparts of contact structures are fat
as well. The primary goal of this section is to identify a class of C'"*°-distributions which are the
real analogue of holomorphic contact structures. But before delving into these, we discuss some
algebraic notions, which will become the backbone for the rest of this chapter. The terminology

introduced in this linear algebraic interlude will be made clear later in the chapter.

4.1.1 Distributions from a Purely Linear Algebraic Viewpoint

Unless mentioned otherwise, by a tuple (D, FE, Q) we will mean that D, E are real vector spaces
and Q : A2D — E is a linear map, interpreted as an E-valued linear 2-form on D. Given

two such tuples (D;, E;,€);) for i = 1,2, we consider a morphism between them as a pair of

67
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monomorphisms (F,G) : (D1, E1) — (D2, E2) such that the following diagram is commutative.

A2D1 L E1

e e

A2D2 I E2
Qo

In other words, F*Qs = G o Qy, where F*Qy = Q9 o A2F.

As a special case, consider the tuple (D', E’, Q') such that E’ = 0 which implies that €’
is the 0 map. Then for a morphism (F,G) : (D', E",Q) — (D, E,Q) we must have that,
F*Q = Go Q) =0. This captures the isotropy condition for formal horizontal maps.

Dualizing the map ©, we get the canonical map w : E* — A2D*. Now for any ordered
basis B = (e1,...,ep) of E, where p = dim E, we can associate skew-symmetric bilinear forms
w’ on D, defined by, w' = w(e’), where (') is the dual basis for E*. Note that € then have a

representation ) = w'e;. In particular, we see that the span

of these 2-forms on D is a well-defined subspace of A2D*, that only depends on €.

Given a tuple (D, E,Q), we have a linear map,

Qy : D — hom(V, E)

z 1, Qv = (v Qz,v))
For any subspace V' C D, we define 2-dual of V' by,
Ve = ker Qy = {x €D ‘ Q(z,v) =0, forallve V}.
In particular, for V =D, D is the kernel of the two form € given as,
D = ker () = {x eD ‘ Q(z,v) =0, for all v € D}.

Definition 4.1.1. Given a tuple (D, E, ) as above, a subspace V' C D is called,

e (-regular if the linear map Qy is surjective.

e Q-isotropic if Q(u,v) = 0 for all u,v € V. Hence, V is Q-isotropic if and only if
V C ker Qy .

A morphism (F,G) : (D', E',QY) — (D, E,Q) is called Q-regular if F(D") C D is Q-regular.
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Proposition 4.1.2. Given a tuple (D, E,Q)), a subspace V. C D is Q-regular if and only if
codimV® = dim £ x dim V.

Proof. It follows from the first isomorphism theorem that the map y is surjective if and
only if codimker Qy = dimhom(V, E) = dim E x dim V. This completes the proof since
V2 = ker Qy. O

Fat Tuple

We now introduce the notion of a fat tuple, parallel to the notion of 1-fatness introduced in

[Gro96, pg. 255].

Definition 4.1.3. A tuple (D, E, ) is called fat if for every non-zero v € D, the 1-dimensional

subspace (v) generated by v, is Q-regular.

One immediate example of a fat tuple is given as (D, R, w), where D is a symplectic vector
space, with a symplectic 2-from w : A2D — R. We should note that if (D, E, Q) is fat then
dim D must be even. In fact, if dim E > 2, then dim D must be divisible by 4 (Theorem 4.1.22).

Let (D, E,Q) be any tuple such that dim £ = p. Choosing a basis (e1,...,e,) of E, we
may write,

Q= Zwiei.
If the tuple is fat, then it is easy to see that each w’ : A2D — R is a nondegenerate 2-form
on D. Furthermore, these 2-forms are linearly independent, i.e, for any linear combination

SP ciw' = 0, we must have ¢; =0 for i = 1,...,p. Now for each 1 < 4,j < p, we have an

automorphism A% : D — D defined by,
w'(z, AYy) = w’(x,y), forall z,y € D.

We can easily observe that,

ij_ -1 _
AY =17 ol,,

where, I, : D — D* is the isomorphism defined by I, (v) = w;(v,_). We will refer to A%
as the connecting automorphism for the pair of nondegenerate forms (w?,w’). We now make

some rather trivial observations.

Proposition 4.1.4. The automorphisms A satisfy the cocycle conditions, that is,

AT AR = Ak AT = 4, (AT = AT forany 1<, jk <p
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Recall that, for any V C D, the w-symplectic complement of V is defined as,
Vi ={z € D|w'(z,y) =0, forall y € V}.
Therefore, the (2-dual of a subspace V' C D can be expressed as,
P
ve= vt
s=1

We observe that, though the individual sets on the right-hand side depends on the choice of
a basis for E, their intersection is independent of the choice. Let us now observe how these

complements are related to each other.

Proposition 4.1.5. For any subspace V' C D the following holds,
e V= (4vV)"
o Vi = 4W(V)

Proof. For V' C D we have,

Vi = {z e D|w(z,y) =0,Vy e V}
— {2 € D|wi(w, AVy) = 0,Vy € V}
= {2 € D|w'(z,2) = 0,Vz € AV}
= (Aiy)t

Similar argument gives us Vi = AY (Vlj). O
The next proposition justifies why one should look at these automorphisms in the first place.
This was first observed in [Dat11] for the case p = 2.

Proposition 4.1.6. Let (D, E,2) be a fat tuple. A subspace V' C D is Q-regular, if and only

if, for any fixed ig, 1 < iy < p, the sum

p
YAy
j=1

is a direct sum for any representation Q) = (w?).
Proof. With a fixed choice 2 = (wl, ...,wP) we have, by Proposition 4.1.5, that,
p p

P
Ve = ﬂ V= ﬂ (AiOJ)LiO = (ZAinV)L"O, for some fixed 1 < iy < p.
Jj=1 j=1 j=1
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Since W is nondegenerate, codim V& = dim ( > AWV). Now, by Proposition4.1.2, V C D is
Q-regular if and only if codim V? = dim E x dim V' = pdim V. Clearly, dim ( Z?:l AinV) =

pdim V precisely when the sum is a direct sum. Hence, the proof follows. O

Since for a fat tuple (D, E, ) every 1-dimensional subspace of D is Q-regular, we have the

following corollary.

Corollary 4.1.7. For any non-zero vector v € D, and for any fixed ig, the vectors { A%Jy,1 <

j < p} are linearly independent.

We now focus on the case when p = dim F = 2.

Degree of a Fat Tuple (D, E,Q) with dim E = 2

In what follows below, (D, E, Q) will denote a fat tuple, where dim £ = 2. Any choice of
ordered basis B of E defines an ordered pair of 2-forms (w!,w?) on D, which represents €2, in
turn defines the connecting automorphism A : D — D given by w!(x, Ay) = w?(z,y), for all

z,y € D.

Observation 4.1.8. Since (D, E, () is, in particular, fat and has dim E = 2, we have the

following.
1. Asubspace V' C D is Q-regular if and only if VN AV = 0 (follows from Proposition 4.1.6).

2. For every 0 # v € D, the tuple of vectors {v, Av} are linearly independent (follows from

Corollary 4.1.7). In other words, A has no real eigenvalue.
3. Vi = (AV)Ll and V+1 = A(V12) (follows from Proposition 4.1.5).
Let L(Q2) be the set of all connecting automorphisms of the triple (D, E, Q). Then,
Lemma 4.1.9. For any A, B € L(Q2), B can be written as a polynomial in A and vice versa.

Proof. Suppose (w!,w?) and (&', &?) be two representatives of 2 and A, B € L(Q) be the

respective connecting morphisms. We have already noted that,

b q .
Hence we must have some € Glz(R), so that we may write,

1 1 2

ol = pwl + qu?, &?

= rw! + sw?.
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We now relate A and B. For any x,y € D we have,

&'(z, By) = &*(z,y)
=pw!(z, By) + qw?(z, By) = rw'(z,y) + sw?(z,y)
=w!(z,pBy) + w'(z,gABy) = w'(z,1y) + w'(z, sAy)

=w! (z,(pB+ gAB — 1l + sA)y) =0

1

Since this holds for every z,y € D and since w" is nondegenerate, we get,

pB+gAB —rl +sA=0= (pl + qA)B =rl — sA.
As A has no real eigenvalue, we have that det(pl + ¢A) # 0 and hence,
B = (pI 4+ qA)~ (I — sA).

But now we can write B as a polynomial in A. Indeed, any operator C' must satisfy its

characteristic polynomial, say,
C" +cp1C" V4 .. 4+¢1C+cl =0, where n=dimD

If C is nonsingular, then ¢y # 0 and C~! is then written as a polynomial in C. Hence,

(pI + qA)~! and therefore B can be written as a polynomial in A as well. O

Proposition 4.1.10. For any A, B € L(Q2), deg ua = degup, where ua and pp are minimal

polynomials of A and B respectively.

Proof. Recall that for any linear map T : D — D, the degree of the minimal polynomial is the
maximal integer d such that the vectors {v, Tv,...,T% v} are linearly independent for some
v € V. Now suppose S = Zle a;T" for some scalars a; € R. Then for every v € V we have
that,

Sty e (v, Tw,..., T ), for any i > 0,

where d = degur(X). But then dim(v,Sv,...,S%) is bounded above by d and hence
degus(X) < d = degup(X). This observation with the preceding lemma completes the

proof. O

We now associate a numerical invariant to a fat tuple with dim F = 2.
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Definition 4.1.11. Given a fat tuple (D, E,2) with dim £ = 2, we define the degree of
(D, E,Q) as the degree of the minimal polynomial of A, where A € L(2).

Observation 4.1.12. We observe a few immediate properties of degree.

e If A: D — D is an automorphism, then the minimal polynomial ;4 must be non-zero.

Therefore, deg(f2) is non-zero.

e The fatness condition on (D, E, Q) implies that the operator A does not have any real

eigenvalue. Hence, the minimal polynomial cannot be of odd degree.

e Given a fixed nondegenerate 2-form w on some vector space V/, an operator T': V — V
is called skew-Hamiltonian (for w) if we have that (z,y) — w(x,Ty) is again skew-
symmetric. In particular, we see that a connecting automorphism A between (w!,w?), is

1

skew-Hamiltonian, with respect to w'. Hence, it follows that the degree of the minimal

polynomial of A is bounded above by i dim D ([Wat05]).

Proposition 4.1.13. Let (D, E,Q) be a fat tuple with dim E = 2. Let V C D be any subspace.
Then for A, B € L(2),
AV =V  ifandonly if BV =V.

Proof. Suppose V' C D satisfies V' = AV. If B: D — D is any other connecting automorphism
then by Lemma 4.1.9, B can be written as a polynomial in A. That is we have, B = byl +
b1 A+ ...+ b A for some scalars b; € R. But then,

BV = (> _bA)YWCY AVCV = BV =V,

since B is an automorphism. ]
This leads to the following definition.

Definition 4.1.14. A subspace V' C D is called invariant if V' = AV for some connecting

automorphism A € L().

Proposition 4.1.15. Suppose W C D is invariant. Then,
W =wh nwh =wh =w,

for any representation (w',w?) of Q. Furthermore, codim W = dim .
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Proof. If A: D — D is a connecting morphism, then by Proposition 4.1.5, we have,

W2 = (AW)H = wh,
since W is invariant. It then follows that, W = Wt n w2 = Wt = W2, Since ' is
nondegenerate, we have codim W = codim W+ = dim W. This concludes the proof. 0

Let us now look at the special case when the degree of the fat tuple is 2.

Degree 2 Fat Tuple
The first immediate observation about a degree 2 fat tuple is the following.

Proposition 4.1.16. Let (D, E,Q)) be a corank 2 fat tuple of degree 2. Then we can choose a

representation = (w',w?) so that the relating automorphism B : D — D satisfies B> = —1.

Proof. Let E = (e1,e,) and Q = w'e; + w?ey, so that A : D — D is the connecting
automorphism between for the pair (w!,w?). By the hypothesis, A satisfies A2 = M\A + uI for

some scalars A, 1 € R, such that A2 4+ 4y < 0. Now define,

- 1
S W () )Y S
b a1 N2+ dp

Then an easy computation shows that for pI + qA, we have (pI + qA)? = —1. Next consider

the basis, {é1,é2} of E given by,

€1 =gqe1, €2 =pe1+ea.
We write, Q = &'é; +@2%é, and denote the connecting automorphism B : D — D between the
pair W, w?. Then we see that, B = pI + gA and hence B? = —1I. O

Next, let us list a few interesting properties of a degree 2 fat tuple.

Proposition 4.1.17. Let (D, E,Q) be a degree 2 fat tuple. Suppose Q = (w!,w?) and A :

D — D is the connecting automorphism. Then we have the following :
1. ForanyV C D, the subspace V' + AV is invariant.
2. ForanyV C D, we have V¢ = (V + AV)11 = (V + AV) L2 = (V + AV)%

3. ForanyV C D, the subspace V + AV is independent of the choice of A € L(f). Indeed,
we have, V + AV = (V)2
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Proof. We have,

1. Since A has degree 2 minimal polynomial, let us assume that A2 = A + ul for some

scalars A\, u € R. Now for any V' C D we have,
AV 4+ AV) :AV+A2V:AV+()\A+/LI)VCAV—i—)\AV—F,uVCV+AV.

Since A is an automorphism, we have A(V +AV) =V + AV. Thus V 4+ AV is invariant.
2. Since for any V. C D, V 4+ AV is invariant, the claim follows by Proposition 4.1.15.
3. For any V' C D we have,
— (V+AV)) 0 (V4 Av)yle)
=(V+AV)N(V + AV)
=V 4+ AV
The claim then follows. O

The following proposition is interesting in its own right, as it characterizes invariant sub-

spaces in terms of €2 for degree 2 fat tuples. However we shall not have any occasion to use it.

Proposition 4.1.18. Let (D, E, Q) be a degree 2 fat tuple. Then for any subspace V. C D the
following hold :

1. V& is invariant.
2. V is invariant if and only V = vl
Proof. We have,

1. Forany V C D, we have V& = (V 4+ AV)*t = (V 4+ AV)12, where A € L(Q2). Hence,
AVE = A((V + AV)22) = (V + AV) 1 = VO

Thus V% is invariant.

2. For any V C D, we have seen that (VQ)Q =V 4+ AV. Then clearly, V is A-invariant if
and only if (V)% =V, O
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Thus, we may redefine the notion of invariance of a subset V' C D, for a degree 2 fat tuple,
in view of Proposition 4.1.18(2).

The importance of the following proposition will be clear in the next sections.

Proposition 4.1.19 (Extension Property). Suppose (D, E, () is a degree 2 fat tuple. For any
Q-regular subspace V C D, and for any

g (VY

we have that the subspace V! =V + (1) is Q-regular.

Proof. Let A € L(Q2). Recall that V' C D is Q-regular if and only if V + AV is a direct sum.
Let 7 ¢ (V)2 =V + AV and set, V/ = V + (7). We need to show that V' 4+ AV is a direct
sum. If not, then A7 € V + AV + (7). This implies that,

(V+AV)N (1, A1) = (AT).

But then (A7) is invariant, which contradicts that A has no real eigenvalue. Hence V' is

regular. O

4.1.2 Fat Distributions

Definition 4.1.20. A distribution D C TM is called fat if for each x € M, the tuple
(D2, TM/D|;, ) is a fat tuple, as defined in Definition 4.1.3.
In other words, every 1-dimensional subspace (v) in D, is Q-regular, where € is the curvature

form of D.

Example 4.1.21. Using the local framing we can easily see that contact structures are corank 1
fat distributions (Theorem 2.1.7). The converse is true as well, i.e, every corank 1 fat distribution

is a contact structure.

Before discussing fat distributions of corank > 2, let us first emphasize that fat distributions
are not quite plentiful, or generic, even though fatness is an open condition. The next theorem

gives us some numerical constraints for the existence of fat distributions.

Theorem 4.1.22 ([Ray68]). If D C T'M is a fat distribution of rank n and corank p, then we

must have the following :

e nisevenandn >p+ 1.
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o [fp>2, then 4 divides n.
e Then — 1-sphere S"~! admits p-many linearly independent vector fields.

Conversely, for any pair of integers (n,p) satisfying the above, there is a fat distribution D on

R™*P of corank p.

Remark 4.1.23 (Constructing a Fat Distribution). The proof of the above theorem can be
found in [Mon02, pg. 71]. We discuss the converse statement which is of some interest in the
present thesis. Suppose there is a pair of integers (n,p) such that S™~! admits p-many linearly
independent vector fields. Then it is well-known (see [Hus94]) that there are p-many linear

maps J¢ : R™ — R" satisfying the Clifford relations, namely,
JOJb 4 Jb g = 26,41, for 1 <a,b<p.

Now consider R"*? = R™ x RP with the coordinates {x!,... 2" 2! ... 2P} and define the

1-forms A% on R™*P by,

n
N =dz* — Y Jgatdal, fora=1,...,p,
ij=1

where we have J{ = J%(Oy,;, 0z,). It may be verified that D = (_, ker A\* is a fat distribution

on R™*P of corank p.

We shall now discuss some properties of fat distributions. First, let us observe some equiv-

alent criterion for a distribution to be fat.
Proposition 4.1.24. Given a distribution D C T M, the following are equivalent.
1. D is a fat distribution
2. Any non-zero local section X € D defined on a neighborhood of x € M, Lie bracket

generates the tangent space T, M in 1-step, i.e,

T,M =D, + [X,D],, forany 0 # X € D about x € M.

3. For any nonvanishing o € Ann(D) the 2-form w(«) is nondegenerate, where w is the

dual curvature map.

Proof. Let us first show that 1 < 2. Suppose D is fat. Then for any 0 # X € D,, the
1-dimensional subspace (X) is Q-regular, i.e, the map Dy, 5 Y — Q(X,Y) € TM/D|, is
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surjective. Recall that the curvature form 2 is given as,
Q(X,Y)=—[X,Y], mod D,, for local extensions X,Y € D of X,Y € D, respectively.

Now for any choice of extension X € D of X we have,

[X,D], mod D, = TM/D|, = D, +[X,D], = T. M.

That is, X Lie bracket generates T, M in 1-step. The converse is true for the same reason.

Now we prove, 2 < 3. Recall that the dual curvature form of D is given by the map,

w : Ann(D) — A*D*

a — da|p

which is in fact a bundle map. For any X,Y € D, and a € Ann D, respectively choose some

arbitrary local extensions X.Y € D and @ € AnnD about z. We then have,
w(@)(X,Y) = da(X,Y)|s = —a([X,Y])ls = —a((X,Y].).

Now assume that D is fat. If possible, suppose for some 0 # o € Ann(D) at the point x € M,
the 2-from w(«) is degenerate. Then, in particular, there exists a nonzero vector X € D, such

that w(a)(X,Y) =0 for any Y € D,. But then we have,
0=da(X,Y)= —a([f(,f/]x), for local extension X,Y € D of X,Y about ,
and consequently we get,
[X,D], Ckera = D, +[X,D], Ckera C T, M.

That is, the nonzero field X € D fails to bracket generate T'M at the point x, which is a
contradiction. Hence w(«) is nondegenerate. Since a € AnnD, is arbitrary, this proves the
claim.

To prove the converse, if possible, suppose there is some local field 0 # X € D aboutx € M,
which fails to bracket generate T, M. Then in particular we have that, E, = D, + [X, D], C

T, M has positive codimension. Then we can get a local 1-form 0 # « € Ann(D) such that
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o vanishes over E,. But then,
w(a@)(X,Y) =da(X,Y) = —a([X,Y]z) =0, for any local section Y € D about z.
This contradicts the fact that w(«) is nondegenerate at . Hence X bracket generates T M at

x. Since x € M is arbitrary, this concludes the proof. O

Remark 4.1.25. In view of Proposition 4.1.24(2), fat distributions are also known as strongly

bracket generating distributions.
As a direct consequence of Proposition 4.1.24(3), we get the following.

Corollary 4.1.26. A corank 1 distribution £ C TM on M is fat if and only if £ is a contact

structure.

Holomorphic Contact Structure

This is a direct holomorphic analogue of the contact structure.

Definition 4.1.27. Given a complex manifold M of (complex) dimension 2n+1, a holomorphic
contact structure is a corank 1 complex subbundle Z of the holomorphic tangent bundle 719 A7,

which is locally given as the kernel of some holomorphic 1-form « satisfying o A (da)™ # 0.

The standard example of a holomorphic contact structure on C2**! is given as,

= ker (dz — Z yid:cZ),
i=1

(1]

where {z,2%,y;} are the standard complex coordinates. Just as we saw in Theorem 2.1.7 for

the contact structures, we have a holomorphic Darboux theorem.

Theorem 4.1.28 ([AFL17]). Every holomorphic contact structure = on a complex manifold of
dimension 2n + 1, is locally (biholomorphically) equivalent to the standard holomorphic contact

structure on C2+1,

Recall that the complex manifold M comes equipped with an integrable complex structure
J:TM — TM. The real tangent bundle T'M is canonically isomorphic with the holomorphic
tangent bundle T(:OM < TMe = TM ® C, by the map, X — X + ¢JX. Here ¢ is the
complex structure on the complex vector bundle T'M¢c. Hence a holomorphic contact structure
= on a complex manifold M, can be identified with a real corank 2 subbundle D C TM. In

other words, D is the underlying real bundle to =.
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Corollary 4.1.29. The underlying real bundle D C TM of a holomorphic contact structure

= c TAOM on a complex manifold M is a corank 2 fat distribution.

