
Topology Course Notes (KSM1C03)

Day 1 : 12th August, 2025
basic set theory -- power set -- product of sets -- equivalence relation --
order relation

1.1 Power set
Given a set X, the power set is defined as

P(X) := {A | A ⊂ X} .

Exercise 1.1

If X is a finite set, prove via induction that |P(X)| = 2|X|, where |·| denotes the cardinality.

Exercise 1.2

For any arbitrary set X, prove that there exists a natural bijection of P(X) with the set

F := {f : X → {0, 1}}

of all functions from X to the 2-point set {0, 1}.

Hint

How many functions {a, b, c} → {0, 1} can you define? Look at their inverse images.

Given two sets X,Y denote the set of all functions from X to Y as

Y X := {f : X → Y } .

Exercise 1.3

If X and Y are finite sets, then show that
∣∣Y X

∣∣ = |Y ||X|. Use this to show |P(X)| = 2|X|.

Exercise 1.4: (Set exponential law)

Given three sets X,Y, Z, prove that there is a natural bijection(
ZY
)X

= ZY×X
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Hint
Write down what the elements look like. Can you see the pattern? This bijection is also
known as Currying .

1.2 Arbitrary union and intersection
Suppose A is a collection of sets. Then, we have the union⋃

X∈A

X := {x | x ∈ X for some X ∈ A} ,

and the intersection ⋂
X∈A

X := {x | x ∈ X for all X ∈ A} .

Exercise 1.5: (Empty union)

Suppose we have an empty collection A of sets. From the definition, prove that⋃
X∈A

X = ∅.

Exercise 1.6: (Empty intersection)

Suppose A is a nonempty subset of the power set of some fixed set X. Show that⋂
A∈A

= {x ∈ X | x ∈ A for all A ∈ A} .

If A ⊂ P(X) is the empty collection, justify⋂
A∈A

A = X

1.3 Cartesian product
Given two sets A,B, their Cartesian product (or simply, product) is defined as the set

A×B := {(a, b) | a ∈ A, b ∈ B}

of ordered pairs. We have the two projections

πA : A×B → A

(a, b) 7→ a,
and

πB : A×B → B

(a, b) 7→ b.

Exercise 1.7

Justify A× ∅ = ∅, where ∅ is the empty set.
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Remark 1.8: (A different product?)

Suppose A,B are given. Consider the set

C = {(a, b, a) | a ∈ A, b ∈ B} .

Clearly there is a natural bijection between C and A × B. Also, we have maps πA : C → A and
πB : C → B.

Exercise 1.9: (Universal property of the product)

Suppose A,B are given sets, and πA : A×B → A, πB : A×B → B be the projections.

a) Show that given any set C, and functions f : C → A, g : C → B, there exists a unique
function h : C → A×B such that the diagram commutes.

C

A×B A

B

f

∃!h

g

πA

πB

b) Suppose we are given a set P , along with two functions pA : P → A and pB → B, which
satisfies the following property : given any set C, and functions f : C → A, g : C → B,
there exists a unique function h : C → P satisfying f = pA ◦ h, g = pB ◦ h.

Show that the exists a bijection from ψ : A × B → P , such that pA ◦ ψ = πA and
pB ◦ ψ = πB.

Hint
Look at the diagrams

P

A×B A

B

pA

∃!φ

pB

πA

πB

and

A×B

P A

B

πA

∃!ψ

πB

pA

pB

Can you show that φ ◦ ψ = IdA×B and ψ ◦ φ = IdP ? The uniqueness should be useful.
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1.4 Equivalence relation

Definition 1.10: (Relation)
Given a set X, a relation on it is a subset R ⊂ X ×X. We say R is an equivalence relation if
the following holds.

a) (Reflexive) For each x ∈ X we have (x, x) ∈ R.

b) (Symmetric) If (x, y) ∈ R, then (y, x) ∈ R.

c) (Transitive) If (x, y) ∈ R and (y, z) ∈ R, then (x, z) ∈ R.

For any x ∈ X, the equivalence class (with respect to the equivalence relation R) is defined as
the set

[x] := {y ∈ X | (x, y) ∈ R} .

We shall denote x ∼R y (sometimes also denoted xRy, or simply x ∼ y) whenever (x, y) ∈ R.
The collection of equivalence classes are sometimes denoted as X/∼.

Exercise 1.11

Given an equivalence relation R on X, check that any two equivalence classes are either disjoint
or equal (i.e., they cannot have nontrivial intersection).

Exercise 1.12

Suppose X is a given set, and A ⊂ X is a nonempty subset. Define the relation R ⊂ X ×X

as follows.
R := {(x, x) | x ∈ X \ A}

⋃
{(a, b) | a, b ∈ A} .

a) Check that R is an equivalence relation.

b) Identify the equivalence classes. We shall denote the collection of equivalence classes as
X/A.

c) What is X/X ?