Proof. By the complex Darboux theorem (Theorem 4.1.28), = is locally given as the kernel of
the 1-form a = dz — 27:1 yjdxj, where {z,y;,x;} are some complex coordinates. Writing
z = z1 + Lz etc, we have a real coordinate system {zl,zg,le,:cjg,yjl,ng} on M. Writing,

a = aq + tag, where «; are (real) 1-forms on M, we then have,

n n

oy =dz — Z (yjrdzj1 — yjedeso), ag = dzo — Z (yjodzjn + yjdajo).
j=1 =1

Then the underlying real bundle, D = ker ai; N ker avp is further described as follows :
oc.

D = <ayj1’ 8yj2’ 896]-1 + yjlazl + yj282’27 asz - ijazl + yj2822>

loc.

Since TM = D & (0s,,0s,), an easy computation shows that each vector in the above frame
oc.

Lie bracket generates T'M in 1-step. Thus D is indeed a corank 2 fat distribution. O

We now observe that,

Proposition 4.1.30. Let D be the underlying real distribution of a holomorphic contact struc-
ture 2 on M and Q) be the curvature form of D. Then a D-horizontal immersion v : > — M

is Q-regular if and only if u is a totally real immersion.
Let us recall the definition.

Definition 4.1.31. Given a complex manifold (M, J), where J : TM — TM is the almost
complex structure, a totally real submanifold is a real submanifold N C M such that TN N
J(T'N) = 0. More generally, a smooth immersion v : ¥ — M is said to be totally real

immersion if Im du N J(Im du) = 0.

Proof of Proposition 4.1.30. Since = is a complex vector bundle, the underlying real vector

bundle D must be J-invariant. Now, we have observed, D l: ker a1 N ker a9, where
ocC.

n n
a1 =dz) — Z (yjldle — yj2d$j2)> g = dzg — Z (ijd.%'jl + y]’ldl‘jg).
j=1 j=1
An easy computation then gives us that, dai(X,JY) = —das(X,Y) for any X, Y € D.

Consequently we see that the connecting automorphism A : D — D for the tuple (w!,w?),
where w’ = da;|p, is given as A = —J|p. Since D is fat by Corollary 4.1.29, the proof is

immediate from Observation 4.1.8 (1). O
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Quaternionic Contact Structure

Quaternionic contact structures, as introduced by Biquard in [Biq99], are generalization of the
contact structures in the quaternionic setup. Before going into the definition, let us motivate
the nomenclature.

Unlike in the case of holomorphic contact structures, the quaternionic counterpart, cannot be
defined simply by replacing the base field with the Quaternions, as they are noncommutative.
In order to understand what could be a possible way to generalize, we look at the contact
structures from an algebraic point of view. Recall the real Heisenberg Lie algebra structure on

C™ @ R, where the Lie bracket of two vectors in C” is given by,

n
(1, ..y 2n), (Y1, -y yn)] = ImZa’:iyi, for (x;), (y;) € C"
i=1
and [R,C"] = 0. For a given contact structure £ = ker & on a manifold of dimension 2n + 1,
we have that €2 = da¢ is a nondegenerate 2-form and we are able to get an almost complex
structure J : £ — &, compatible with €, i.e, Q(JX,JY) =Q(X,Y) for all X, Y € &. Then for
each x € M, the vector space &, @ T /¢|,, equipped with the Lie bracket,

(X, Y]=Q(X,Y)and [X,Z] =0 for X,Y €&,,Z € TE /¢,

given by the curvature form, is isomorphic (as Lie algebras) to the Heisenberg algebra C" @ R.

Now following this approach, we have the quaternionic Heisenberg Lie algebra, where the
underlying vector space is given to be, H” @& ImH, with the Lie bracket defined for a pair
of quaternionic vectors in this case. A corank 3 distribution D C TM on a manifold M of
dimension 4n+3 is called quaternionic contact if the vector space D, &1, M /D, equipped with
the Lie bracket given by the curvature from, is isomorphic (as Lie algebras) to the quaternionic

Heisenberg Lie algebra H' & Im H.

Remark 4.1.32. Given a distribution D C T'M, this associated Lie algebra, D, ® TM/D|,,
defined via the the Lie bracket of vector fields, is known as the nilpotentization of the distribution

D at the point x € M ([Tan70, Mon02]).
Formally we define,

Definition 4.1.33. A quaternionic contact structure on a manifold M of dimension 4n + 3 is
a corank 3 distribution D C T'M, given locally as the common kernel of 1-forms (A!, A2, \3) €

QL(M,R?) such that there exists a Riemannian metric g on D and a Quaternionic structure
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(Ji,i=1,2,3) on D satisfying,
d)\l"D = g(‘]’iﬂ *)'

By a Quaternionic structure we mean that J; are (local) endomorphisms which satisfy the
quaternionic relations: JZ = J3 = J3 = —1 = J1JoJ5. Equivalently, there exist an S%-bundle

@ — M of triples of almost complex structures (J, Jo, J3) on D.

Quaternionic contact structures are interesting in themselves and they appear in many

different contexts [BG08, IV10]. Let us first give one well-known example.

Example 4.1.34. Consider the unit sphere S4"+3 c R4+4 = H"+1  For each z € §4"*3,

consider the quaternionic subspace of H"*!, orthogonal to z, namely,

(2)F ={y e H"™" | (z,y) =0},

with respect to the inner product (z,y) = Y aly; for & = (z:),y = (y;) € H". Here ()
denotes the quaternionic conjugate. Now, this subspace has real dimension 4n. We get a

corank 3 distribution D on S4t3 given as,
D, =T, 0 (z)t, e sints,

One can easily check that D is indeed a quaternionic contact structure.
Just as in the cases of contact and holomorphic contact structures, we have the following.
Proposition 4.1.35. A quaternionic contact structure is a (corank 3) fat distribution.

Proof. Let D be a quaternionic contact structure on a manifold, equipped with a Riemannian
metric g on D. Consider some local 1-forms \;i = 1,2, 3 defining D such that d\¢|p satisfies
the relation, d\'|p = g(J;_,_), where {J; i = 1,2,3} abide by the quaternionic relations.

Now, for any tuple (p', p?, p?) we have,

o p'n)? == ),

and hence Y pJ; is invertible whenever (p', p?, p3) # 0. But then for any such tuple we have

that,

Zpid/\ib = Zpig(Ji,, J)=9(J., ), whereJ= ZpiJi.

Since J is an automorphism and ¢ is a Riemannian metric, g(J_, ) is indeed nondegenerate.

Now any local 1-form 0 # o € AnnD can be expressed as a = >_ p’)\’, for some non-zero
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tuple (p', p?, p3). Therefor, da|p = > p'(z)d\!|p is a nondegenerate 2-form. Hence, D is fat
by Proposition 4.1.24(3). O

4.1.3 Degree of a Corank 2 Fat Distribution

Let D C TM be a corank 2 fat distribution with curvature form Q : A2D — TM/D. Choosing
some trivialization of TM /D over some U C M, we can write, Q| = (w!,w?), where w® are
2-forms on D|y;. Since D is fat, by Proposition 4.1.24(3), we have that w’ : A2D|; — R are
nondegenerate 2-forms. In particular, we can define a local automorphism A : D|y — D|y

given as,

wh(u, Av) = w?(u,v), for any u,v € D|y.

As a consequence of Proposition 4.1.10, for any z € U, the degree of the automorphism
Ay : Dy — D, is independent of our choice of trivialization of 7'M /D. In particular, we can
now define the notion of degree for fat distribution.

Given a corank 2 fat distribution D C T'M, we define deg(z, D) as the degree of the minimal

polynomial of A, : D, — D,.

Proposition 4.1.36. Given a corank 2 fat distribution D C T'M, the map x — deg(z, D) is

lower-semicontinuous.

Proof. Suppose at some z € M, we have d = deg(z,D). Choose some trivialization of
Q = (w',w?) on a neighborhood z € U C M and get the local automorphism A : D|y —
D|y. Choose some local nonvanishing section X € D|y. Then, for v = X,, we have
{v,Av,..., A% 1v} are linearly independent. But then, {V, AV,... A%V} must also be
linearly independent on some open neighborhood U’ C U of x. Now, for any y € U’ we have
that A, has minimal polynomial of degree at least d. This proves that = +— deg(z,D) is a

lower-semicontinuous map. O

Definition 4.1.37. A corank 2 fat distribution D C T'M is said to be of degree d, if deg(x, D) =
d for each z € M.

Example 4.1.38. The underlying real distribution D of a holomorphic contact structure = on

a complex manifold of dimension 2n + 1, is a degree 2 fat distribution.

Example 4.1.39. Any corank 2 fat distribution D on a manifold of dimension 6 is of degree 2,
since deg(z, D) must be a non-zero even number and also deg(z, D) < 5 dim D, = 2, at each

x € M (Observation 4.1.12).
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However, there are fat distributions of type (4,6) which are not equivalent to holomorphic

contact. We shall revisit this in a later chapter.

Example 4.1.40. We will now give an example of a fat distribution on R!°, with degree 4.

Consider, R'? with coordinates, {z, w, z;,;,1 < i < 4}. Take the 1-forms,

4

a1 =dz — Z yidx;, g =dw— (y1d$2 - deSCl) — 2(y3dm4 — y4dx3).
i=1

Clearly these are independent forms, and therefore D = ker a;; Nker «ig is a corank 2 distribution.

A framing (Y;, X;) of D can be given as follows :

X1 = 0z, + 110, — Y204, Xo = Oz, + 420, + y10u,
X3 = axg + y3az - 23/461117 Xy = 8x4 + y4az + 2y36w7

Y; =0y, fori=1,...,4.
Note that,

dog = Z dx; N dy;, dog = (dxg ANdy, —dxi A dyQ) + 2(dx4 A dys — dxg A dy4).
i=1

It is easy to see that da;|p are indeed nondegenerate. Let us consider the automorphism
A : D — D given by, das(z,y) = day(z, Ay) for any 2,y € D. The action of A on the framing

is then given by,

AX) = — Xy, AXy = X1, AX3 = —2X4, AXy = 2X5,

AY; = Ys, AYs = —Yi, AYs = 2Yy, AY; = —2V5.

We can check that the minimal polynomial of this operator A is (T% + 1)(T? + 4). Thus,
D C TM is a degree 4 fat distribution. Consequently, germ of D is not equivalent to a

holomorphic contact distribution.

4.2 h-Principle for Immersions into Fat Distributions

In this section we shall obtain some new applications of h-principle of K-contact maps to con-
clude existence of horizontal immersions in degree 2 fat and Quaternionic contact distributions.
Furthermore, we shall prove the existence of K-contact maps into degree 2 fat distribution,

where K is a contact structure on 3. The proofs are based on the contents of Chapter 3.
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4.2.1 Horizontal Immersions into Degree 2 Fat Distribution

Given (M, D), recall from Definition 3.1.7, we have the relation RH°" c J(X%, M). Sections of
RHe" are monomorphisms F' : TS — u*T'M, covering some u : ¥ — M such that F(D,) C
Dy(s)- Furthermore, F' is Q-regular and is {2-isotropic, i.e, F*{2 = 0. Here € is the curvature
for of D.

We prove the following.

Theorem 4.2.1. Suppose D C T M is a degree 2 fat distribution on a manifold M and X is

an arbitrary manifold. Then RH°" satisfies the C°-dense h-principle provided,
rkD > 4dim ¥ + 4.

As seen in section 3.2, we have the relation RH" c J(%, M) associated to Q-regular, D-

horizontal immersions of 3 = ¥ x R into M, which admits a natural morphism ev : ﬁHork}Xg —

RHor induced by the restriction map COO(E,M) — C°(X, M). We prove the following.

Lemma 4.2.2. Suppose D is a degree 2 fat distribution on M. If rk D > 4dim 3 + 4, then

RHer s an extension of RM", ie, ev : RH"’]zXo — RHer s locally surjective.

Proof. Let (x,1,F) represent a jet in RH". Then V = Im F is an Q-regular, Q-isotropic
subspace of D,. Since V is Q-isotropic, i.e, V C V& we have VQQ c V& Now, we use
the hypothesis that D is degree 2 fat; in particular (D,,TM/D|,, <) is a fat tuple (Defini-
tion 4.1.3). Since V is Q-regular, it follows from Proposition 4.1.17(3) and Observation 4.1.8(1),
that,

dim V2" = 2dim V.

Also, from Definition 4.1.1, we have,
codim V¥ = 2dim V.

Since tk D > 4dim X 4 4 by hypothesis, it follows that the codimension of VOl in v is > 4.
Now, for any non-zero 7 € V\ V! the subspace V' =V @ (1) is an Q-regular subspace by
Proposition 4.1.19. Clearly V' is Q-isotropic. We can define a linear map F:T,> xR — TyM
as follows:

F(v,t) = F(v)+tr, forallveT,¥ andteR.

Now suppose (F,u) : TS — TM is a bundle map representing a section of R"°", with
u =bsF : X — M being the base map of F'. Denote V, = Im F,, = F(T,X) C Dy, for all
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x € X. It follows from the above discussion that we have two vector bundle over ¥ defined as

follows,

7%= | JV? and TS = (V2
A TzeEY

Since TS is a subbundle of TS of positive codimension, using a local field 7 in 7%\
(T as discussed in the previous paragraph, F' can be locally lifted over each contractible
open set O C X to a section of 7~€H°']O. Thus ev : TR — TRM" is surjective on such O

and hence RH°" is indeed an extension of RHer. O

Remark 4.2.3. In fact, it follows from the above lemma that the relation RH°" is non-empty

if tkD>dim¥ +4, i.e, dim M > 4dim ¥ + 6.

Proof of Theorem 4.2.1 now follows from a direct application of Theorem 3.2.7.

Existence of Regular Horizontal Immersions

The main result of this section can be stated as follows.

Theorem 4.2.4 ([BD20]). Suppose D C T'M is a degree 2 fat distribution. Then any u : ¥ —

M can be homotoped to a Q2-regular, D-horizontal map, provided
rkD > max {4dim ¥ + 4, 5dim ¥ — 3}.

Furthermore the homotopy can be made arbitrarily C°-close to w.

In order to prove Theorem 4.2.4, it is enough to obtain a formal Q2-regular, D-horizontal
immersion, covering a given smooth map u : ¥ — M, which gives a global section of the
relation RHo" ¢ J(Z, M). Then a direct application of Theorem 4.2.1 gives us the required
CP-small homotopy.

Consider the subbundle F C hom (7%, u*T'M), where the fibers are given by,
Fo = {F t 1Y = Dy(a) F' is injective, 2-regular and Q—isotropic}, x € X.

Clearly, I'F consists of formal maps in ¥Ho" = T'RHo" which covers the given v : ¥ — M.
In order to get a global section of F, we appeal to the obstruction theory ([Hus94]) for fiber
bundles.

Recall that given a fibration P — E — B, with typical fiber P, and a section s defined

over the n-skeleton B C B, the obstruction to extending this section to a section over the
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(n + 1)-skeleton lies in the cohomology group

H""™Y(B, 7, (P))

with local coefficient system m,(P). In particular, if the fiber is (dim B — 1)-connected, then
we have a global section of the bundle £ — B.

To determine the connectivity of the fibers of F, let us consider a degree 2 fat tuple
(D, E,Q) and let V(D) denote the space of k-frames in D. Define a subset R(k) of Vi (D)

by,
R(k) = {(vl, ..., ) € Vi(D) | the span (v1,...,vx) is Q-regular and Q—isotropic}
We first observe that the connectivity of this space does not depend on our choice of degree 2
tuple. Indeed we have the following.
Lemma 4.2.5. The space R(k) is 4n — 4k + 2-connected, where dim D = 4n.

Proof. The proof is by induction over k. For k = 1, we have
R(1)={veD|v+#0and (v) is Q-regular, Q-isotropic }.

But from Definition 4.1.3, every 1-dimensional subspace of D is Q-regular as well as isotropic.
Thus we get,
R(1) =D\ {0} ~ §%!

Hence R(1) is 4n — 2-connected. Note that, 4n — 2 =4n — 4.1 + 2.

Let & > 2 and assume that, R(k—1) is 4dn—4(k—1)+2 = 4n — 4k + 6-connected. Observe
that the projection map p : Vi (D) — Vi_1(D) given by p(vy,...,vx) = (v1,...,0k_1) maps,
R(k) into R(k — 1). We now identify the fibers of p: R(k) — R(k — 1).

Let b = (vi,...,v5-1) € R(k — 1), so that V = (vy,...,v5_1) is Q-regular and -
isotropic. As we saw in the proof of Lemma 4.2.2, a tuple (vy,...,vk_1,7) € R(k) if and only

if e Vo \ VQQ. We have thus identified, the fiber of p over b with,
—1/7\ — 1,/Q Qf
p (b)) =V\VF.
Note that, dim V?? = 2dim V = 2k and

codimV® =2dimV = dimV® =dimD —2dimV = 4n — 2(k — 1).
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Hence the fiber p~1(b) may be identified with F(k) := R**~2k+2\ R2(k=1) and so it is 4n —
2k+2—(2k —2) —2 = 4n — 4k + 2-connected. Next consider the fibration long exact sequence
associated to p : R(k) — R(k — 1),

o= mi(F(k) = mi(R(k)) = mi(R(kE—1)) = mi—1(F(k)) — -

Since m;(F'(k)) = 0 for i < 4n — 4k + 2, we get isomorphisms 7;(R(k)) = m;(R(k — 1)) for
i < 4n — 4k + 2. But from the induction hypothesis, 7;(R(k — 1)) = 0 for i < 4n — 4k + 6.
Hence,

mi(R(k)) =2 m(R(kE—1)) =0,

for i < 4n — 4k + 2 < 4n — 4k + 6. This concludes the induction step and hence the lemma is

proved. O
Let us now give the proof of main theorem.

Proof of Theorem 4.2.4. For x € %, we may easily identify the fiber F, with R(k) for the
degree 2 fat tuple (Du(x),TM/D|u(x), Q\u(x)) and hence it follows from Lemma 4.2.5 that the

fibers of F are 4n — 4k + 2-connected. Now from the hypothesis we have,
rkD>5dim¥X -3 & 4n>5k—-3 < 4n—4k+2>k—-—1=dim> — 1.

Hence, F has a global section. We thus have a formal, Q-regular, Q-isotropic, D-horizontal map
F', covering the given u : ¥ — M. Furthermore since tkD > 4dim ¥ + 4, by Theorem 4.2.1,
this formal map F' can be homotoped to a holonomic section of RH". In particular, there exists
an Q-regular, D-horizontal immersion ¥ — M, arbitrarily C°-close to u. This concludes the

proof. O

In particular, one may take u : ¥ — M to be a constant map. Then as a direct corollary

we get,

Corollary 4.2.6. Let D be a degree 2 fat distribution on M. Then ¥ admits an Q-regular
D-horizontal immersion in an arbitrary small open subset in M, provided rk D > max{4rkD +

4, 5dim Y — 3}.

As a consequence of Proposition 4.1.30, we see that the )-regularity condition in the
context of holomorphic contact structure translates into totally real condition. We thus have

the immediate corollary of Theorem 4.2.4.
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Corollary 4.2.7. Given a holomorphic contact structure = on a complex manifold M, any

smooth map u : X — M can be homotoped to a totally real horizontal immersion, provided
rkr 2 > max{4dim ¥ + 4, 5dim ¥ — 3}.
Furthermore, the homotopy can be made arbitrarily C°-small.

An Application to Symplectic Geometry

Let us now discuss an interesting consequence of the h-principle Theorem 4.2.1 in the symplectic
geometry. Recall that given a manifold N with a symplectic form w, an immersion f : ¥ — N
is called Lagrangian if f*w = 0. Now, further assume that the symplectic form w in question
is exact, say, w = du for some 1-form p on N. In this case, N must be an open manifold.
Now, a Lagrangian immersion f : ¥ — N is called exact if the closed form f*u is exact. The
space of exact Lagrangian immersions depends on the choice of a primitive u. We refer to
[Gro86, EMO02] for the h-principle for exact Lagrangian immersions.

Now, consider a manifold N with a pair of exact symplectic forms (du', du?) on it.

Definition 4.2.8. An immersion f : ¥ — (N, du',du?) is said to be an exact (du',du?)-

Lagrangian if f*u', f*u? are exact 1-forms.

Let M = N x R? and 7 : M — N be the canonical projection map onto N. Then on M
we have the 1-forms,

No=dz — it i =1,2,

where 21, zo are the coordinates on R?. Clearly A\! and A? are independent at each point of M
and so we have a corank 2 distribution D = ker A N ker A2. Note that dm : D — T'N is a
fiberwise isomorphism. Furthermore, the curvature form Qp is given as, Qp = (d\!|p, dA\?|p) =
(m*dpt|p, T dp?|p).

Now, identify C*°(X, M) with C*>° (X, N) x C*°(X) x C*°(X) for an arbitrary manifold X.
Suppose u = (f, ¢, ¢%) : ¥ — N x R x R is a C*°-map. Then,

utA = d(zi ou) — (Wou)*ui = dd)i — f*ui, 1=1,2.

Therefore,

w\ =0, fori =1,2 < fis exact (du',du*)-Lagrangian.
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Hence, u is D-horizontal if and only if f = 7o w is an exact (du',du?)-Lagrangian. Using
Theorem 4.2.1 we can now get an h-principle result for the regular exact (du', du?)-Lagrangians
in certain cases. This partially improves some of the results obtained in [Dat11].

For immersions f : ¥ — N, we have a similar notion of (du!, du?)-regularity. A subspace

V C TN is called (du', du?)-regular if the map,

¢ : T, N — hom(V,R?)
0 — (Ladul\v, Lad,u2|v)
is surjective (compare Definition 4.1.1). Similarly, an immersion f : ¥ — N is called (du*, du?)-
regular if V = Imdf, is (du', du?)-regular for each o € X.

Definition 4.2.9. A monomorphism F : TS — TN is said to be a formal regular, (du', du?)-

Lagrangian if for each o € 3,
e the subspace V =1Im F, C Ty(,)N is (dp', dp?)-regular subspace, and
o F*du’ =0, that is, V is du'-isotropic, for i = 1,2.

Let us denote by REx@L28  J1(X, M) the underlying relation.
We then have the following.

Proposition 4.2.10. Every (formal) regular, (du',du®)-Lagrangian map immersion lifts to a
(formal) Q-regular D-horizontal immersion. Conversely, any (formal) Q-regular D-horizontal

immersion projects to a (formal) regular, exact (du', du?)-Lagrangian immersion.

Proof. Suppose (F, f): TY. — TN is a given formal, regular (du!, du?)-Lagrangian map. Set,
u=(f,0,0): ¥ — M. Then we can get a canonical lift H : T — T'M covering u, by using

the fact that dm : Dy(,) — Ty()N is an isomorphism. We have the commutative diagram,

D T dut|p = dX\i|p
/ Jm
TS —— TN dp;

Therefore, H is injective. We claim that H is Q-regular and d\i-isotropic for i = 1,2 (in other

words Q-isotropic). The isotropy condition follows easily, since,

H*d\'|p = H*t*dp'|p = (dr|p o H)*dy' = F*du' =0,  i=1,2.
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To deduce the Q2-regularity, observe that we have a commutative diagram,

D) —— hom(Im H,, R?)

e e

Ty(e)N —;— hom(Im F;, R?)

where both the vertical maps are isomorphisms and the maps ¢, ¢ are given as,

¢('U) = (Lvd)‘i’ImH)i:LQ and ¢<u) = ([’udﬂihmF)i:l’Q'

Now, (du',du?)-regularity of F is equivalent to surjectivity of 1) which implies surjectivity of
¢. Thus, the lift H is a formal, regular, isotropic D-horizontal map. A similar argument proves

the converse statement as well. O

Since dy’ is symplectic for i = 1,2, we can define an automorphism A : TN — TN by,
dpt (u, Av) = dp?(u,v) for u,v € TN. We now restrict to pairs (du', du?) for which A has no
real eigenvalue and the degree of the minimal polynomial of A is 2 (at every point). Clearly,
this gives rise to the automorphism A : D — D satisfying, dA!(u, Av) = dA\%(u, v) for u,v € D;

which enjoys similar properties. In particular, D is then a fat distribution of degree 2.

Example 4.2.11. As a concrete example, one may consider the exact symplectic forms,

2n n

w! = Zd%‘ Ady; and w?= Z (dwai—1 A dyai — dzoi A dyzi—1),
i=1 i=1
on R with the coordinates (x;,9;;i = 1,...,2n). Then the automorphism A in this case
satisfies, A? = —I. A very similar calculation as in Corollary 4.1.29 shows that any holomorphic
symplectic form w on a complex n-manifold (i.e dw = 0 and w™ is nonvanishing), locally gives
rise to such pairs, when written as w = w! + w?. Furthermore, the associated distribution D
on R*"*2 is precisely the real distribution underlying a standard holomorphic contact structure,

as observed in Corollary 4.1.29.
We now have the following h-principle.

Theorem 4.2.12 ([BD20]). Suppose, du',du? are exact symplectic forms on N, related by an
automorphism A : TN — T'N, such that A, has no real eigenvalue and the minimal polynomial
of A, has degree 2, for all x € N. Then the relation RE?L%€ satisfies the C°-dense h-principle,
provided dim N > 4dim ¥ + 4.
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Proof. Suppose Fy € I'RFL28 is given. That is, Fy : TS — TM is a formal, regular, exact
(du', dp®)-Lagrangian, with fo = bs Fy. Consider the lift, Fy : TS — TM with bs Fy =

(f0,0,0); which is a formal, Q-regular, isotropic D-horizontal map by Proposition 4.2.10. Now,
dimN >4dim>X +4 < dimM >4dimY +6 < kD > 4dim X + 4.

Hence, by Theorem 4.2.1, we have a homotopy F’t of formal, Q-regular, D-horizontal maps, so
that Fy = df;; where f; = bs F,. Furthermore f; is arbitrarily C%-close to fy. Now consider
the projected map, F, = dr o F}, which covers f; = w o ft Again by Proposition 4.2.10, F;
is formal, regular, exact (du',du?)-Lagrangian, i.e, F; € TRE2L% . Furthermore, I, = df;.
Hence, we have the required homotopy, proving the h-principle. Clearly, f; is C%-close to f; for

all . This concludes the C°-dense h-principle for RE*2L28 0
An obstruction-theoretic argument as in Theorem 4.2.4 gives us the following result,

Theorem 4.2.13. Suppose (N, du',du?) is as in Theorem 4.2.12. If dim N > max{4 dim X +
4, 5dimY — 3}, then any f : ¥ — N can be homotoped to a regular exact (du',du?)-

Lagrangian, keeping the homotopy arbitrarily C°-small.

The above theorem improves the result in [Datll1], where the author proved the existence
of regular, exact (du!,du?)-Lagrangian immersions ¥ — N, under the condition dim N >

6dim X.

4.2.2 Horizontal Immersions into Quaternionic Contact Manifolds

Given an arbitrary quaternionic contact structure D C T'M (see Definition 4.1.33), we wish to
study D-horizontal immersions u : > — M. The aim of this section is to prove the following

h-principle.

Theorem 4.2.14. Suppose D C T'M is a quaternionic contact structure and Y is an arbitrary

manifold. Then RHer JY(Z, M) satisfies the C°-dense h-principle, provided
kD >4dimY» +4

In fact, given any monomorphism F : T — T M, covering some u : ¥ — M and satisfying
the curvature condition F*S) = 0, we can homotope F' to a D-horizontal immersion, keeping

the homotopy arbitrary C°-small, provided rk D > 4 dim ¥ + 4.

Denoting the curvature form of D by 2, we recall that,
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e a subspace V C D, is Q-isotropic if we have V C V.
e a subspace V C D, is Q-regular if and only if codim V! = corkD x dimV = 3dim V.
The following justifies the absence of )-regularity in the h-principle statement above.

Proposition 4.2.15 ([Panl16]). If D is a quaternionic contact structure, then any Q-isotropic

subspace of D, is Q-regular

Proof. Since (M, D) is a quaternionic contact manifold, we have a Riemannian metric g on
D and local 1-forms A* on some open neighborhood U of z, defining D|y = ﬂ§:1 ker A°.
Furthermore, the automorphisms J; : D|; — Dy defined via the relation dA* (u,v) = g(Jsu, v)

for any vectors u, v € D]y, satisfy the quaternionic relations,
J=J=J2=—1=JJ2Js

Now, suppose V' C D, is an Q-isotropic subspace. We show that > J,V is a direct sum.

First note that J; = —J,, where J is the adjoint of Js. Indeed, we have,
g(u, Jiv) = g(Jsu,v) = dN°*(u,v) = —d\*(v,u) = —g(Jsv,u) = g(u, —Jsv),

for any u,v € D|y. Since V is Q-isotropic, i.e, V C V¥ = 02:1 V4axs for any u,v € V we
have,

g(Jiu, Jov) = g(u, —J1Jov) = g(u, Jsv) = d\°(u,v) = 0.

Similar arguments give us that, g(Jsu, J;v) = 0 for any ¢ # j. Thus, we see that J,V, JoV, J3V
are pairwise g-orthogonal subspaces. Hence 23:1 JsV is a direct sum, so that dim (Z JSV) =
3dim V.

Next we show that, VN (ZJSV) = 0. In fact, for any w € V% and for any z =
Jivt + Jov? + Javd € 3 J,V, we have that

3

3
g(z,w) = Zg(Jsvs,w) = Zd/\s(vs,w) = 0.
s=1

s=1

In other words, V and 3" .J,V are g-orthogonal and hence they have zero intersection. But
then we readily have that, codim V& > dim (ZJSV) = 3dim V. On the other hand, it is
clear that codim V¢ < 3dimV, which implies that codim V& = 3dimV, proving that V is

indeed (2-regular. O

We now proceed as in the previous section to prove the following.
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Lemma 4.2.16. /ftkD > 4dim X + 4, then RHor s an extension of RHor.

Proof. Let (x,y, F) represent a jet in R"°". Then V =Im F is an Q-isotropic subspace of D,

andso V c V. By Proposition 4.2.15, V' is Q-regular as well. Hence we have,
codim V¥ = 3dim V.
Now from the dimension condition we have,
tkD > 4dim ¥ +4 = dimV® =1k D - 3dim ¥ > dim ¥ + 4 = dim V + 4.

Thus, we have that the codimension of V in V¥ is > 4. Now, for any 7 € V®\ V, we have
that V/ =V + (1) is again isotropic. We may then define an extension F:T,®R — T,M
by F(v,t) = F(v) +tr for all v € T,Y and t € R. Clearly (x,y, F) is then a jet in RM",

Proceeding just as in Lemma 4.2.2, we can now complete the proof. O

The proof of Theorem 4.2.14 now follows directly from Theorem 3.2.7.

Existence of Horizontal Immersions in Quaternionic Contact Structures
We conclude from the above h-principle, the following existence result.

Theorem 4.2.17. Let D be a quaternionic contact structure on M. Then any mapu : ¥ — M

can be homotoped to a D-horizontal immersion provided,
rtkD > max{4dim¥ + 4, 5dim¥ — 3}.

Furthermore, the homotopy can be made arbitrarily C°-small.

The proof is similar to that of Theorem 4.2.4; in fact it is simpler since Q)-regularity is

automatic by Proposition 4.2.15. Let us denote,
R(k) = {(vl, .., 0k) € Vi(Dy,) | the span (vq,...,vk) C Dy is Q- isotropic},

where Vi (D) is the space of k-frames in a vector space D. We then have the following.
Lemma 4.2.18. The space R(k) is 4n — 4k + 2-connected, where tk D = 4n.

Proof. The proof is via induction on k. For k = 1, we have,

R(1) = {v € D, | v is nonzero, (v) is isotropic}.
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But every one dimensional subspace is isotropic. Hence we have,
R(1) =D, \ 0~ 51,

which is 4n — 2 connected. Note that, 4n — 2 = 4n — 4.1 + 1.

Inductively, assume that for some k£ > 2, the space R(k — 1) is 4n —4(k — 1) + 2 =
4dn — 4k + 6-connected. We see that the projection map p : Vi (D,) — Vi—_1(D,) given by,
p(v1,...,v5) = (v1,...,v5_1) maps R(k) into R(k — 1). In particular, we have a fiber bundle
p: R(k) = R(k—1). Now, let b = (v1,...,v5-1) € R(k—1), so that V = (vy,...,v5_1) is
Q-isotropic, i.e, V C V. Proceeding as in Lemma 4.2.16, we get that a tuple (V1,0 05, T) €
R(k) if and only if 7 € V\ V. Now we see that,

dim V® = dim D, — 3dimV = 4n — 3(k — 1) = 4n — 3k + 3.
Thus we have identified the fiber p~1(b) with,
F(k) — R4n73k+3 \Rk‘fl

which is (4n — 3k +3) — (k — 1) — 2 = 4n — 4k + 2-connected.

Next, consider the fibration long exact sequence for the fiber bundle p : R(k) — R(k — 1),
= mi(F(k) = mi(R(k)) = mi(R(k—1)) = mi—1(F(k)) — -

Since m;(F'(k)) = 0, for i < 4n — 4k + 2, we get isomorphism 7;(R(k)) = m;(R(k — 1)) for
i < 4n — 4k + 2. But from the induction hypothesis, m;(R(k — 1)) = 0 for i < 4n — 4k + 6.
Hence,

mi(R(k)) =0, fori<dn—4k+2 < 4n — 4k + 6.
This concludes the induction argument as we have proved that R(k) is 4n—4k+2-connected. [

Proof of Theorem 4.2.17. Suppose u : 3 — M is an arbitrary map. Consider the subbundle
F C hom(T%,u*D) where the fibers are given by,

Fy = {F : T, — Dy | F is injective and Q-isotropic}, « € ¥,

Clearly, T'F consists of formal maps in WHor = I"RHor that covers u. We can identify the fiber

Fz with the space R(k) and hence by Lemma 4.2.18, the fiber is 4n — 4k + 2-connected. So,
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under the hypothesis,
tkD=4n>5dim¥X —-3=5k—-3&4dn—-4k+2>k—1,

the fibers of F are (dim X — 1)-connected. We then have a global section F' € T'F. The proof

now follows directly from Theorem 4.2.14. O
Applying Theorem 4.2.17 to the constant maps ¥ — M we have the immediate corollary.

Corollary 4.2.19. Given a quaternionic contact structure D on M, every manifold . admits
a D-horizontal immersion in some arbitrarily small coordinate neighborhood in M, provided

rkD > max{4dim ¥ + 4, 5dim ¥ — 3}.

An Application to Symplectic Geometry

Just as in the previous section, let us now consider a triple of symplectic forms, say w’ for
i =1,2,3, on a Riemannian manifold (V, g). Suppose, the endomorphisms J; of TN defined
by,

g(Jis ) =w'(5), i=1,23,

satisfy the quaternionic relations : J12 = J22 = Jg =—1=J1JoJ3.
Example 4.2.20. Any hyperkahler manifold (N, g) gives rise to such a symplectic triple ([BG08]).
Further assume that the symplectic forms are exact, i.e, wh = dui, fori=1,2,3.

Definition 4.2.21. An immersion u : ¥ — N is called an exact (du', du?, du?)-Lagrangian if

w*ut is an exact 1-form for i = 1,2, 3.

Now, given (N,g,du’,i = 1,2,3) as above, there exists a corank 3 distribution D on
M = N x R3, given by,
3
D= ﬂ ker (dz; — w*ui),
i=1

2 23} are the coordinates along R3. Clearly, D

where m : M — N is the projection and {z!, z
is then a quaternionic structure on M. Now, arguing just as in Theorem 4.2.12, we have the

following as a corollary to Theorem 4.2.14.

Corollary 4.2.22. Let (N,g,du',i = 1,2,3) as above. Then, there exists an exact (du')-
Lagrangian immersion > — N, provided dim N > max{4dim > + 4, 5dim ¥ — 3}.
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4.2.3 Isocontact Immersions into Degree 2 Fat Distribution

So far we have only exhibited examples of horizontal immersions in specific fat distributions. In
our next example, we will consider K-contact maps in degree 2 fat distributions, for K nontrivial.
Given K C TS and D C TM, recall from Definition 3.1.7, the relation R's°Cont — JYH 2, M),
representing the formal Q-regular, K-isocontact maps. That is, W'soCont — PRIsoCont congists
of monomorphisms F : TS — TM, covering some u : ¥ — M, inducing K = F~!'D.

Furthermore, F' is Q)-regular, i.e, the bundle map

u*D — hom(K,u*TM/D)

£ (X = Q& FX))

is surjective; and F satisfies the curvature condition, i.e, F*Q|x = Q. Here, Q and Qg are
the curvature forms of D and K respectively.

The goal of this section is to prove the following h-principle.

Theorem 4.2.23. Suppose D C T M is a degree 2 fat distribution and §& C TY. is a fixed

contact structure. Then, R'*°C°nt satisfies the C*-dense h-principle, provided
rkD > 2rk€ + 4.

In fact, suppose we are given any monomorphism F : T — T M, covering some u : ¥ — M,
inducing K = F~YD and satisfying the curvature condition F*Qle = Fo Q. Then F' can
be homotoped to a K-isocontact immersion ¥ — (M, D), provided tk D > 2rk& + 4, while

keeping the homotopy arbitrarily C°-small.

Before proceeding any further, let us first explain the absence of “(2-regularity” in the above

statement.

Proposition 4.2.24. Let D C TM be a degree 2 fat distribution and & C T, be a contact
structure. Then any formal isocontact immersion F : (T%,§) — (TM,D) satisfying the

curvature condition is )-regular.

Proof. Suppose, F : TS < TM induces £ = F~'D and satisfies, F*Q[¢ = F o Q¢; where
F: TY/§ = w*TM/D is the induced injective bundle map and )¢, Q2p are the curvature forms
of £ and D respectively. Fix some x € X, and let y € M, so that F': T;,X — T, M. We may

choose some trivializations of 73 /¢ and T'M /D about x and y, respectively. Then there exists
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local 2-forms a,wl,w2, such that,
1 2
Qf = O”g and QD = (w ]D,w ‘D),
loc. loc.

with respect to the trivializations. Denote by A : D, — D, the connecting automorphism for
the tuple (w!|p,,w?|p,). Since F'is injective, we then see that the curvature condition at the

point x translates into,
F*olle = bio,  F*w?|e = boo, for some scalars (b1, b2) # (0,0).

Without loss of generality, assume that b; # 0. Let us denote V = F'({;) C D,, so that we
may write,
by

v =cwlly, forec==.

w b

?|

Since o is a nondegenerate 2-form on &, and b; # 0, we observe that V is a symplectic
subspace of D,, with respect to w!. Recall from Observation 4.1.8 (1) that, V is Q-regular if
and only if V+ AV is a direct sum. Now, if possible, let z = Av € VN AV forsome0 #v e V.

Then, using Observation 4.1.8 (3), we have for any u € V,
wh(z,u) = w'(Av,u) = W (v,u) = cw' (v,u) = W' (Av —cv,u) = 0.

Since V is w!'-symplectic, we have that Av = cv, implying that c is an eigenvalue of A. But
this is a contradiction by Observation 4.1.8 (2). Hence, we have that V is Q-regular. Since
x € X is arbitrary, we have that any formal isocontact map F satisfying the curvature condition

is Q-regular. O

The proof of Theorem 4.2.23 follows from Theorem 3.2.7, provided we can prove the ‘local
extensibility’ property. Recall that we have the relation RlsoCont Jl(i},M), whose sections
are the formal, Q-regular, K-isocontact immersions & — M, where K = dr 'K and 7 : & =
> xR — X is the projection. We also have a natural map ev : 7%'S°C°”t|gxo — R'soCont induced
by the projection map ¥ — . We show that R'S°Cont s indeed an extension in the sense of

Definition 2.2.13.

Lemma 4.2.25. Let D C T'M be degree 2 fat and & C TY. be a contact distribution. Then

RIsoCont js an extension of R'*°C°" provided rk D > 21k & + 4.

Proof. Suppose (z,y, F) is a jet in R'°C°"t and denote, V = F(&,) C D,. Since the induced

map F : TS/Y|, — TM/D|, is injective, we may choose suitable trivialization of TS/ and
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TM/D around x and y respectively, so that we have a representation (2 = (w!,w?) and the
ocC.

curvature condition F*Q|¢, = F o Q¢ translates into,
VCDyis wl-symplectic and w?-isotropic.

We show that VN VQQ = 0.
Denote by A : D, — D, the connecting automorphism for the tuple (w!,w?). Since D is a
degree 2 fat distribution, A must satisfy A% = M\A + uI for some scalars \, n € R, with p # 0.

Now for any uw,v € V' we have,
wh(u, Av) = w?(u,v) = 0, as V is w’-isotropic.
This further implies that for all u,v € V,
wh(Au, Av) = w?(u, Av) = w'(u, A%) = Mt (u, Av) + pw! (u,v) = pw! (u,v).

As 11 # 0, we get that AV is w!'-symplectic. But then V + AV is w'-symplectic as well, since
w!(V, AV) = 0. We then have,

VAV = (V£ AV) N (V + AV)L = 0, by Proposition 4.1.17.

Since V is an Q-regular subspace, from Definition 4.1.1, it follows that the codimension
of V¥ in D, is 2dim V. Hence, from the dimension condition, it follows that dim Ve >4
Now, for any 7 € V* we have that 7 ¢ V2 and so by Proposition 4.1.19, V! =V + (1)
is an €-regular subspace of D,. Let us define an extension F:T,Y xR — TyM of F' by
F(v,t) = F(v)+tr fort € R and v € T,%. It is then immediate that Fﬁl(Dy) =&, and Fis

Q-regular. Furthermore, for any (v,t) € £» = & ® R, we have that,
QE(t), F(v)) = Q(tr, F(v)) =0, asTe V= (F(&))2,

and so, Qg(t,v) =0 = Q(F(t), F(v)). In other words, F satisfies the curvature condition

relative to Qg and Qp. Proceeding as in Lemma 4.2.2, we can now complete the proof. O

The proof of Theorem 4.2.23 is now immediate from Theorem 3.2.7.

Existence of Isocontact Immersions

In this section, we prove the following.
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Theorem 4.2.26. Suppose & C TX. is a contact structure on ¥ and D C T M is a degree 2 fat

distribution on M. Then any map u : 3 — M can be homotoped to an isocontact immersion

(3,€) — (M, D) provided,
e kD > max{2rk& + 4, 3rk{ — 2}, and
e one of the following two conditions holds true,

— both & and D are cotrivializable.

- H2(®) =0.
Furthermore, the homotopy can be made arbitrary C°-close to w.

Suppose dim M = 4n+ 2 and dim ¥ = 2k + 1. Let us first assume that we are given some
injective bundle map G : TX/{ — w*TM /D, covering a map u : ¥ — M. Now, as in the

previous two cases, we construct a sub-bundle 7 C hom(§, u*D), where the fibers are given by,
Fr = {F : & — Dy | F is injective and F*Qf¢, = Gy 0 Qg}, for x € 2.

We wish to get a global section of the bundle F. Towards this end, we need to figure out the
connectivity of the fibers F,.

Let us consider the following linear algebraic set up. Let (D, E, Q) be a degree 2 fat tuple.
Suppose (2 is represented by a pair of 2-forms (w!,w?) on D and A : D — D is the connecting

automorphism for the pair (w!,w?). Consider the subspace R(k) C Voi(D) given as,

o o b is a symplectic basis for w!|y, and V is w?-isotropic,
R(k) = {b—(ul,vl,...,uk,vk) € Var(D) s o v Ve .

As we argued in Lemma 4.2.25, it is easy to see, by an application of Theorem 2.1.7 about
the point z, that the connectivity question about F, can be translated to that of R(k), where
rk& = 2k.

Lemma 4.2.27. The space R(k) is 4n — 4k + 2-connected, where dim D = 4n

Proof. We proceed by induction on k. For k =1,
R(1) = {(u, v) € Va(D) ‘ wh(u,v) =1 and w?(u,v) = 0}.

If (u,v) € R(1), then

veut?\utt =ut2\ (uJ‘l ﬂu“),
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As (D, E,Q) is a fat tuple, every non-zero u is 2-regular and hence in particular, v Nu'2 is a
codimension 1 hyperplane in u*2. Clearly the complement space is then disconnected. But since
we also demand that w!(u,v) = 1, the space of all such v is a codimension 1 affine subspace
of D and hence is a contractible set. Thus, we have obtained that, R(1) is homotopically
equivalent to the space of nonzero vectors u € D. But, D\ 0 = R*"\ 0 ~ §4"~1 is clearly
(4n — 2)-connected. Hence, R(1) is (4n — 2)-connected. Note that 4n — 2 = 4n — 4.1 + 2.
Let us now assume that R(k—1) is 4dn—4(k—1)+2 = 4n—4k-+6-connected for some k > 2.
Observe that the projection map p : Vo (D) — Vag_o(D) clearly maps R(k) into R(k — 1).
For a fixed tuple b = (u1,v1,...,up_1,v5_1) € R(k — 1), the span V' = (uq,...,v5_1) is
w!-symplectic and w?-isotropic. As argued in Lemma 4.2.25 we then have that V + AV is

wl-symplectic, i.e, (V + AV)N (V + AV)1t = 0. Since V is Q-regular, we get that
dim(V + AV)H = dim D — dim(V + AV) = dim D — 2dim V = 4n — 4(k — 1) = 4n — 4k + 4.
Since (D, E,Q) is a degree 2 fat tuple, from Proposition 4.1.17 (2) we get that,

(V+AV)H = (V 4 AV) 2 = v

Thus it follows from the w'-symplecticity of V + AV that the restriction of w! and w? to the
space D=V are symplectic. Moreover, since V* is invariant, (D, E,Q|p) is also a degree 2
fat tuple. So if we choose any (u,v) € VoD, satisfying w' (u,v) = 1 and w?(u,v) = 0, it follows

that (u1,...,vk_1,u,v) € F(k). In fact, we may identify the fiber p~1(b) with the space,
{(w0) € Va(D) | ! (u,0) = 1,0%(u, ) = 0},

which is (dim V! —2)-connected as it has been already noted above. Thus, p~1(b) is dim V< —
2 = (4n — 4k +4) — 2 = 4n — 4k + 2-connected.

Now an application of the homotopy long exact sequence to the bundle p : R(k) — R(k—1)
gives us that,

mi(R(k)) = m(R(k — 1)), fori<dn—4k+2.

But then by induction hypothesis we have,
mi(R(k)) = m(R(k — 1)) =0, fori <d4n —4k+2.

Hence, R(k) is 4n — 4k + 2-connected. This concludes the proof. O
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We now prove the existence.

Proof of Theorem 4.2.26. Suppose u : ¥ — M is any given map. We first observe the impli-
cation of the second part of the hypothesis. If both & and D are given to be cotrivializable,
it is easy to note that there exists an injective bundle morphism G : T¥/{ — w*TM/D. In
general, the obstruction to the existence of such a map G lies in H?(X) ([Hus94]). Hence, with
H?(X) = 0, we have the required bundle map.

Now for a fixed monomorphism G, we construct the fiber bundle 7 = F(u, G) C hom(&, u*T M)
as discussed above. By Lemma 4.2.27, the fibers of F are 4n — 4k + 2 connected, where

rkD = 4n and rk & = 2k. From the hypothesis we have,
tkD>3rké—2=06k—2 < dn—4k+2>2k=dim>» —1

Hence we have a global section FelF.

Lastly we observe that for any such global section F e T'F, we may get a formal, &-
isocontact immersion F' : T — u*T'M covering u, satisfying F|p = Fand F = G, by
choosing some splitting of 7% /¢ and w*T'M /D. The proof now follows from a direct application
of Theorem 4.2.23. O

An application of Theorem 4.2.26 to constant maps > — M gives us the following corollary.

Corollary 4.2.28. Let ¢ C TX,D C TM be as in Theorem 4.2.26, satisfying the hypoth-
esis. Then there exists an &-isocontact immersion (X,£) — (M,D) in any arbitrary small

neighborhood of a point in M.



Chapter 5

Partially Horizontal Maps

Throughout this chapter M will denote a smooth manifold with a fixed distribution D having the
curvature form € = Qp. We shall prove an h-principle (Theorem 5.1.17) for certain ‘regular’
class of smooth immersions u : ¥ — (M, D), which induce distributions on . Gromov
defines such maps as partially horizontal maps. Application of the h-principle are contained in

section 5.2.

5.1 A General Approach to m-Horizontal Immersions

In general, for an arbitrary immersion u : ¥ — M, the object du=!(D) C TS need not be a

distribution. We are thus naturally led to the following definition introduced by Gromov.

Definition 5.1.1. [Gro96, Pg.256] An immersion u : ¥ — (M, D) is said to be m-horizontal if

du~Y(D) is a rank m distribution on X.

An m-horizontal immersion, where m = dim X, is clearly a D-horizontal immersion. This
justifies the nomenclature.

Now, given an m-horizontal immersion v : ¥ — M, let us denote the distribution du~!(D)
by G. Note that, u : (3,G) — (M, D) is then a G-isocontact immersion. Therefore, the

induced map,

du:TY/G — u*TM/D

is injective and we have the following numerical constraints:

kD >m, corkD > dimY —m.

103
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As discussed in Proposition 3.1.4, we have the following commutative diagram:
A2G —% 5 A2y*D
le lu*ﬂp

TS/G — w'TM/D
U

where ¢ denotes the curvature form of G.
For smooth maps u : ¥ — M and distributions G C T'Y of rank m, let us now consider the
operator,

(u, G) — u*\g,

where \ : TM — T M /D is the quotient map. We have that
wWNe=0 = du(G)CcD = GCdu (D).
Now, if we further assume that the map u : ¥ — M is an immersion satisfying,
rk(A o du) > dim ¥ — m,

then a simple dimension counting argument gives us that du~—!(D) = G, and hence u is then
an m-horizontal immersion. Furthermore, it should be noted that in this case G is completely
determined by w.

We now formalize this in the framework of differential operators as discussed in section
2.2.2. Note that, the space of m-distributions on ¥ can be viewed as the space of sections of

the m-Grassmannian bundle Gr,,, 7> over X. Let
B=C>*X%,M) xI'Gr,, TX.
For each (u, G) € B, consider the vector space,
&) = Thom (G,u*TM/D).
We have u*A|¢ € £, ). Thus the operator,
@mHorCr (4, G = ut Mg

can be treated as a section of the infinite dimensional vector bundle £ — B. The solutions

(u, G) of the equation ®™Hr6r — 0, for which u : ¥ — M is an immersion with rk Im(Xodu) >
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dim X — m, are precisely the m-horizontal immersions ¥ — M. We should note that D" -HorGr
is not a differential operator in the sense of Definition 2.2.19. Let us now introduce an auxiliary

differential operator in this context.

5.1.1 Auxiliary Differential operator © = D*
Let us first fix a rank m distribution G C T'% and a splitting p of the short exact sequence,

p

N
0 G TS TS/G —— 0

Since Gry, (W) is locally parameterized by hom (V, W /V'), for any subspace V' in a vector space
W, we may identify a neighborhood of GG in I'Gr,,, T3 with the infinite dimensional vector space
I'hom(G,TY/G) as follows : For each morphism ¢ : G — T'Y /G, we have the injective map,

$:G—=TY

X=X+ ppX
which defines a rank m distribution, namely,
G®=TIm¢ = {X +ppX | X € G}.

Then {G? | ¢ € Thom(G,T%/G)} is a neighborhood of G parameterized by I hom(G, TS/ G).

Consider the subspace,
U=U(G,p)=C®X,M)xThom(G,TX/G).

We can then identify & — B by (u,¢) — (u, G?). For simplicity, let us assume that D =
MP_; ker A* for global 1-forms A\* € Q!(M), so that the fiber over (u,G?) is I hom(G?,RP).

We then observe that the vector bundle £ — B trivializes over U as,

Elu =U x T hom(G,RP).
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We have the following diagram,

U x T hom(G,RP) < £
B

U=C>, M) x Thom(G,TS/G) ——

where, there is a canonical isomorphism of fibers,

I hom(G,RP) — T hom(G?, RP)

a+— o gz_ﬁ_l
Now, consider an auxiliary differential operator,

D =9%": C%®(%, M) x Thom(G,T%/G) — T hom(G, RP)

(u,d) — ¢*u' N = (X = "N (X + po X))
It is clear that,

D(u,¢) =0 = u'N[,3=0,s=1,....p = du(Img) CD ie du(G®) c D.

‘Im

Hence, if (u,¢) € U is a solution of © = 0, where u is an immersion and rkIm(A® o du) >
dimY — m, then u : ¥ — M is indeed an m-horizontal immersion, inducing the rank m
distribution G¢.

Let us now determine the linearization operator of © at some (u, ¢),
Liue) : TuTM ® T'hom(G, TS /G) — T hom(G,RP).

Suppose £ € T'w*T'M is represented by the family of maps u; : ¥ — M such that, & =
%|t:0ut(a) for o € ¥ and ugp = u. Then for any ¢ € Thom(G,TY/G) we have,

d
Lug) (&) = ﬁ‘t:()@(ut,qﬁ + tah)
3 1 *\S 1 | 4., *\ S 1
:%1_1)1(1);[%)\ op+tY —uA o¢>}
= lim 1 {u*)\s - u*)\s} o ¢+ lim }u*)\s o (tpo)
t50t L ¢ t50t ©

— e\ + dieX*) 0 6+ u A 0 poy
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Infinitesimal Inversion of ®

Restricting the linearization operator to the subspace I'u*D we have,

Ly : Tu"D @ T'hom(G,TY/G) — I'hom(G, RP)

(f,ﬂ)) — 1edA\° o p+u Ao porp
L(,¢) is clearly C°°(X)-linear and therefore, is induced by a bundle map
u*D @ hom(G, TX/G) — hom(G, RP).
Furthermore, if ®(u, ») = 0, then it follows that
L) (&) = 1o d+u" N opoy,

where = Qp is the curvature form. As before, we identify the regularity condition on the

solution tuples (u, ¢).

Definition 5.1.2. A tuple (u, ¢), where w : ¥ — M is an m-horizontal immersion inducing

G? = du~'(D), is called Q-regular if the bundle map L(y,¢) is surjective.

It is to be noted that the above notion of (2-regularity is different from what was defined in
the previous chapter. The notion of regularity is indeed independent of any choice of defining
forms for D or the choice of a splitting map p : TS/G — T3, as it can be seen from the
proposition below.

Now, when wu is an m-horizontal immersion inducing the chosen distribution G, that is if
G = du~'(D), then the homomorphism ¢ = 0. Since p is a splitting morphism in the diagram

below,

TS, — ™ TN

1|

T%/G ——— TM/D

we have that,

u* N op(X modG) = d~u(p(X mod G) mod G) = du(X mod G),
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for any X € TY. Thus, we have du = u*)s o p for any choice of splitting map p. Hence, the

linearization operator becomes,

L,0)(&0) = 19 e + duop

In particular, the Q-regularity of a solution tuple may now be defined as follows.
Definition 5.1.3. A tuple (u, H), where u : ¥ — M is an m-horizontal immersion inducing
the rank m distribution H = du='(D), is called Q-regular if the bundle map,

Ly w"D@©hom(H, TS /H) — hom(H,u"T'M/D)

(&) = 1eQ| g + du o

is an epimorphism, where du : TY./H — uw*T'M/D is the induced monomorphism.
Let us now show that all these notions of regularity are in fact equivalent.

Proposition 5.1.4. Suppose G C T'Y is a k-dimensional distribution on ¥ and p : TY. /G — G
is a splitting morphism. Let u : ¥ — M be an m-horizontal immersion inducing the distribution
G? = du™'D, for some morphism ¢ : G — TX/G. Denote G® by H. Then the following are

equivalent.
1. The operator L, p) is an epimorphism.
2. The operator L, 4 is an epimorphism.

3. The bundle map,

QO : u*D — hom (H u*(TM/D)/Im c[u)

£ qouwfa

is an epimorphism, where q : w*TM/D — w*(TM/D)/Imdu is the quotient map.

Proof. Let us first prove, 1 < 2. Recall that the map L, p) is given as,

L,y : w'D@®hom(H, TY/H) — hom(H,u*TM/D)

(60) = 160l + du” 0 = (X 1 Q¢ u.X) + du” 0 (X))

where du’" TY/H — u*T'M/D is the induced monomorphism. We shall relate this map with

Lug)-
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First observe that the bundle map, 8 : TY/G — TY/H given as,
B(X mod G)=p(X modG) mod H,
is an isomorphism. Indeed we have that,
B(X mod G)=0 =p(X modG)eH = p(X modG) =0,

since ImpN H =ImpNG? = 0. Now, p being injective, we conclude that X mod G = 0,
showing that [ is injective. But, this further implies that 3 is an isomorphism for rtk 7% /G =
tkTY/H.

We also have that ¢ : G — G® = H is an isomorphism and hence get the isomorphism,

a:hom(G,TY/G) — hom(H,T¥/H)

Y Boyod!
Now for any ¢ : G — TY /G and X € G we see,
WA (p(X)) = du'! (pw(X) mod H) — du" o B(X)).

Consequently we now have that,

Q& 6(X)) +w X (pr(X))
Q(&,3(X)) +du”" o B(1(X))
Q& 6X) +du’" o a(1)(6X)
Lo (&) (6X)

= Lug) (& ¥) = L) (& ay)) o b

L(u,6) (57 ¢) (X)

It is now immediate that L, 4) is surjective if and only if L, z) is, since both a and ¢ are

isomorphisms. This concludes the proof that 1 < 2.

Next, we show that 1 < 3. For any (&,) € w*D & hom(H,TY/H) we have,

L (&) = e + duo .
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We observe that L, p) restricted to hom(H, T /H) equals the morphism
(du)y : hom(H, TS /H) — hom(H, v*(TM/D)),

which is injective linear. Hence, the fiber wise surjectivity of L, ) is equivalent to that of
Q,. O
The Microflexibility and Local h-Principle for the Sheaf of (2-regular Tuples

For a given distribution G C T'Y, with a splitting map p : TY/G — T3, we define a subspace
A C C®(X,M) x T'(hom(G,TX/G) as follows :

A= {(u, gi)) | u is an immersion, rk(A* o du) > dim ¥ —m and L, ¢) is an epimorphism}

It is immediate that A = Sol A for an open relation A C JY(Z, M) x hom(G,T%/G)W.
Furthermore, we have observed that the operator ® : (u,¢) — u*A°|ge is infinitesimally
invertible over the solution space A, with order of inversion 0.

As usual, we have the relation,
RGP = RGP(D, A,0) € J*TH(E, M) x hom(G,TE/G) @+,

consisting of A-regular, a-infinitesimal solutions of D. In other words, for o > 0, the smooth
solutions of R, are precisely the Q-regular tuples (u, ¢), where u : ¥ — M is an m-horizontal

immersion, inducing the distribution G¢ = du_l(D). Let us denote the sheaves,

®GP = SolRG# and WGP =TREF.

Observation 5.1.5. We have the following.
1. The solution sheaf ®&+° is a microflexible sheaf, by Theorem 2.2.27

2. For a > 2, the relation RS satisfies the local h-principle, i.e, the jet map jo+1 : G —

\Ilg’p is a local weak homotopy equivalence, by Theorem 2.2.28
Just as before, let us now define the following first jet relation.

Definition 5.1.6. For a fixed G C T'Y and a splitting map p : TY/G — T'%, define the relation
RGP C JIS, M) x hom(G, TS/G)Y) consisting of jets j! (o) satisfying the following :
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e du, is an injective, inducing G = du_lDu(o) and the map L, 4) is surjective at o

e the curvature condition u*Q|G¢ = d~u¢ o QG¢ holds, where Q44 is the curvature form of

G% and du’” : TS /G|, — TM/D|, () is the induced map.
It is immediate that RE* C Rg;’p and ¢ = Sol RY*. Let us now focus on a relation,

independent of the choice of G and p.

5.1.2 The Relation R HorGr

Recall from Proposition 3.1.4 that for any tuple (u, H), where u : ¥ — M is an m-horizontal

immersion inducing the distribution H = du~'D, the curvature condition is understood as,
Wy = duoQp,

where du : TS/H — w*TM/D is the induced map and Qp : A2H — TX/H is the curvature
2-form. Now, the curvature form Qg at the point o is determined by the first jet j}{(a). Thus,

just as in Definition 3.1.7, we define a first order relation R™Ho¢r a5 follows.
Definition 5.1.7. R™Horer ¢ J1(5, M) x (Gr,, TS)™) consists of jets j! (o) satisfying,

e P = du, is injective.

e P*)°|y, = 0 and the induced map P : TS /H|, — TM /Dl is injective.

e the linear map,

Dy(o) ® hom(H, TS /H)|; — hom (Hy, TM /D, (y))
(&,9) = P*1eQln, + Pop
is surjective.

e the curvature condition,

P*Q|y, = PoQy,,
holds at the point o, where Qg : A2H — T'Y/H is the curvature 2-form.

For each a > 0, we have the relations R7-Hor¢r c jo+1(%2) M) x (Gr,, TE)(@+), consisting of

jets jz‘j{}(a) satisfying,

° ‘7571—[(0) c Rm—HorGr, and
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i j%m—HorGr(u’H)(U) =0in hOm(H, U*TM/D)(O‘)

It is immediate that R™HorGr Rgl‘HmGr. We have the following jet lifting lemma, very

similar to Lemma 3.2.1.

Lemma 5.1.8. For any a > 1, the jet projection map
p=p¢tt JTY(S, M) x (Gr,T) O = JYE, M) x (Gr, TE)

maps the relation RHoCr surjectively onto R™H°r" The fiber over each jet in R™-Her¢r
is contractible. Furthermore, any section of R 1°Cr  defined over a contractible chart in %,
can be lifted to R™Mr¢" along p, and consequently, the induced sheaf map p : TR -Hor6r

I'R™HerCr s 3 weak homotopy equivalence.

Proof. In order to proof the lemma, let us interpret the curvature condition in a different light.

First observe that we have an operator,

C®(S, M) x Q1 (Z,RT) x C® (X, Matgx,) — Q'(Z,RP)
(u, = ("), A) = (W) — Ap
where ¢ = dim ¥ — m. It is then immediate that for any tuple (u, u, A),
(u*N°) =Ap = WA

0.

1 ker u” =

In particular, if we assume that the tuple u = (M) of 1-forms is point-wise independent, and if

w is an immersion with rk Im(A® o du) > ¢, then we have that
du™' (D) = H := n?_, ker pi".

Now, applying the exterior derivative on both sides of the equation (u*\*) = Ay and restricting

to the common kernel H, we have,
(u*d)\S\H) = A(dur’H).

We note that this equation represents the curvature condition for the tuple (u, H), i.e, the
equation

W = duo Q.
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Indeed, we have that the matrix A represents the linear map du : TY./H =2RY— TM/D = RP
and the curvature 2-form for H = Nker u" is given as, Qg = (du"| ).

Now in order to represent jets in RZL‘H”G', we need to find out the ath-order differentials
of the equations (u*)\s) = A(,ur). Since we are only interested in jets, we might as well work

with some choice of local coordinates and consequently, we get system of equations,
(WX (9;)) = A(W'(8;)) for 9y =0, 1 <i < dimX.

Expanding we have,
(O omanr) | =A(),

where \* = Y7 | Andy” and p" = Zle u;'dxi, with respect to the coordinates, for n =
dim M,k = dim>. For some arbitrary partial differential 07, where the multi-index I is of

order |I] < «, we have, by the Leibniz rule,
(81<()\f, o u)@m”)) = A((‘)[,u;-"> + terms involving higher order derivatives of A (%)

Treating these as formal equations in the jet j{j‘u (), we note that the higher order jets in A
occur linearly. In particular, setting all the higher order jets of A at o to identically zero, we

see that equation (x) transforms into,

(a, ((Af, o u)&;uy>>

Note that this system is identical to the equations defining the relation R, associated to the

(+)

= A(o) (0117

o o

horizontal immersion relation RH", modulo Tm A(c).

Now, suppose we are given some jet j}hH(a) € R"™HorGr “\which is represented as the jet
j}W’A(U). Then note that the Q-regularity is satisfied modulo Im A(c) (Definition 5.1.10).
Also the curvature condition is given as,

(w*dX°|g)| =0 mod ImA(o),

g

which is same as the curvature condition for horizontal immersions, modulo Im A(c). Thus,
following the proof of Lemma 3.2.1, we are able to formally solve for the jet j$ (o) satisfying

the system,

=0 mod ImA(c), foralll|l]<a. (**)

o

(af((xg o u)ﬁm“))
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Furthermore, the space of all such solutions is contractible.

Now, since A(c) represents the injective linear map du,, for any given jet j%(o) solving
(¥x), we are able to solve for the jet ji (o) for the tuple = (u"), satisfying () as well, which
again has an affine solution space. Lastly, we get a jet ji#’A(O’) solving (x) at o, by arbitrarily
solving the the higher jets of A satisfying the linear system given by (x). In particular, setting
all of them to zero gives a jet in R7HOGr ifting the given jet ji,H(G) in Rm-HorGr,

As observed, the fiber over the jet in Rm-HorGr is contractible. Furthermore, the above

argument can be performed over a contractible open set as well. This concludes the proof. [

5.1.3 h-principle on Open Manifolds

We have the following h-principle for open manifolds.

Theorem 5.1.9. If ¥ is an open manifold then the relation R™HoCr satisfies the parametric

h-principle.

Proof. Denote the solution sheaf of R"HOrGr by $m-HorGr 5nd the sheaf of sections by W™-HorGr,

We proceed with the proof in the following steps.

Step 1 We first show that ®7Hor6" is microflexible and R™Hor¢" satisfies the local h-principle,

i.e, the sheaf map j! : @7HorGr _y ym-HorGr is 5 |ocal weak homotopy equivalence.
Step 2 Next we show that ®™HorCr is invariant under the natural Diff(%)-action.

The proof is then immediate by appealing to Remark 2.2.12.

Proof of Step 1 : Observe that for a fixed G C T and a splitting map p, we have the

fiber-preserving map,

= : JYZ, M) x hom(G,TS/G) Y — JY(, M) x (Gr,, 7x)V
(4(0),35(@)) = (3(0), b (@)

where G¢ C TX is interpreted as a (local) section of Gr,,T%. This map Z embeds R&»

(Definition 5.1.6) as an open subset RC+ := Im = C R™HoCr and it is easy to see that,

Rm—HorGr — U 7/?:5:0
G,p
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Now, we have the the sheaves ®&* = Sol RG* and \llg’p = I‘RaG7p, as in Observation 5.1.5.

We see that = induces the sheaf maps,
(I)G,p N (I)m—HorGr’ \I/g’p N FRZL_HorGr.

As T'hom(G, TX/G) gives an open covering for the space I'Gr,,, TS, we see that ® embeds
in @™ HOGr 55 an open subsheaf; in fact, by varying G C T'Y and the splitting map p, we can

HorGr 1y the images of the sheaves ®C7.

cover ™

Since the question of microflexibility is regarding lifting homotopies defined on pairs of
compact sets in ¥, we see that any homotopy lifting diagram for ®™HoGr can be transferred
to some ®¢* = SolRE*, for some suitably chosen G,p. Now, ®* is microflexible by
Observation 5.1.5 (1). Hence, we see that ®™HorCr is microflexible as well.

By similar arguments, we also get j3 : m-HorGr FRQ”‘HO'GV is a local weak homotopy
equivalence by Observation 5.1.5 (2). Now, from Lemma 5.1.8 we have, p} : TRy-Hor6r
gr-HorGr g 5 weak homotopy equivalence. Composing the maps we have, j! = p3 o
gm-HorGr _y \ym-HorGr is 5 |ocal weak homotopy equivalence.

Proof of Step 2 : Recall that, as a consequence of Proposition 5.1.4, an m-horizontal im-

mersion u, inducing H = du~'D, is Q-regular if the bundle map,

Qe : u*D — hom (H,u*TM/D/ Im du)

& <X — Q& uX) mod Imd~u>

is surjective. In particular, Q-regularity of (u, H) is completely understood via the image of
the differential map du : TS — T'M. Now Im du remains unchanged after an Diff (X)-action.
Indeed, suppose ¢ € Diff(X) is some (local) diffeomorphism and denote v = wo (. Then we
see that

dv™'D = (duod¢)™'D = d¢ tdu™'D

As wu is an m-horizontal immersion and ( is a diffeomorphism, we have that v is again an m-
horizontal immersion. As for the regularity, we similarly observe that Im du = Im dv and hence
clearly the tuple (v, dv=1(D)) is then Q-regular. Thus, the solution sheaf is Diff(X)-invariant.

This completes the proof in view of Remark 2.2.12. O
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h-Principle of the Relation R™Hor ¢ J1(2, M)

Recall that in Proposition 5.1.4 (3), we have rephrased the Q-regularity of the tuple (u, H) in

terms the surjectivity of the following bundle map,

Qe : u*D — hom (H,u*TM/D/ Im du)

£ (X — Q(&,u,X) mod Imc[u)

which only involves the jets in J'(X, M). So, we may adopt the following definition for -

regularity of m-horizontal immersions due to Gromov.

Definition 5.1.10. [Gro96, pg. 256] An m-horizontal immersion u : ¥ — M, inducing H =
du=1(D), is called Q,-regular, if the bundle map,

Q¢ : u*D — hom (H, u*(TM/D)/Ichu)
§— qou Qg
is an epimorphism, where du : TY./H — u*TM/D is the induced monomorphism and ¢ :
uw*TM/D — uv*(TM/D)/Im du is the quotient map.

On the other hand the curvature condition on (u, H) involves first jet information from

(Gr,,, T2)M . Now, for a jet j(lu ) (o) € R™MorGr the curvature condition u*Q|q, = duoQg|s

gives us, u*Q|g, =0 mod Im du, and consequently we have that d,u(G) C ker Q,. We then

proceed to define a relation R  J1(3, M) as follows.

Definition 5.1.11. [Gro96, pg. 256] The relation R™Hor < JY(X, M) consists of 1-jets
(o,y,F) € JL(X, M) satisfying the following.

e Fis injective, such that dim(Im F'ND,) = m.
o IfG=F'D,and F:T,%/G — TM/D|, is the induced map, then the map Q. defined

as,

Qu : Dy — hom (G, (TM/D),) / Tm F)

£ F*1eQ|g mod Im F

is surjective.

e F(G) C kerQ,.
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The obvious projection map, j! ~(0) — ji(c) maps the relation RmM-HorGr it Rm-Hor,

Indeed, we should note the following schematic diagram of relations,

j<1u,¢>(0)'—>j(1u7G¢) (o)

RG,p < Rm-HorGr

7L o)
€ Q)@ P < Yﬂ\
Z A
%0 \ KG\

for some fixed G C T'Y and a splitting map p : TX/G — TX. Here, the horizontal map is an

embedding. Clearly, we have induced diagram in the solutions sheaves :

(u, )= (u,G?)

(I)G,p . (I)m—HorGr

(2 2, \/X\
@N?{ U“/\K )
pm Hor

Note that the right diagonal arrow is in fact an identification. We have similar diagram for map
of sections as well. We summarize all the relations that we have encountered so far in a tabular

form in Table 5.1.



TABLE 5.1: The Operators and the Relations and the Sheaves

Domain (u, ) € C®(3, M) x Thom(G,TZ/G) * (u, H) € C™®(X,M) X I'Gr,, TS u € C®(E, M)
Operator DG (u, p) > d*urs 1 mHorGr (4 HY) v w* M| _t
Equation DGP =0 pm-HorGr _ o )
w is an immersion, inducing G¢ = du~'D Sand u is an immersion, inducing H = du™'D and u is an immersion, inducing H = du™'D and
) Ly 4 u*D @ hom(G, TE/G) — hom(G, u*TM/D) Ly, D @hom(H, TS/H) — hom(H,u*TM/D) Qe : u*D — hom (H,uw*TM/D/Im du)
mMm“__ﬂw (& ¥) = u™ (L) o d+u Nopoy (&) = u (Le)|u + duo £ u*(1eQ)|y mod Imdu

is surjective

is surjective, du : TS/H — u*TM/D is the induced map

is surjective, du : TS/H — uw*TM/D is the induced map

Sheaf of Regular

G.p m-HorGr m-Hor
Solutions @ o P
Curvature ~ & . u* Qg = du o gy, where Q7 is the curvature form of 1
.. * = ~ . } du(H ker 2o where H := d D
Condition u*Qlge =du” 0Qqe, where Q4 is the curvature form of H and du: TS/ H — u*TM/D is the induced map u(H) C ker Qe where U

G* and du” TY/G® — u*TM/D is the induced map

a + 1-Jet Rela-
tion of Regular,

Infinitesimal So- QNW% ﬁmf:gmﬂ )
lution of Order

«

1-Jet Relation,

with Curvature RGP R m-HorGr Rm-Hor
Condition

Sheaf of Formal EQ,E GS.IO_‘O« G.S.IQ

Solutions

* For a fixed G C T'Y and a splitting map p: TY/G — TX
TRecall : ¢(X) =X + p¢pX for X € G

 There is no associated operator

SRecall : G* =Im¢ = {X + ppX | X € G}
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We have the following result that relates R™HorGr and Rm-Her,

Lemma 5.1.12. The fiber-preserving map R™Horer — Rm-Hor js surjective, with contractible
fibers. Furthermore any section in U™ admits a lift to a section W™ HoCr over contractible

open sets in ¥ and consequently, ¥™-Hor6r ~  ym-Hor
w.h.e

Proof. Suppose the jet (o,y, P) € R™H is represented as j!(c) for some u : Op(c) — M.
Denote H = P~1D. Since P(H) C ker(,, we see that for all X,Y € H at o,

0=Q.(PX)(PY)=Q(PX,PY) mod ImP.

In other words we have,

Q(PX,PY) € Im P.

Since P is an injective, we can define a 2-form R : A°H — TY/H by,
R(X,Y)=P 'oQ(PX,PY), VX,Y €H,.

Then, P*Q|y = Po R.

Now, for ¢ = codim H = dim ¥ — m, consider a g-tuple of 1-forms (i, ..., u4) on Op(o),

1

which is linearly independent at the point o. The surjectivity of the map j(w)(a) = (", du’)|s

then implies the same for,

j(lur) (O-) = (dNT|m£:1 ker,u,r)

s

Hence, we can get a jet j(lw)(a), so that,

P
H= mkeru; and R= (du'|n).

r=1
1
)
H = G, and Q¢, = R. It then follows that j! (o) € R™H® is the desired lift of j!(o) =

(0,9, P).

It is clear from above that the space of all the lifts is affine and hence it is contractible.

In other words, the jet j! (o) can now be identified with a jet j5 (o) € Gr,,TY, so that

Also, the argument can easily be performed for sections over contractible open sets of . This

concludes the proof. ]

We then have the following corollary to Theorem 5.1.9

Corollary 5.1.13. The relation R™Hr satisfies the parametric h-principle over open manifold

3.
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Proof. Observe that, a solution u € ®™Hor uniquely determines the tuple (u,G) € @m-HorGr
where G = du~'D. Consequently, we may identify ®™Hor with ®™-HoGr  We have the

commutative diagram,

-
(u, H) @m[OrGr J \Pm[orGr Ji,H(g)
U (I)m—Hor — \I,m—Hor ]5(0')

It then follows that,

e the sheaf map W"HorGr _, ym-Hor inquced by the projection, is a weak homotopy equiv-

alence (by Lemma 5.1.12).

e the map j! : m-HorGr _y m-HorGr s 5 weak homotopy equivalence whenever ¥ is an

open manifold (by Theorem 5.1.9).

Hence we have that the map j! : ®™Hor — y-Hor is 3 weak homotopy equivalence, provided

> is open. O

5.1.4 A Candidate for an Extension

In order to get any h-principle for closed manifolds, we need to discuss the extension problem
for m-horizontal immersions. For a fixed G C T'Y and a splitting morphism p : T /G — T,

we have a canonical choice of a distribution G on & = ¥ x R, namely,
G :=dr Q) CTY,

where, 7 : Y — Y is the canonical projection. We see, cork G = cork G. Therefor the inclusion
map ¥ < ¥ induces an isomorphism T%/G — T%/G|x and moreover, TS/G = n*(TX/G).

We have a canonical choice of splitting morphism p : Ti‘/éY — TS defined as,
plot = (plo0), for (o,t) € 5.

In other words, 5 : (v,w) mod G — (p(v mod G),O) for any (v,w) € ToX @ R.
Note that for any ¢ : G — TS/G, the distribution

GV ={X+ WX |X eG}
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is transverse to m*T'Y C TS at each point. Indeed, for any (0,¢) € T,%X @ T;R, we have that
(0,¢) + (0, ¢) = (0,¢) + (p(0,¢),0) = (p10(0,¢),¢) € T,X®0, for ¢ # 0.
Hence, if G¥ = du~!(D), then v = u|y, is an m-horizontal distribution and,
(dve) D = (dus) DN T, L =GY NT,% = G,

where ¢ = 9|gao-
Let us denote by RE? C J1(X, M) the relation consisting of first jets Jup(X) € JYE, M) x
hom(G,T%/G)Y satisfying the following.

e du, is an injective morphism, inducing the m+1-dimensional subspace, G¥|, = du;l(Du(o))
e the linear map,
Dy(r) ® hom(G, TS/G)|y — hom(Gy, TM /Dl )
(&,¢) = ueQ| o +u*X| opo(
is surjective

e the curvature condition,

> 4
* J—
u Q|G‘f = dua OQG?’

holds at the point o, where d~uf TY/GY|y — TM/D|y(s) is the induced map and €,

is the curvature 2-form for G¥.

In other words,

)

REP = { i (@) € JHE, M) x hom(G,TS/G)V) | j1 1 (0) € R™ I-HorGr}.

In view of Remark 2.2.18, we put forth the relations RG7 as a collection of possible candidates

for an extension of the relation R™Ho" (see Definition 5.1.11).
The ev Map : We have the two natural bundles,

X=ExM)—=%  X=(2xM)xhom(G,TE/G) - %
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Consider the fiber-preserving morphism,

ev : I‘)N(|gxo —TI'X

(’LL, ¢) = U|2

It follows from Proposition 5.1.4 that if (u,%) is a Q-regular tuple, v = u|y is Qq-regular.
Consequently, the induced map in the jet maps 7~€é7’3|g into R™-Hor,

Let us denote, ® = Sol RGP, We then have that & consists of Q-regular tuple (u, ),
satisfying G¥ = du™'D, and clearly it is not invariant under the natural Diff(f],w) action.
Indeed, for any (u,?) € ® and for some ¢ € Diff(%, 7), the induced distribution H = d(u o
O~ 'D = d¢~1GY, may fail to be transverse to 7*T'Y everywhere. Thus we are unable to apply

Theorem 2.2.9 to the sheaf @ to get the flexibility of (’f)]g. Instead, we prove it directly.
Proposition 5.1.14. The restricted sheaf ®|x; is flexible.
Proof. We divide the proof into the following steps.

Step 1 We introduce an auxiliary differential operator D (see [Gro96, pg. 260]).

Step 2 We identify a suitable regularity condition for solutions of Do so that the sheaf & of

regular solutions of D is microflexible.
Step 3 We get a Diff (X, 7 )-action on ® and consequently get the flexibility of <f>|2

Step 4 We deduce the flexibility of ®|x; from that of ®|s..

Proof of Step 1 : First consider the operator,

Do : C°(5, M) x C*(%,R) x ['hom(G, TS/G) — T'hom (G, RP)

(u,h,w) > (uo B)*)\S o

where the map h : & — 3 is given as, h(a,t) = (o, h(0,t)). In particular, observe that for the
canonical projection map 7 : N=YxR > R, we have 7y = Ids;. Moreover, if Oth # 0, then
h becomes a fiber preserving diffeomorphism of £ x R, i.e, h € Diff(f],w).

It is now immediate that,
©g(u,h,¢) =0 = (uo B)*)\shml; =0,s=1,....p = d(uofz)(éw) C D,

where G¥ = Im<. Furthermore, u o h is an (m 4 1)-horizontal immersion, inducing G¥ =

d(u o h)~1D, if the following conditions hold :
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e wu is an immersion, with rk(\® o du) > dim % — (m + 1) = dim & — m, and

e 0,h#0, i.e hisa diffeomorphism.
Proof of Step 2 : Next, we determine the linearization operator of D at some (u, h, 1)),
Luhy) : Tu"TM @ C®(%,R) ® Chom(G, T%/G) — I'hom(G, RP)
Restricting the operator to the subspace T'u*TM @ 0 & I hom(G, Tfl/é) we find out,

d ~
'S(u,h,d)) (éa 0, C) = @ ‘tzog(uta h, ¢ + té_)

— lim % [ (A = wx*) o YT+ (wo k)N o ($+EC — B)]

= h*(1ed\° + dieX®) o + (uo h)* A o po(
Further restricting this to the subspace T'u*D @ 0 @ ' hom(G,TY/G) we get the operator,

Liypy) : Tu*D & Thom(G, TE/G) — T hom(G, RP)

(6,Q) = (wo h)* (1edX*) 0+ (w0 h)*A o o
Clearly Ly pny) is Coo(i)—linear and hence it is given by a bundle map,
u*D @ hom(G, TX/G) — hom(G, RP).

It follows that L, ) is surjective precisely when the tuple (u o h,1) is Q-regular (Defini-
tion 5.1.2).
Let & be the sheaf of tuples (u,h,) € C®(X, M) x C®(%,R) x Thom(G, T%/G),

satisfying the conditions below :
u is an immersion, 9:h #0, G¥ =d(uoh)™'D and (uoh,) is an Q-regular tuple.
Note that we have a sheaf morphism,

b P

(u, h, ) — (u o B,@Z))
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It follows from Theorem 2.2.27 that ® is microflexible.

Proof of Step 3: As we have already noted, every smooth map k : & — R, satisfying d:h % 0,
defines a fiber preserving diffeomorphism i : ¥ — X. In fact, every element of Diff(i,ﬂ') can
be uniquely realized in this way for some map ¥ — R. Now suppose # € Diff(X, 7) is given
and consider a tuple (u, h, 1) € d. In particular, since 9;h # 0, we have o h € Diff (2, 7),
whenever it is defined. Then for any such compatible tuple, there is a unique x € COO(E,R)

so that, o h = k. We now define the action as,
0 - (u,h,¥) — (uo b1 k).
Observe that,
(o™ HNok=(uob HNo(loh)=uoh = duolor) 'D=duoh) 'D=G".

Hence we have (uo 67! k,9) € U. Consequently, it follows from Theorem 2.2.9 that <i>|g is

flexible.

Proof of Step 4 : Now, fix some arbitrary pair of compact sets A, B with A C B C ¥ and

consider a homotopy lifting diagram,

D p -
Px0—2% g
[ l )
Polot) = ®la

where P is an arbitrary compact polyhedron. Observe that given any tuple (u, ) € P, the tuple
(u, o, 1)) € i), where 7y : Y = Y xR — R is the canonical projection, since uomy = uoldg = u.

Thus we can get a new homotopy lifting diagram from (x) as follows.

P P
Px0—0"2F0 ),
1
[ A (+4)
P x [07 1 i ’A
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Since ‘i’\z is a flexible sheaf, we have a map,
(Utp’ hf, 90;?) 1 P x[0,1] — (i)|B7

which solves the diagram (). But then the tuple (v” o AY, ¥P) : P x [0,1] — ®|p solves
the diagram (). Consequently, we have that the sheaf ®|5; is flexible. This concludes the

proof. O
Lastly, we state the following lemma, which justifies hypothesis (3) of Theorem 2.2.15.

Lemma 5.1.15. Let O C X be a coordinate chart and C C O is a compact subset. Suppose
that U C M is an open subset such that D|y is trivial. Then, given any Qe-regular, m-horizontal

immersion u : OpC — U C M, the 1-jet map,

induces a surjective map between the set of path components, for some suitable choice of
G C TO and a splitting map p : TO/G — TO, Furthermore, the homotopy can be kept

CY-small.

Proof. Since u : O — U is a given m-horizontal immersion, fix G = du='D, a rank m
distribution on O C 3. Next, choose some splitting map p : TO/G — TO. Recall the
notations,

(i)é,,a — Sol 7%@,/37 gm-Hor _ FRm—Hor’ @G‘,,} _ méé,,s’

(I)m—Hor — Sol Rm—Hor

)

and the fiber preserving map ev : Ré’ﬁ|0 — R™Hor - Now, fix some neighborhood V' of C,
with C C V C O, over which w is defined and then fix an arbitrarily small open neighborhood
Ue of u(V).

The proof follows in a similar fashion as Lemma 3.2.6. We only mention the main steps.

Step 1 Given an arbitrary extension F € ‘i’\Cxo of F' along ev, we construct a regular solution

(U,i/)) € ® on dpc, so that j;vw‘opc = F’Qpc.



126 Chapter 5. Partially Horizontal Maps

Step 2 We get an homotopy between jiﬂp and F, in the relation
RGP « JHW,U.) x hom(G,TE/G)D — JY (W, U.) = W x UL,

over W x U, so that the homotopy is constant on points of C. In particular, the homotopy
belongs to ev ™! (F). Note that, here W C OpC is an open neighborhood of C, to be

fixed in Step 1, as done in Lemma 3.2.6.

The first step can be done identically as in Lemma 3.2.6; the jet lifting argument in the
context of RG is provided by Lemma 5.1.8, since RG? embeds as an open subset of R+ 1-Hor,

Let us elaborate on step 2 now. We break it in few sub-steps.

Step 2a First we identify the image of RGP <y RM+1Hor ynder the map jiqs(a) = jl(o).

In fact, we consider the fiber-preserving map,

I : REP — JY(E, M) x hom(G, TE/G)©

Juw(0) = (Jul0), 53 (0))

which forgets the pure first jet data oqulﬁ(a) and let us denote the image as, 7@5’5 = ImIL
We note that, 7@83,,5 embeds into R™+1-Ho" yia the map (jqi(a),jg(a)) + ji(o) and so

we have the diagram,

ﬁé,ﬁ 1 ﬁgﬁ c ﬁm + 1-Hor

\/

Ju.p(@)=34(0)
Identifying 7%0(;,,3 as a subset of R+ 1-Hor "\ve note that, as a consequence of Lemma 5.1.12,
any path in 7@(()?,5 can be lifted to a path in R%?, via the map II.

Step 20 We look at the image of the two formal sections of ji’w and F from Step 1 under the

map II, and get a homotopy joining H(j}w) and H(F) say,

A~

Hy - 11(j ) ~ II(F), in the affine bundle J* (%, M) x hom(G, T%/G)©,
which is constant on C. Again, this step can be performed in a similar fashion as presented
in Lemma 3.2.6. Note that this homotopy need not be inside ﬁoé’ﬁ.

Step 2¢ We claim that ﬁoa’p is a local neighborhood retract. Thus we can push the homotopy

H, from the previous step into 7~2é’P, while keeping the endpoints fixed. We now have a
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homotopy,

Ay :T0(j,) ~T(F), in RS,
which is fixed on points of C. This claim will be proved in Lemma 5.1.16.

Step 2d Lastly, by Lemma 5.1.12, we can lift the homotopy H; from the last step to a homotopy

in RE%, joining j})’w and F. That is, we have a homotopy,

Fyijyy~F, inRE?

which, by construction, is constant on points of C. Hence E} is in fact a homotopy in

ev™!(F). This concludes the proof. O

Let us now prove that the subset ﬁg’ﬁ c JYZ, M) x hom(G,TE/G)), as considered in
the above lemma, is a fiberwise local neighborhood retract. For notational simplicity, let us

work with,
REP < JHE, M) x hom(G,TE/G) Y, for some fixed G € TS and p : TS/G < TX.
We note that Rg’p consists of tuples,
(o,y, P: 1,5 - TyM, ¢: Gy, — TS/G|,)

satisfying,
e P is injective, inducing G¥ = P~1D.
e the map,
Qo : Dy — hom (G¥,TM/D|,/Im P)
£ P*(1¢Q)|ge mod Im P
is surjective. By Proposition 5.1.4, this takes care of ()-regularity.
o P(G¥) C ker Q,, or equivalently, P*Q|ge =0 mod Im P.
We prove the following.
Lemma 5.1.16. The following holds true for ROG’p.

. R()G7p|( is a submanifold of J(lx y (3 M) x hom(G, TS/ G)

.y) 2 for (z,y) € J°(X, M),



128 Chapter 5. Partially Horizontal Maps

o RS is a submanifold of J'(X, M) x hom(G, TS/G).
e The projection mapp : J*(X, M)xhom(G,TY/G) — JU(X, M) restricts to a submersion
on RS,
As a consequence, ROG’p is a fiber-wise, local neighborhood retract.
Proof. We prove it in a few steps.

Step 1 We consider the fiber-preserving map,

21 : JYZ, M) x hom(G, TY/G) — hom (G, TM/D)

(z,y, P,p) Ao Pog

We show that Zi](, ) over each fiber is a submersion and consequently, El\(;ly)(O) =

{(z,y,P.¢) | P7'Dy = G¥} is a submanifold of J!, (3, M) x hom(G,T/G)l,.

Furthermore, Z;1(0) is a submanifold of J(X, M) x hom(G, TX/G) as well.

Step 2 For fixed (z,y) € J°(X, M), we aim to show ROG’p|($’y) is a submanifold. We break

this into the following steps.

Step 2a First, we get a natural map,

O = Oy : Eily (0) = hom(TE/Gly, TM/Dy)

(z,y,P,o) = Ao Pop

and show that © is a submersion.

Step 2b Next, we define the map,

=4 : 071 (A) — hom (A’G,, TM/D|,/Im A)

(xvyvp’so)*—}QE*P*Q mod Im A

for a linear map A : TY/G|, — TM/D|,. Note that, (Z4')71(0) consists of tuples

(z,y, P, ) satisfying the formal curvature condition,
P(G¥) C ker ,.

We show that, for A injective, the set Rg’pk%w NO~1(A) consists of regular points
of Z4'. Consequently, ROG’p|(m7y) NO~1(A) is a submanifold. Q,-regularity is crucial

at this step.
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Step 2c For a fixed monomorphism A : T /G|, — TM/D|,, we identify an open set,

Ma={B:TS/G|, = TM/D|, | BthImA} C hom(TE/G,TM/D)|.y)-

Next we fix a choice of splitting map n : (I'M/D|,)/Im A < TM/D|, and using
it we get the isomorphisms,

A(B): (TM/D|,)/Im A — (TM/D|,)/Im B.

We then define the fiber-preserving map,

~A

=4 0 (Ma) - My x hom (A*G,, TM/D|,/Im A)

by,
Zo(w,y, P.¢) = (B, #(B) " 0 Z (a5, P.p) ).
() N @71(./\/1,4) are

for (z,y,P,p) € ©71(B),B € M,4. We note that Rg’p

regular points of =, and consequently is a submanifold.
We conclude that Rg’pk%y) is a submanifold of Ell&l’y) (0) for fixed (z,y)

Step 3 Lastly, using local trivialization argument, we prove that Rg’p is a submanifold and
furthermore, restriction of p : J1(X, M) x hom(G,TX/G) — J°(X, M) to ROG’p is a

submersion.
Proof of Step 1: We have the bundle map, Z; : J!(2, M)xhom(G,T%/G) — hom(G,TM/D)
over JO(X, M), defined as,

Eil(wg) oy (E M) x hom(G, TZ/G)|,; = hom(G,, TM/Dl,)
(ac,y,P,ap) = AoPogp

for (z,y) € JO(X,M) = ¥ x M. That is, Z1|(; (2,9, P,¢) = P*A|ge = *P*X. Note that

Z1(a,y) is not a linear map. We have the derivative map of =1|(, ,) at some (z,y, P, ¢) as,

d(Z1] (@) l(2,y,Pp) - hom(T: X, Ty M) x hom(G, TY/G)|, — hom(G., TM/D|,)
(Pr,p1) = AoPiopg+AoPopoy;
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Now, for any given Q : G, — T'M/D|,, first we get some Q:G, — TyM so that Q = Ao Q
and then we get a P, : T,X. — T,,M, satisfying Pi|ge = Qo @ '. We have the diagram,

00 > J— XS s T, M
J 2 b
G@ = Ga: TM/D‘Z/

Then, setting ¢1 = 0, we have,

d(Z1]e) | @u o) (Pre1) =AoPig+0=20Qo@ top=10Q =Q.

Hence, E1|(x7y) is a submersion and so,

Etlw) (0 = { (.9, P.) | P'Ng= = 0}

is a submanifold of J(lm (2, M) x hom(G,T%/G)|.. The tangent space at some (z,y, P, ¢)

is given as,

ker (dEl‘(x,y))’(%%p’@) = {(Pl,(pl) ‘ )\OP1 O(,(_J+)\OPOpOg01 = 0}

Proof of Step 2a : First observe that for a tuple (x,y, P, ¢) satisfying P*A|ge = 0, we have

the composition of the two maps,
T8/Gl, — = T,3/Gv —F  TM/D,

Z ——— p(Z) mod G¥ —— Pp(Z) mod D,

Thus, we may consider the map,

©: 51|, (0) = {(z,y, P,¢)|P"Nge = 0} — hom(T%/Gls, TM/Dy)

(2,9, P,p) —s Ao Pop= (Z s Pp(Z) mod Dy>
We find out the derivative of © at (z,y, P, ¢) as,

Ty, p)@(Prip1) = Ao Prop, for (Pr,¢1) € Tiuy py) (Z1l ., (0)).
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We claim that, © is a submersion. Suppose, a linear map @ : TY/G|, — TM/D]|, is given.
Let us define Py : T;;3 — Ty, M in two steps, using the splitting, 17,3 = G, @ Im p.

e First, define Pi|im, so that, Ao Pi|im, = Qop .
e Next, define Pi|g, so that, Ao Pi|g, = —Q o ¢.

This is expressed in the following two commutative diagrams :

T8/Gl, —%— TM/D), T8/Gle —2— TM/D),
p|= A ® A
j Qop! T I A T
Imp ****P*l*h*m*;**? TyM Gx ****}{\*&;***} TyM

Then, first note that for any X € G,

Ao Pro@(X) = AP (X 4 ppX) = AP1(X) + APippX = —QpX + QpX = 0.
Now, setting p1 = 0, we have,

(Pr,p1) € T(x,y,Pm)(El’@l,y)(O)) = {(Pl, ¢1) | AoPio@+AoPopoyp = 0}-

On the other hand,
T(wuyvpvip)@(Pl?(pl) - )\ O Pl (e} p — Q

Thus, © is indeed a submersion.
Proof of Step 2b : For some linear map A : TY /G|, — TM/D]|,, consider the fiber,
Op= 9_1<A) = {(xay7P7§0) ‘ P*A‘G*‘j =0, po¢ = A} C El‘(_;’y)(o)v

where ¢ : TY /G|, — TpX/G¥ is the isomorphism, ¢(Z) = pZ mod G¥. In particular, we
then have Im A = Im(P o ¢) = Im P and hence,

OA:{(mvyupa@)|P*)\’G%0:O, Im]—:’:ImA}

Since © is a submersion, O4 is a submanifold.
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Now, consider the map,

Ey == : 04 — hom (A’G,, TM/D|,/Im A)

(x,y, P,p) — @*P*Q mod Im A

Then, we have,

Zo(x,y,P,o) =0 = @P*Q=0 mod ImP,

since, Im A = Tm P. Hence, in particular, for an injective map A : T%/G|, — TM/D|,,
Rg’p|(x,y) NO4=Z510)N {P:T,% — T,M is injective and ,-regular}.
Let us now compute the derivative of Z3 at some (z,y, P,¢) € O4,
023l (r,Pp) * Tia P Oa = bom (A2Gy, TM/D], /T A).
We have for X,Y € G,

I
= %ir% n [(,0 +itp1 (P+tP)*Q— @*P*Q} (X,Y) mod ImA
e

= lim % Q((P+tP) o pF T X, (P+tP) 0 p FEp1Y ) — Q(PpX, PoY)]
:Q<P10¢X,P0¢Y> mod ImA—l—Q(Po@X,Plo@Y) mod Tm A

+ lim % [Q(P 0o Fip1X, P omy) . Q(P@X, P@Y)] mod Im A
- [Q(Pl o@X,Po@Y) +Q(P0¢X,P1 o@Y)

+Q<Popg01X,Pog5Y) +Q(PO¢X,Pop<p1Y)] mod Im A

Now suppose (z,y, P, ¢) € O4 satisfies Zo(z,y, P, ) = 0 and it is Qq-regular, i.e, P is injective

and the map,

Qe : D, — hom(G¥?,TM/D|,/Im P)

§— P*1eQ mod Im P
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is surjective. Recall that Im A = Tm P and so, we must have that A : T%/G|, — TM/D|, is

injective. Applying the hom(G¥,_) functor to {2, we have the surjective map,
hom(G¥,D,) — hom (G“", hom (G¥,TM/D|,/Im P))

Composing with the alternating map, Alt : F — (X AY — F(X)(Y) — F(Y)(X)) and then

the isomorphism ¢ : G, — G¥, we have the following diagram,

hom(G¥#,D,) —— hom (G, hom (G#, TM/D|,/Tm P) )

\
\ lAlt
\

\ hom (AQG%", TM/Dl,/Im 15)

N\
N
N o
N =
~
~
~

"% hom (AQGz, TM/D|,/Im P)
so that the diagonal arrow is surjective as well. That is we have the surjective map,
hom(G¥, D) — hom <A2G$, TM/Dl,/Tm 15)

Q <X AY (Q(Q@X, PEY) + Q(P@X, Q@Y)) mod Im P)

Suppose R : A2G, — TM/D|,/Im P is some arbitrary map. Then, we can find Q : G¥ — D,

so that,
(Q(Q@X, PEY) + Q(P@X, Q@Y)) mod ImP = R(X,Y), X,Y € Gy.

Now, we have the tangent space,

z,y,

T( pw) OA = ker T(x,y,P,ap) @

Z{(Pl,sm)!AOP10¢+A0POPO¢1:07 A0P1op=0}

:{(Pl,gol)‘)\oPﬂGx—l—)\oPopogol:O, )\oPlop:()}

Let P : T,X — TyM be an arbitrary extension of Q) : G¥ — D, so that Im P, C D, and

1 = 0. Then, note that A o @ = 0 and hence,

AoPiog+AoPopopr=AoQop+0=0, and Ao Pop=0.
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Thus (P1,¢1) is in the tangent space. We also observe that for any X, Y € G,
dE2‘(w,y,P,<p) (Plv Qpl) (Xa Y)
- [Q(Pl ogEX,Po@Y) +Q(Po@X,P1 o@Y)
+ Q(P opp1X,Po c,ZJY) + Q(P opX,Po pcplYﬂ mod Im P
Q(Qo@X,Po@Y) +Q(P0@X,Q0¢Y> +0] mod Im P, as Py|ge = Q

|
= R(X,Y), by our choice of Q
So, the Q,-regular points in Z5*(0) are regular points of =5 and hence,
=51(0) N {Q.-regular points}
is a submanifold of O 4. Clearly, this subset is precisely, ROG’p|(m7y) NOa.

Proof of Step 2c : Now, let us fix a monomorphism A : T /G|, < TM/D|, and a choice
of a splitting map, 1 : TM/D|,/Im A < TM/D|,. Next consider the subset,

My = {B . TS/G|, < TM/D|, ‘ BhImy < ImBlmy = 0} C hom (T%/G,TM/D)| , -

Clearly M 4 is an open subset, as it is defined via a transversality condition. Now, we have the
submersion O : Eﬂ&l,y) (0) = hom(TX/G,TM/D)|(y,) and let us now consider the restriction
of ©,

O 1 (My) = M.

Note that for any B € M 4 we have an isomorphism,

A(B) : TM/Dl,/Im A — TM/D|,/Im B

Z—n(Z) mod ImB

Next we define a smooth fiber-preserving map,

O~ (Ma) = M x hom (A’G,, TM/D|,/Im A)

e

My
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as follows : for (z,y, P, ) € ©71(B), where B € M 4, we define,
S5y, P.w) = (B, i(B) " 0Zf (2,5, P.¢)) = (B, i(B) o (9"P'Q mod Im 4)).

Clearly Z51(0) consists of those tuples in ©~1(M 4), for which the formal curvature condition
holds. Also, it follows from the previous step that, in the fiber Op over B € M4, the set

R(C);,p‘(%y) N Op are regular points of ég\oB, since
Zolp =n(B)"' 028, where n(B) is a linear isomorphism.
It then follows from the above diagram that,
ROG’p|($’y) NO~1(M,) are regular points in Z51(0).

Consequently, this is a submanifold of ©71(M 4).
Now, by construction, M 4 forms an open cover of the base manifold Mon(7%/G, T M/D)| 4 )
of monomorphisms T3, < T'M/D|,. Hence, R()G’p|(xyy) is a submanifold of Ell(jy) (0). This

concludes the proof of Step 2.

Proof of Step 3 : Performing the previous steps more generally, we can prove that ROG’p is

in fact submanifold of J(X, M) x hom(G,TY/G). Note that we have the diagram,

T

hom(TS/G, TM/D)

/

where, Z1(z,y, P,o) = Ao P o @ and © is a submersion.

JY %, M) x hom(G,TY/G) +— Z7(0)

JO(%, M)

Now choose contractible neighborhoods U C ¥,V C M around some points g € X and

1Yo € M, and fix the bundle isomorphisms,

e1:Gly = U X Gy, €2:TM/D|y =V x TM/D|y,, e3:TS/Gly = U X TS/Ga,.
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We then have the bundle isomorphism,

¥ : hom (TE/G,TM/D)|yxy — (U x V) x hom (TL/G,TM/D)|

Z0,40)

(v :TE/G|y — TM/D|,) — (:c Y, ealyovo 63|;1)

Just as in the previous step, for some fixed A : TY/G|,, — TM/D|,, and a splitting
n:TM/D|y,/Im A < TM/D|,,, we have the open set,

My = {B L TS/Glyy < TM/Dly, | B Imn} C hom(TS/G, TM/D)| (zo.0)-
Note that, for any,
B:TY/Gl, - TM/D|, in ¥ '({(z,y)} x M)

we have an isomorphism,

ii(z,y,B) : TM/D|y,/Im A — TM/D|,/Im B

Z (52|y—177(2)) mod Im B

Indeed, it follows from the definition of ¥ that, B € "' M4 < (g9 0 B) h Im7.

Now, consider the subset,
O = O(x0,y0, A, p) := ©~! ow—l((U X V) x MA>,

which is clearly open in EII(O). We proceed to define a fiber-preserving map =s,

O = (U x V) x My x hom (A*Gy,, TM/D|,,/Im A)

as follows. For (z,y) € U x V and (z,y,P,¢) € O, denote B = O(z,y, P,p). Now,

ég(x,y, P, ) can be defined so that the following diagram is commutative :

A2Gy, 28R D), /Tm A

51|32JE Nlﬁ(aﬂva)

A2G, TM/D|,/Im B
=5 (2.5.Pp) /Ply/ T
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It then follows that, Z5'(0) consists of those tuples (z,y, P,) € O, which satisfy the

formal curvature condition. Arguing as before, we have that,
G,p . =—1
Ry luxv N O are regular points of = (0).

Thus ROG’p is locally a manifold. Hence we conclude that Rg’p is a submanifold of J(3, M) x
hom(G,TY/G). In fact, the same argument shows that the restriction of p : J'(X, M) x
hom(G,TY/G) — J°(X, M) to Rg’p is a submersion. This concludes the proof. O

We end this section by stating the following h-principle, similar to Theorem 3.2.7.

Theorem 5.1.17. Suppose, for any given F' € W™ Hor and any contractible open set O C ¥,
there exists a suitable rank m distribution G C TO and a splitting map p : TO/G — TO, so
that F|o is in the image of ev : Fﬁé’ﬁ\o — Wwm-Hor - Then the relation R™He" satisfies the

C°-dense h-principle.
Proof. For any G and p fixed over some O C X, we have the following :
o i)é’f’\g = Sol ﬁé’f’\g is flexible by Proposition 5.1.14.

e We observed in Theorem 5.1.9 that R T 1-HorGr enjoys the local h-principle. Since the
relation RGP can be embedded as an open set in the relation R™ T 1-HorGr it satisfies

the same.

Lastly, Lemma 5.1.15 justifies the more general version of hypothesis (3) of Theorem 2.2.15, as
observed in Remark 2.2.18. The proof is now immediate from the remark, i.e, R™H°" satisfies

the C°-dense h-principle. O

In the next section, we shall see that the “surjectivity hypothesis” in the above h-principle

is indeed satisfied in many interesting situations.

5.2 h-Principle for Partially Horizontal Immersions into Fat Dis-

tributions

In this section, we shall obtain h-principle of m-horizontal immersions of a general manifold X
in (M, D), for some fat distribution D. Suppose corkD = p. In the context of m-horizontal

immersions of X in (M, D), if we set ¢ := dim ¥ — m, then

0<qg<p=corkD.
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The left endpoint ¢ = 0 gives us m = dim X and so, the m-horizontal immersions are just the

D-horizontal immersions. The other end, i.e, ¢ = p gives rise to transverse immersions.

5.2.1 Immersions Transverse to a Corank p Distribution

Let us recall from Definition 5.1.11, the relation R™Hor ¢ JY(Z, M), whose sections are

monomorphisms F' : T — T M, covering some u : ¥ — M, inducing the rank m subbundle

H := F~1D. Moreover, F satisfies,

e the QQe-regularity : the bundle map

Qe : u*D — hom (H,u*TM/D/Im F)

£y <X — Q(¢, FX) mod ImF)

is an epimorphism, where we have the induced map F : TY/H — uw*TM/D.
e the curvature condition : F(H) C ker ,.
First we observe the following.

Proposition 5.2.1. For m = dim ¥ — cork D, the relation R™H°" ¢ J'(X, M) can be given

as,
Rm-Hor _ {(g, y, F) ’ F:T,% — T, M is injective linear and T,yM = Im F' + Dy}.

Proof. Let F' : T;3 — Ty M be an injective linear map such that Im " + D, = T,,M and
suppose m = dim F~'D,. Then dim ¥+dim D,—dim F~'D, = dim T, M, i.e, dim X = m+p.
Denote, F~'D, by H. Then,

Im F + D, = TyM = codim H = codim F~'D, = codim D,
= the induced map F : T,%/H — u*T,M/D, is an isomorphism

= hom (H,w"TM/D/ImF) =0

The last condition clearly implies that €24 : D — hom (H, u*TM/D/ Imﬁ) is surjective and
F(H) C ker . Therefore, (0,y, F) € R™Hr where dim ¥ = m + p.

Conversely, suppose that (o,y, F) € R™Hr Then, in particular dim F~'D = m =
dim ¥ — corkD. Denoting F_lDy by H, we have codim H = codim D, and therefore, F:
TX/H — T,M/D, is an isomorphism. This implies that 7,,¥ — T,%/H — T,M/D, is

surjective. In other words, Im F' 4+ D, = T, M. This completes the proof. O
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We recall the definition.

Definition 5.2.2. Given a distribution D on M, a smooth map u : ¥ — M is said to be

transverse to D if the composition map T2 W TM = w*TM /D is surjective.

In view of the above proposition, we can now identify the solution space of R™H" with the

space of immersions transverse to D, whenever m = dim ¥ — cork D. We prove the following.

Theorem 5.2.3. Let D be a corank p distribution on M and m = dim> — p. Then, the

relation R™Her satisfies the C0-dense h-principle, provided
tkD >m (or, dim M > dim¥).

In particular, given a monomorphism F : TS — T M, such that F~'D is a subbundle of corank

p, we can homotope F' to an m-horizontal immersion ¥ — M, provided dim M > dim X..
The above theorem can now be restated as follows.

Theorem. Let D be a corank p distribution on M. Then a monomorphism F : T — TM,
such that F~'D is a subbundle of corank p, can be homotoped to a transverse immersion

Y. — (M, D), provided dim M > dim X.

Remark 5.2.4. In [Gro86, pg. 84], Gromov conjectured that given a bracket-generating distri-
bution D C T'M, smooth maps ¥ — M transverse to D, abide by the C°-dense, parametric
h-principle. In [EMO02, pg 131], the h-principle is proved for contact distributions; furthermore
the authors indicate a possible way to prove the general conjecture as well. In a recent article
[dPS20], the conjecture is proved for analytic manifold M equipped with an analytic, bracket-
generating distribution D C T'M. Note that Theorem 5.2.3 is applicable for any distribution

D, but assumes that the maps under considerations are additionally immersions.
We now prove the h-principle.

Proof of Theorem 5.2.3. We only need to justify a suitable “surjectivity hypothesis” is true, as
in the statement of Theorem 5.1.17.

Suppose we are given formal section F' € U"Hor covering some u : ¥ — M and inducing
the subbundle H = F~!D. Fix some contractible sets O C ¥ and U C M satisfying O C u~'U.

Now, we choose an arbitrary non-zero section 7 over O such that,

7(0) € Dy \ F(H,), o0€O0,
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which exists, since tk D > m by hypothesis.
Let us now extend F'|p to a bundle map P : T(O x R) — T'U defined by,

P(v,c0;) = F(v) +cr, forveT,¥ and any c € R,

where 0, is the coordinate vector field along R. Note that P is a monomorphism and it is

transverse to D since F' D, coveringthe map &t =uomw: 0 xR — U, i.e, we have
Im P|(4) + Dy(o) = Tuwo)U, for (o,t) € O xR.

Then from Proposition 5.2.1, P is a formal m + 1-horizontal immersion O x R — U, i.e,
Pe \ijJr 1-Hor

Now, let us fix some G C T'O and a splitting map p: TO/G < TO, so that the distribution
H|o can be realized as H|o = G? for some ¢ : G — TO/G. Recall that for O = O x R, we

have the relations,
RGP « JHO,U)xhom(G, TE/G)V)  and R™*1Hor « 71O, U xR) x hom(G, TO/G)D,

and the map, ev : RGP

0 — R™H" given by, jiﬂp(a) — ji‘z(a). It is clear that the section P
takes its value in the image of RE7 in R™ +1-Hor ‘under the map, j! p(0) = ji (o). Now, RC?
has been identified as an open set of R” T 1-HorGr 3nd hence, by an application of Lemma 5.1.12,
we can get a formal section P € F7~€é75, extending the section P. It is immediate that,

ev(P\OXO) = P|py, = F. The h-principle now follows directly from Theorem 5.1.17. O

5.2.2 Partially Horizontal Immersions into Fat Distribution

Our goal in this section is to prove the following theorem.

Theorem 5.2.5. Let D be a corank p fat distribution on M and m = dim > — (p — 1). Then,

R™Her satisfies the C0-dense h-principle.

In other words, we are considering immersions in a corank p fat distribution D C T'M, which
induces a corank p — 1 distribution on ¥. The proof of this h-principle is in the same vein as in

Theorem 4.2.1. Before we proceed to prove the theorem, we make the following observation.

Proposition 5.2.6. /f D C TM is a corank p fat distribution, then any monomorphism F' :
TY — TM, inducing a corank p — 1 distribution G = Ffl(D) C T, is Qe-regular.
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Proof. Recall, the 24-regularity F' is understood as the surjectivity of the map,

Qe : "D — hom (G, u*(TM/D)/ImF)

90— F*159Q|¢ mod ImF
where F': TY/G — w*TM/D is the induced bundle map. Since F is injective, it follows that
rk(u*(TM/D)/ImF) =1k TM/D — tkIm F = 1k TM/D — 1tk TS/G =p— (p— 1) = 1.

Thus, we have u*(TM /D) / Im F l% R. We may now choose a (local) trivialization of w*T'M /D

ocC.
so that, u*Q) = (wl, ...,wP) and the map €, is given as,

De(§) = FrrewP|qg for & €D.

Since D is a fat distribution, w? must be a nondegenerate 2-form on D. Consequently, {2, is

surjective, proving the regularity. O
In view of the lemma, the above theorem can now be restated as follows.

Theorem. Let D be a corank p fat distribution on M. Then a monomorphism F : T — T M
such that F~'D is a subbundle of corank p — 1, can be homotoped to a partially horizontal

immersion inducing a corank p—1 distribution, provided tk D > 2m, where m = dim X —(p—1).
Let us now prove the h-principle.

Proof of Theorem 5.2.5. In view of Theorem 5.1.17, we only need to show that the (local)
extensibility criteria is satisfied. Suppose F' € R™ " is a formal m-horizontal map, with u =
bs F', inducing the subbundle H = F~1D. Fix some contractible opensetsU C M and O C X
satisfying, O C uw~1(U). Now, F satisfies the formal curvature condition, F(H) C ker (s,
where,

Qe : u*D — hom (G,u*TM/D/ ImF).
Since u*(TM/D)/Im F is of rank 1, there exists a trivialization of w*T'M /D over O such that,

u*Q = (wl,...,wP) and the map €, is locally given as,
ocC.

Qu(€) = Fr1ew”|yy, for € € Do,

The curvature condition implies that F'(H) is isotropic with respect to w?. Since rk D > 2m =

2dim F(H) and w? is a nondegenerate 2-form (which is a consequence of fatness of D), we
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can get a non-vanishing field 7 € u*D \ F'(H) over the contractible open set O, so that,
wP(1, F(H)) =0, on points of O.

Let us now extend F|p to a bundle map P : T(O x R) — TU by setting, P(v,c0;) =
F(v) + c0; for v € T,O and ¢ € R, where 9, is the coordinate vector field along R. It is clear
from our choice of 7 that P a monomorphism, covering the map &« = uonw : O xR — U,
inducing an rank m + 1 subbundle on O x R. Furthermore, P satisfies the formal curvature
condition. By Proposition 5.2.6, it is (-regular. Consequently, P € U™+ 1Hor \We can now

proceed as in the proof of Theorem 5.2.3 to conclude the h-principle. O

Corollary 5.2.7. Suppose D C T'M is a corank p fat distribution and dim M > 3dim ¥ —p+1.
Then any map u : ¥ — M can be C°-approximated by an m-horizontal immersion ¥ — M,
where m = dim ¥ — (p — 1), provided, there exists a rank m sub-bundle G C T along with a
bundle monomorphism F : T /G — w*TM/D.

Proof. Under the hypothesis of the theorem, we only need to produce an injective bundle map

F : G — D, covering u, such that F'(G) C ker Q,, where

Qe : u*D — hom(G, u*(TM/D)/Im F)

¢ F Qe mod ITm F
Consider the bundle 7 C hom(G, u*D), where the fibers are given as,
Fo = {F:T,% = Dyp)|F is injective and Im F C kerQu},  for o € 3.

We are looking for a global section of this F.
Just as we did in Theorem 5.2.5, let us choose a suitable trivialization of ©w*T'M /D, so that

Qe can be locally represented as,
Q(E)(X) =w(&, FX), {ecuD Xeq,

for some (local) 2-form w on D. The curvature condition is then understood as F'(G) being
w-isotropic. Since D is a fat distribution, w must be nondegenerate. An argument very similar

to that in Lemma 4.2.5 then shows that the fiber F,, is (rk D — 2m)-connected. Now, observe
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that the dimension condition dim M > 3dim ¥ — (p — 1) is equivalent to,
kD >3dimY —2p+ 1< kD —2m >dim¥X —1, sincedim¥ =m+ (p—1).

Therefor, F admits a global section, say, F:G— uD.
Lastly, by choosing some isomorphisms T = G @& T%/G and TM =D & TM/D, we can
define a morphism F' : TY — w*T'M given as,

F=F+F.

It is immediate that F' is a formal m-horizontal immersion, covering u : 3 — M and inducing
the bundle GG, which satisfies the formal curvature condition. Now Theorem 5.2.5 applies, since

we have from the hypothesis,
dimM > 3dim¥ —p+1=r1kD > 2m.

Hence, the map u can be homotoped to an m-horizontal immersion ¥ — M, while keeping the

homotopy arbitrarily C?-small. O

5.2.3 Partially Horizontal Immersions into Quaternionic Contact Distribution

For a corank 3 distribution D C T'M and a manifold X, there are exactly 4 possible values of

m for which m-horizontal immersions 3 — M are defined, namely,
0<dimX—-—m<3, ie m=dmX—-gq, ¢g=0,1,2,3.

When D is a quaternionic contact structure, the h-principle in all these cases, except for m =
dim ¥ — 1, have already been addressed in Theorem 4.2.14, Theorem 5.2.5 and Theorem 5.2.3.

We now prove the following.

Theorem 5.2.8. Given D C T M is a quaternionic contact structure on M and X is any
manifold. Then, for m = dim ¥ — 1, the relation R™Hor ¢ JY(X, M) satisfies the C°-dense
h-principle, provided

rkD > 4m + 4.
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Proof. Suppose we have a monomorphism, F' : T3 — TM, with base map v : ¥ — M,

inducing an m-dimensional subbundle H := F~'D. Furthermore suppose that the bundle map,

Qe : u*D — hom (H,u*TM/D/Im F)

¢ (F*eQ)|p mod Im F

is surjective and F'(H) C ker Q. We shall find a formal extension of F' over contractible open
subsets O C 3.

As D is a quaternionic contact structure, it follows from Definition 4.1.33 that we have
a Riemannian metric g on D and a trivialization TM/D|o = R?, so that the automorphisms

Ji : D — D, defined over O by,
d)\i|'D:g(Ji*7*)7 1= 172737

satisfy the quaternionic relations, where A = A\’ ® e; for the standard basis (e1,e9,€3) of R3.

Now consider a nonvanishing section R of T'%/H over O and let,
é3:= F(R) € R3.

Suitably scaling R if necessary, we can extend é3 to a orthonormal framing (é1, é2,é3) of R3,

so that é; = Be; for some B € SO(3). Then it follows that the automorphisms JAZ defined by,
dj\i|'D:g(jiﬂ*)7 1= 132737

satisfy the quaternionic relations as well, where \ = N@e;.

Now, from our choice above, over O we have,
(w'TM/D/ImF) = ([é1],[é2]) 2 R?, where [¢;] :=¢; mod ImF.
Under this isomorphism, the map €2, is then simply given as,

Qo : u*D — hom (H,R?)

€ s (X — (wl(g,FX),aﬂ(g,FX))>
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where & = dj\i|p. For each o € O, consider the tuple

The connecting morphism A : Dy ,;) — Dy, for the pair (W', @?) is given as, A = —jfljg.

Indeed, for u,v € D we have,
o' (u, Av) = g(Jiu, fjfljgv) = g(u, Jov) = &*(u,v),
since the adjoint j;" =—J, (as observed in Proposition 4.2.15). Therefore,
A=—J h=J1Ja=Js = A2 =J2=—I,

and so, T, is a degree 2 fat tuple. We also observe that,
e the surjectivity of £, is equivalent to the € -regularity of F(H,), while
e the curvature condition F(H) C ker ), means that F(H,) is {,-isotropic.

But then, just as we argued in Lemma 4.2.2, under the dimension condition, we can get a

continuous section 7 € u*D over O such that,
€ (V¥)"\ V¥, where V = F(H)|o is a vector bundle.

The rest of the proof now follows as in Theorem 5.2.5. O

Remark 5.2.9. It may be noted that to prove the h-principle for m-horizontal immersions,
for m = dim ¥ — 1, into quaternionic contact distributions (Theorem 5.2.8), we reduced the
underlying algebraic problem of extension to the extension problem for horizontal immersions in
degree 2 fat distirbutions (see Chapter 4). Similarly, the h-principle for m-horizontal immersions,
form = dim ¥ — (p—1), into corank p fat distributions was reduced to the extensibility problem

of Legendrian immersions in contact distributions.






Chapter 6

Germs of Horizontal 2-Submanifold in

Fat Distribution of Type (4,6)

Our goal here is to prove the existence of germs of 2-dimensional horizontal submanifolds for
a certain class of corank 2 fat distribution D on RS, which admit a pair of Reeb like vector
fields (see Definition 6.2.1). Holomorphic contact distributions are the best known examples in
this class of fat corank 2 distributions. We may recall that the holomorphic contact manifolds
are modeled on the holomorphic 1-jet space J!(C",C) and just like their real counterparts,
as explained in Example 2.1.20, 1-jet prolongation of any holomorphic map C* — C is a
holomorphic Legendrian embedding. So there are plenty of holomorphic horizontal submanifolds
in any holomorphic contact manifold. In [FL18b] the authors have shown that holomorphic
Legendrian embeddings of an open Riemann surface ¥ into the standard holomorphic contact
manifold (C*"*! dz — ", y;dx;) satisfy the parametric Oka principle. In particular, they prove
that the space of Legendrian holomorphic embeddings ¥ < C2"*! has the same homotopy
type as the space of continuous maps ¥ — S**~!. The authors further observe that such a
global h-principle type result may not be true for a general holomorphic contact manifold.

Since D in our case is a corank 2 fat distribution on RS, it is necessarily of degree 2.
Though we have studied horizontal immersions in a degree 2 fat distribution in Chapter 4, we
may note that this particular case is not covered there, since D in the present case can not
admit an isotropic 2-subspace which is Q-regular (see Remark 3.1.6). However, this does not
rule out the possibility of obtaining a germ of horizontal 2-submanifold as the operator is still
underdetermined. In fact, the results of [FL18b] supports this in the special case of standard
holomorphic contact distribution on C?*+1,

As we shall be working in a setup where )-regularity is impossible to achieve, we need

to appeal to a different flavor of implicit function theorem in lieu of Theorem 2.2.24, namely,

147
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Hamilton's implicit function theorem.

6.1 Hamilton’s Implicit Function Theorem

Nash's Implicit Function Theorem [Nas56] in the context of C'*°-isometric immersions has
been generalized by several authors, we have already encountered one of its variation in The-
orem 2.2.24. Here we recall Hamilton's formalism of infinite dimensional implicit function
theorem that works for smooth differential operators between Fréchet spaces. This theorem is
used crucially in order to get the local h-principle of horizontal maps into corank 2 fat distribu-
tions which admit Reeb directions. To begin with, we discuss the basic notion of tame spaces

and tame operators from the exposition by Hamilton ([Ham82]).

Definition 6.1.1. [Ham82, pg. 67] A Fréchet space is a complete, Hausdorff, metrizable,

locally convex topological vector space.

In particular the topology of a Fréchet space F' is given by a countable collection of semi-
norms {| - |}, such that a sequence f; — f if and only if |f; — f|, — 0 for all n, as j — oc.
A choice of this collection of norms is called a grading on the space and we say (F,{|-|,}) is

a graded Fréchet space.
Example 6.1.2. Many naturally occurring spaces are in fact Fréchet spaces.

1. Every Banach space (X,| - |x) is a Fréchet space. It may also be graded if we set

|- |n =1"|x for all n (([Ham82, pg. 68]).

2. Given a compact manifold X, possibly with boundary, the function space C*°(X) is a
graded Fréchet space. More generally, given any vector bundle £ — X, the space of
sections T'(E) is also a graded Fréchet space. The C*-norms on the sections give a

possible grading ([Ham82, pg. 68]).
3. Given a Banach space (X, |- |x), denote by (X)) the space of exponentially decreasing
sequences of X, which consists of sequences {x}} of elements of X, such that,
oo
{aetn =) e laplx < o0, ¥n>0.
k=0
Then X(X) is a graded Fréchet space with the norms defined above ([Ham82, pg. 134]).

Definition 6.1.3. [Ham82, pg. 135] A linear map L : F' — G between Fréchet spaces F, G is

said to satisfy tame estimates of degree r and base b if there exists a constant ¢ = ¢(n) such
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that,
|ILfln < C|flngr, Yn>b, VfeEF

L is said to be tame if it satisfies the tame estimates for some n and r.
Example 6.1.4. We have that a large class of operators are in fact tame.

1. A linear partial differential operator L : C*°(X) — C°°(X) of order r satisfies the tame
estimate |Lu|, < |u|p4r for all n > 0 and hence L is tame of degree r ([Ham82, pg.

135)).

2. Inverses of elliptic, parabolic, hyperbolic and sub-elliptic operators are tame maps ([Ham82,

pg. 67]). In particular, the solution of elliptic boundary value problem is tame ([Ham82,
pg. 161]).

3. Composition of two tame maps is again tame ([Ham82, pg. 136]).

Definition 6.1.5. [Ham82, pg. 136] Given graded Fréchet spaces F,G, we say F' is a tame
direct summand of G if there are tame linear maps L : F' — G and M : G — F such that the

composition ML : F — F is the identity.
We now define tame Fréchet spaces.

Definition 6.1.6. [Ham82, pg. 136] A Fréchet space F' is said to be tame if F'is a tame direct

summand of (X)), for some Banach space X.

Example 6.1.7. Given a compact manifold X, possibly with boundary, and a vector bundle

E — X, the section space I'(E) is a tame Fréchet space ([Ham82, pg. 139]).
Let us also define, tame smooth maps.

Definition 6.1.8. [Ham82, pg. 143] A map P : U C F — G, between Fréchet spaces F,G,
defined over some open set U C F is said to be a smooth tame map, if P is smooth and all

the derivatives D* P are tame linear maps.
We now state the inverse function theorem.

Theorem 6.1.9. [Ham82, pg. 171] Given tame Fréchet spaces F,G and a tame smooth map
P :U — G, where U C F is open. Suppose that for the derivative DP(u) at u € U, the
equation DP(u)h = k admits unique solution h = V P(u)k for each k € G. Furthermore,
assume that VP : U x G — F is a smooth tame map. Then P is locally invertible and each

local inverse P~1 is smooth tame.

Remark 6.1.10. Unlike the inverse function theorem for Banach spaces, one needs to have

that the derivative DP is invertible on an open set U C F.
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6.2 Fat Distributions with Reeb-like Vector Fields

Suppose Z is a given holomorphic contact structure on a complex manifold M and D C TM
is the isomorphic real distribution under the canonical isomorphism T'M = T(; oy M. It follows
from the proof of Corollary 4.1.29, there exists local 1-forms oy, as € QY(M) and local vector
fields Z1, Zo, such that D can be written as D = ker a; Nker ao and the tangent bundle T'M

loc.

locally as the direct sum T'M = D & (Zy,Zy). Furthermore, o; and Z; satisfy the relations
ocC.

below:

[Zl, ZQ] = O, Oél'(Zj) = 5ij7 LZidOéjh) = 0, i,j = 1, 2.
Motivated by this, we consider the following.

Definition 6.2.1. A corank 2 distribution D on M is said to admit (local) Reeb directions
Z1, Zy, it D = ker oy Nker ag and TM =D @ (Zy, Z5) such that,
oc.

1. a1(Z1) =1, a1(Z2) =0,

2. as(Z1) =0,00(Z2) =1,

3. 1z, dajlp =0 fori,j=1,2,
4. [Zy,Z5] = 0.

As observed, the real distribution underlying any holomorphic contact structures, admits
(local) Reeb directions.
Now, given any corank 2 fat distribution D on a manifold M of dimension 4n + 2, one can

find ([Ge92]) a coordinate system (x1, ..., T4n, 21, 22) and 1-forms,

o; = dz; — Zfékxjdxk + Ry, 1=1,2,
Jk

such that D = ker vy N ker aig. Here R; = 25:1 fijdz; + Z?Zl gijdzj is a 1-form such
that, fij,9i; € O(Jz|> + |2]?) and {F;k} constitute the structure constants of some nilpotent
Lie algebra, known as the nilpotentization (Remark 4.1.32), associated to the distribution D.
In particular Fj’k = —I‘};j. Observe that, if we take f;; = 0 and g;; to be functions of z}'s
only, then any such tuple of forms (a1, ) above gives a distribution, which admits local Reeb
directions (0., ,0,).

From the classification results of [CFS05], we see that the only possible Lie algebra that can

arise as the nilpotentization of a corank 2 fat distribution on a 6 dimensional manifold is the

complex Heisenberg Lie algebra.
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Question 6.2.2. Is every (germ of) corank 2 fat distribution on RS, which admits local Reeb
directions, diffeomorphic to the germ of the distribution underlying a holomorphic contact

structure?

For a general corank 2 fat distribution, the answer is clearly no. From the result of Mont-
gomery (Theorem 2.1.10), it follows that a generic distribution germ of type (4,6) cannot admit
a local frame, which generates a finite dimensional Lie algebra. Whereas, a holomorphic con-
tact distribution admits such a frame, as observed in Corollary 4.1.29, generating the complex
Heisenberg Lie algebra. Since the set of germs of fat distributions of type (4,6) is open, there
are plenty of fat distributions, non-isomorphic to the contact holomorphic one. But it is not
clear whether any of these fat distributions admit (local) Reeb directions.

Now suppose D is a corank 2 fat distribution on a manifold M of dimension 6, defined by a
pair of 1-forms a1, aa. Hence w; = dav;|p are nondegenerate and the connecting homomorphism

A : D — D defined by
wa(u,v) = wi(u, Azv), Yu,v € Dy,x € M,

has no real eigenvalue. We further assume that the distribution D admits local Reeb directions.

Remark 6.2.3. Any corank 2 fat distribution on a six dimensional manifold is in fact of degree
2, as we have already seen in Example 4.1.39. But it is clear that Theorem 4.2.1 is not applicable

due to dimension constraints.

Now for a fixed manifold 3 = D?, consider the partial differential operator,

D:C®(%, M) = QY(Z,R?)

U (u*al, u*ag)

The C*-solutions of ®(u) = 0 are precisely the D-horizontal maps ¥ — M. Furthermore,
horizontality implies the isotropy condition, u*da; = 0 = u*das; implying that du, : T, —

Dy () is an isotropic map with respect to both the forms w; = da;|p on D for every x € ¥.

6.3 Local Inversion of ®

Linearizing © at an u € C°°(X, M) we have the linear differential operator £, as follows:

£, Tu*TM — QY(Z,R?)



152 Chapter 6. Germs of Horizontal 2-Submanifold in Fat Distribution of Type (4,6)

0 — (d(ai 0d) + u*Ladai)izl ,

Since ¥ = D? is a compact manifold with boundary, we have (see Example 6.1.7),

Observation 6.3.1. The spaces I'(u*T'M) and Q'(X,R?) are tame Fréchet spaces for any
u:X— M.

Since the linearization £, at v : X — M is a linear partial differential operator of order 1,

we have (see Example 6.1.4),

Observation 6.3.2. £, is a tame linear map of order 1 for any u : ¥ — M. Consequently, ©

is a smooth tame map.

This sets the problem into the framework of the differential operator between Fréchet spaces

for studying the existence of local inversion. We first prove the following result.
Proposition 6.3.3. If u is a smooth horizontal immersion then £, admits a tame inverse M,,.

Note that we are assuming the existence of D-horizontal immersions here. We first observe

the following linear algebraic result.

Lemma 6.3.4. If V C D, is common isotropic with respect to w; = da;|p and dimV = 2,

then V = AV

Proof. Since V is common isotropic,
Vocvthinvt =4+ AV = dim(V + AV)H > dimV =2

and so, dim(V + AV) < dim D, — 2 = 2. On the other hand, dim(V + AV) > dimV = 2.
Hence, dim(V + AV)) = 2 = dim V, which is possible only if V = AV. O

Remark 6.3.5. In view of Definition 4.1.14, the last lemma can be restated as follows : every

Q-isotropic subspace of a corank 2 fat distribution on 6-dimensional manifold is invariant.

Proposition 6.3.6. /fu is a smooth D-horizontal immersion, then given any (P, Q) € Q' (X, R?),
the equation £,(0) = (P, Q) admits a unique solution 0 = M, (P, Q), subject to a boundary

condition. The process of obtaining the solution depends on a choice of complex structure J

onD.

Proof. We first choose an almost complex structure J on D, compatible with w; = dai|p.

Since u is D-horizontal we have,

wo; = 0= u'da; =0, fori=1,2.
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Thus Im du, is common isotropic with respect to both w; = da;|p and so in particular, Im du,
is J-totally real, since J is wi-compatible. Also since u is an immersion, dim Im du, = 2. Then

by Lemma 6.3.4, we also have that,

A(Imdu,) = Imdu,, foro € X.

Let us denote, X = u.(0;), Y = u4(0y), where J,,0, are the coordinate vector fields on
¥ = D2. We thus have
(AX,AY) = (X,Y).

Hence, A restricts to an automorphism on (X, Y):

Ao = Al(x vy
Let us write,
AX =pX +qY, AY =rX +3sY (*)
for some functions p,q,r,s € C°°(X). Then we have that 4y = b with respect to the

ros
basis (X,Y"). Since A has no real eigenvalue, Ag also has no real eigenvalue. This means that

the characteristic polynomial

M — (p+8)A+ (ps — qr)

of Ag has negative discriminant, i.e.,
(p+ 5)2 —4(ps —qr)=(p— 8)2 + 4gr < 0.
Now, let us consider the equation,
£u.(0) = (P, Q),

where P, Q € Q'(X). We write,
0= 80 + CLZl + bZ27
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where 0y € u*D and Z, Z5 are the Reeb directions associated to (aq, a3), pulled back along

u. Using properties (1), (2) and (3) of Definition 6.2.1, we then have,
£.(0) = (da + u*rg,day, db+ U*Laodag).

Now, let us write,

P = Pidx + Pody, Q = Qidx + Q2dy

Evaluating both sides of £,(0) = (P, Q) on 0,0y, we then have the system,

Oza + dai (00, X) = Py

(1)
8yCL +dai(00,Y) = Py
3Ib+doz2(80,X) = Ql (2)
8yb + dag(ao, Y) = QQ
We also consider an auxiliary system of equations:
dal(ag, JX) =0
(3)
dal(ao, JY) =0
Now from (*) we have,
dag(ao, X) = dal(ag, AX) = pdal(ao, X) + qdal(ao, Y)
dag(a(), Y) = da1 (80, AY) =T dal(ao, X) + s dOél (80, Y)
This transforms (2) into the following system of PDEs:
8xb+pda1(8o,X) +qda1(80,Y) = Ql (2,)
8yb +r dal(a[), X) + Sdal(ao, Y) = QQ
Using (1) we eliminate dy from (2') and get,
Ozb — pOra — qOya = Q1 — pPr — qP» @)

Oyb —10za — s0ya = Q2 — 1P — 5P
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Since (p — s)% + 4qr < 0, the system of PDEs given by (2”) is elliptic. Hence, the Dirichlet

problem (2”) with the boundary condition

alox, = ag, blax = bo, (4)

will have a unique solution,

(a’7 b) = MU(P7 Qv aq, bO)

Lastly, using the solution (a,b) = M, (P, Q, ag,by) we get from (1), (3),

dal(ao,X) == Pl - &Ca
dal(ao,Y) == P2 - 8ya
(5)
dal(ao,JX) =0
da1(80,JY) =0

Since Imdu, is J-totally real, D = (X,Y,JX,JY) is a local framing, and since day|p is

nondegenerate, (5) can be uniquely solved for dy. Thus, £,(9) = (P, @) has a unique solution

0= mU(P7 Q7 aop, bU)

subject to satisfying the auxiliary system (3) and the boundary condition (4). O
We can now prove Proposition 6.3.3

Proof of Proposition 6.3.3. From Proposition 6.3.6 we have that £, admits unique solution
9M,, whenever u is D-horizontal immersion. As in Proposition 6.3.6, M, is obtained as a
solution to a Dirichlet problem and hence it is tame (see Example 6.1.4). Then 9, is obtained
from M, by solving a linear system, which is again tame. Hence the inverse 901, is tame, being

composition of two tame maps (see (3) of Example 6.1.4). O

Tame Inversion of ©

From Proposition 6.3.3 we see that the linearization £, admits right inverse 91,,, provided u is
D-horizontal immersion. But in order to apply the Implicit Function Theorem due to Hamilton
(Theorem 6.1.9), we need to show that there is an open set of maps L C C°°(3, M) such that
the family {£, | u € 4} admits a smooth tame inverse. We now identify this set Ll.

We first restrict ourselves to a collection Uy of maps w : X — M satisfying the following

two conditions:
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® Y is an immersion
e Imdu is transverse to (71, Zs)

This collection tly C C°°(X, M) is clearly open, since it is defined by open conditions. Now,

we have a canonical projection,
™ TM:D@<21,ZQ> — D.

For any u € Iy we see that the image mp(Im du) has dimension 2 at each point of X. Let us
choose an almost complex structure J : D — D, compatible with da; |p, as in Proposition 6.3.6.
Then the set

{(X, Y) € FroD | V = (X,Y) is J-totally real}

is open in the 2-frame bundle FroD, since the totally real condition V N JV = 0 is open. For
any tuple (X,Y’) we have the framing (X, Y, JX,JY) of D and we can write,

Ay A
Az Ago

A=

4x4

with respect to this basis. Let, O, C FroD, be the set of those (X,Y) € FraD, such that,
o V=(X,Y)is J-totally real
e The matrix Ay as above is negative definite

Since both are open conditions, we see that O, is open in FryD,..

We now define,

Definition 6.3.7. A map u : ¥ — M is said to be admissible if it satisfies the following.
o u €y, ie fisanimmersion with Imdu i (Z1, Z5)
o Imdu, = (U 0y, us0y) € 7r1_71 ((’)u(g)) foreach 0 € X

Denote by {4 C C°(%, M) the set of admissible maps.

In fact we have defined an open relation A C J!(3, M) such that f = Sol A. Since A is
an open relation, we have that 4l is open in C°°(X, M). It is apparent that any D-horizontal

immersion is admissible. We now prove the following.

Theorem 6.3.8. The linearization £, admits a smooth tame inverse 9, for every u €
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Proof. Suppose u € 4. We have, Im du = (u,0y, u.0y). Let us write,

U0y = X + a1 21 + as Zs, u*By =Y + 0141+ b2

where X = mp(u.0;),Y = mp(u.0y). By assumption, (X,Y) € FryD is totally real and so
we have a basis (X, Y, JX, JY) of D. Hence, we can write,

AX =pX +qY + 9 JX +¢JY

AY =rX +sY +7JX +§JY

The matrix of A has the form,

porox %
g 5 x *
oo ok
qg s * *

. p gy . . . C .
and by the hypothesis on i, Ay = is negative definite, which is equivalent to,

(p—8)? +4qr < 0.
Now we wish to solve £,(9) = (P, @), as we did in Proposition 6.3.6, where

£, Tu*TM — QY(Z,R?)
0— (d(ai o 8) + u*Ladai) L

Let 0 = 0y + aZ1 + bZs, where 0y € u*D. Since [Z1, Z3] = 0 (by (4) of Definition 6.2.1), we

have,
dai(Zy, Z2) = Zi(an(Z2)) — Za(on(Z1)) — an([Z1, Z2]) = Z1(0) — Z2(1) — a1 (0) =0,
and similarly, das(Z1, Z2) = 0. Hence,

dal(a,u*(‘?z) = doq(é?o +aZy +bZs, X +a121 + CLQZQ) = dal(ao, X),
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and similarly the remaining ones. Thus, we get a system as before,

&Ea + da1(80, X) = P1

(7)
Oya + don (00,Y) =P,
8xb+d041(ao,AX) = Ql ( )
8
Oyb + doi (0p, AY) = Q2
We add the linear equations,
dal(ao,JX) :0:da1(80,JY) (9)
to (7),(8). Then using (6) and (9), the system (8) becomes,
axb+pda1(807X) +qda1(807y) =1 (8/)
Gyb —+r doq(ﬁg, X) + Sdal(ao, Y) = QQ
Using (7) we can eliminate 9y in (8') and get,
Ozb — pdza — qdya = Q1 — pP1 — Py ()

Oyb —r0za — s0ya = Q2 — 1P — 5P

Since (p — 5)% +4qr < 0, we have that (8”) is elliptic. Hence given any arbitrary boundary

condition algx, = ag, blgx = by, we have the unique solution,

((I, b) = MU(Pa Qa ao, bO)
Then, as in Proposition 6.3.6, we obtain unique solution
0= mu(Pa Q7 aq, bO)

to the system given by (7), (8) and (9). Thus whenever u € 4, we have a solution 9, for the
linearized equation £, = (P, Q). As argued in the proof of Proposition 6.3.3, both £, and 9,

are tame operators. O

Since £, is surjective for every u € 4 and the family of right inverses 9 : 4 x Q}(2, R?) —

C>(X, M) is a smooth tame map, we obtain the following by an application of Theorem 6.1.9.
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Theorem 6.3.9. The operator © restricted to A is locally right invertible. Given any ugy € A,
there exists an open neighborhood U of uy and a smooth tame map @)} : ®(U) — U such

that © 0 ®, 1 = Id.

The proof of the Implicit Function Theorem, in fact, implies that there exists a positive

integer rg such that the following holds true.

Theorem 6.3.10. Let ug € 4 and gy = D(ug). Let € > 0 be any positive number. Then there
exists a 6 > 0 and an integer rq, such that for any a > ro and for every g € Q(3,R?) with

lgla < 0, there is an u =D, (g0 + g) € 4 satisfying the following conditions:

D(u)=go+g and |u—uplate <€

6.4 Existence of Horizontal Germs and the Local /-Principle

Since we are only interested in germs, without loss of generality, we assume that A/ = RS and
¥ = R2. Suppose, we have a corank 2 fat distribution D on M, which admits Reeb directions
(Definition 6.2.1). Consider the (open) relation A C J!(X, M), as in the previous section, so
that the set of admissible maps i are precisely the smooth holonomic sections of A. We have
shown that the operator, © : u +—> (u*oq,u*ozg) is locally invertible over il

Now following Gromov([Gro86]), we can get the (parametric) local h-principle. One crucial
thing to observe is that unlike Theorem 2.2.24, the inversion of © as we have obtained in
Theorem 6.3.9, does not conform to the notion of locality as considered by Gromov. Yet we
observe that the proof of local h-principle goes through, without the locality property of 1.
For the sake of completeness, we reproduce the proof.

Recall from Definition 2.2.26 that a germ of a map v : ¥ — M at ¢ € X is an infinitesimal

solution of order a of ®(u) = 0 if,

j%(u) (U) =0.

Now since © has order 1, the property that u is an infinitesimal solution of order «, only depends

on the jet j@*1(o). Consider the relation,
Ra = Ra(D,0,A) C J*T(Z, M),
consisting of jets j2T!(o), represented by u : Op(c) — M, so that,

u€SolA=44  and ]%(t}) =0.
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We note that, for any o > 0, the smooth solutions of R, are precisely the A-regular solutions,

i.e, admissible solutions of ® = 0. We then prove the following.

Theorem 6.4.1. If « is sufficiently large, then every infinitesimal solution u : Op(c) — M of
order « admits a homotopy u; : Op(c) — M, such that uy = u on some Opo and u; is a
D-horizontal admissible solution, i.e, ®(u1) = 0. Furthermore, the jets j&-"! (o) belongs to Ra,

for all t € [0,1].

Proof. Suppose u is defined on an open ball V' C ¥ about ¢. Since u € Sol A and A is open,
we can get a neighborhood V}, of o, such that 0 € [y C V and uly; is a solution of A. In other
words, u|y; is admissible. Denote, go = D (uly; ).

ca+1

Since ji (o) € Ra, we have jg (o) = jg(u)(a) = 0. Hence for any given € > 0, there

exists a neighborhood W C Vj of o such that |gg|o < € on W. We can get some g, on V{ so

that,
e g. = —gg on some neighborhood W C Vj of o, and
e g is e-small in C%norm, i.e, |ge|a < € on V).

Now let us apply Theorem 6.3.10 for the domain Vj. Since yo := uly;, is admissible, we
have that ©,, admits a local inverse. In particular, there exists some €, > 0 such that for any
|gla < € we have unique y such that D(y) = D(yo) + g and |y — Yolat+1 < . Here we require
that « to be sufficiently large. Now, in particular, for this € = €(yp, ), we can get W and g, as

above. Then we have unique solutions,
up =Dy (tge),
over V), satisfying |u; — yola+1 < € for t € [0,1]. Now,
D(ur) = D(yo) + tge = D(ulvy) + tge = go + tge,

In particular we have, ©(ug) = go and hence ug = uly, from uniqueness. On the other hand,
over W,

D(u1) =go+ ge = go — go = 0.

Thus u; is a solution D(uy) = 0, over W. Furthermore the jet j3*!(0) € R, for all t €
[0, 1]. O

Thus we have a (parametric) local h-principle for R, (see [Gro86, pg. 119]).
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Corollary 6.4.2. For o large enough, The jet map 7%t : SolR, — I'Rq is a local weak

homotopy equivalence at any o € X..

In order to prove the existence of a horizontal germ, we need to prove that R, # 0 at
some o. One issue with Theorem 6.4.1 is that we do not specify the higher jet order «, that
is crucial in order to get a local solution. We now show that in fact we can get a lift to any
arbitrary higher jet from the first jet relation of isotropic horizontal maps. Recall that given
any map u satisfying u*«; = 0 we have, taking derivatives, that u*da; = 0. That is, Im du is
w; = da;|p-isotropic. Now from Proposition 6.3.3, we have that every solution is automatically
admissible. Consider the relation R C Ro C JL(X, M) consisting of (z,y, F : T, — T,M)
such that, F*d\* = 0 for s = 1,2. In other words, F' : T — TM is a formal isotropic

D-horizontal immersion. We have the following result.

Lemma 6.4.3. For any a > 1, the jet projection map p = p‘f“ S JetY S, M) — JY(E, M)

maps Ra|(z,y) surjectively onto R| ), for any (z,y) € ¥ x M.

Proof. The proof is similar to that of Lemma 3.2.1 for {2-regular horizontal immersions. Note
that since the distribution D in question is fat, by Definition 4.1.20, every 1-dimensional sub-
space (v) of Dy is Q-regular. Now, suppose we have fixed some coordinate (x1,x2) about
o € Y. Then for any Q-isotropic, injective map F': 153 — Ty M, Im I’ admits a codimension
1 Q-regular subspace, namely, (F'(9,,)). Consequently, the proof now follows immediately from

Remark 3.3.3. O

Note that we have SolR = SolR, for any a > 0. Then as a direct consequence of

Corollary 6.4.2 and Lemma 6.4.3, we have the following local h-principle.

Corollary 6.4.4 ([Bho20]). The relation R C J'(X, M) satisfies the (parametric) local h-
principle, i.e, the jet map j' : SolR — I'R is a local weak homotopy equivalence at any

o€
We can now prove the existence of germs of D-horizontal submanifolds of dimension 2.

Theorem 6.4.5 ([Bho20]). Given D is corank 2 fat distribution on a manifold M of dimension
6, admitting local Reeb directions. Then there exists a germ of a D-horizontal submanifold of

dimension 2.

Proof. Suppose D = ker a; Nker g for some local 1-forms «; around some y € M. Pick some

arbitrary 0 # v € D, and set u = Av, where A is the (local) automorphism. Then, observe
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that,
doy(u,v) = day(Av,v) = das(v,v) =0 and, das(u,v) = dag(u, Av) = daj(u,u) = 0.

In other words, (u,v) C D, is Q-isotropic. Now, consider the jet o = (0,y,F : T,D* —
T,M) € J'(D? M) given by F(8,) = u, F(8,) = v. Then clearly, we have o € R|(y,) by
construction. But then by Corollary 6.4.4, we have a D-horizontal immersion u : Op(0) — M.
Since u is an immersion, it is a local diffeomorphism and so we have a germ of D-horizontal

submanifold of dimension 2. O
We conclude with the following Conjecture:

Conjecture. If X is an open 2-manifold then horizontal immersions of ¥ in (RS, D), with some

higher order regularity condition, satisfy the h-principle.
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