Exercise 1.13

Suppose G is a group and H is a subgroup. Define a relation

C :=
{
(g1, g2)

∣∣ g−11 g2 ∈ H
}
⊂ G×G.

a) Show that C is an equivalence relation.

b) Identify the equivalence classes G/H.

Hint
Recall the definition of cosets.
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Definition 1.14: Partition
Given a set X, a partition of X is a collection of subsets Xα ⊂ X for some indexing set α ∈ I,
such that the following holds.

• Xα ∩Xβ = ∅ for any α, β ∈ I with α 6= β.

• X =
⋃
α∈I Xα.

Exercise 1.15: (Partitions and equivalence relations)

Given an equivalence relation R on a set X, show that the collection of equivalence classes is a
partition of X. Conversely, given any partition of X, show that there exists a unique equivalence
relation which gives that partition.

1.5 Order relation
Definition 1.16: (Linear order)
A relation O ⊂ X × X on X is called an order relation (also known as linear order or simple
order) if the following holds.

a) (Non-reflexive) (x, x) 6∈ O for all x ∈ X.

b) (Transitive) If (x, y) ∈ O and (y, z) ∈ O, then (x, z) ∈ O.

c) (Comparable) For x, y ∈ X with x 6= y, either (x, y) ∈ O or (y, x) ∈ O.

We shall denote x <O y (or even simply x < y) whenever (x, y) ∈ O. If either x <O y or x = y

holds, then we shall denote x ≤O y (or x ≤ y). Given x, y ∈ X, we have the interval

(x, y) := {z ∈ X | x < z and z < x} .

Exercise 1.17

Given an ordered set (X,<), define the intervals [x, y], [x, y), (x, y] for some x, y ∈ X. What
happens when x = y?

Definition 1.18: (Order preserving function)
Given two ordered set (X1, <1) and (X2, <2), a function f : X1 → X2 is said to order preserving
if

x <1 y ⇒ f(x) <2 f(y), ∀ x, y ∈ X1.

Definition 1.19: (Total order)
A relation O ⊂ X ×X on a set X is called a total order if the following holds.

a) (Reflexive) (x, x) ∈ O for all x ∈ X.

b) (Transitive) If (x, y) ∈ O and (y, z) ∈ O, then (x, z) ∈ O.

c) (Total) For x, y ∈ X either (x, y) ∈ O or (y, x) ∈ O
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d) (Antisymmetric) If (x, y) ∈ O and (y, x) ∈ O, then x = y.

We shall denote x ≤O y (or even simply x ≤ y) whenever (x, y) ∈ O.

Definition 1.20: (Dictionary order)
Given X,Y two totally ordered sets the dictionary order (or lexicographic order) on the product
X × Y is defined as

(x1, y1) < (x2, y2) if and only if {x1 < x2} or {x1 = x2, andy1 < y2} ,

for any (x1, y1), (x2, y2) ∈ X × Y .

Exercise 1.21

Let X,Y be totally ordered sets.

a) Check that the dictionary order on X × Y is indeed a total ordering.

b) Check that the projection maps πX → X × Y → X and πY : X × Y → Y are order
preserving maps.

c) Suppose Z is another totally ordered set. Let f : Z → X and g : Z → Y be two order
preserving maps. Show that there exists a unique order preserving map h : Z → X × Y

such that πX ◦ h = f and πY ◦ h = g.

d) Let us define a new relation (x1, y1) � (x2, y2) if and only x1 ≤ x2 and y1 ≤ y2. Is � a
total order on X × Y ?

Day 2 : 13th August, 2025
metric space -- topological space -- basis -- subbasis

2.1 Metric Spaces

Definition 2.1: (Metric space)
Given a set X, a metric on it is a map d : X ×X → [0,∞) such that the following holds.

1) a. d(x, x) = 0 for all x ∈ X.

b. If x 6= y ∈ X, then d(x, y) > 0.

2) d(x, y) = d(y, x) for all x, y ∈ X

3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

The tuple (X, d) is called a metric space. The open ball of radius r, centered at some x ∈ X is
denoted as

Bd(x, r) := {y ∈ X | d(x, y) < r} .
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Similarly, the closed ball is defined as

B̄d(x, r) := {y ∈ X | d(x, y) ≤ r} .

Definition 2.2: (Open set in metric space)
Given a metric space (X, d), a set U ⊂ X is called open if

for all x ∈ X, there exists some r > 0, such that Bd(x, r) ⊂ U.

Exercise 2.3: (Properties of open sets)

From the definition, verify the following.

i) ∅ and X are open sets.

ii) Given any collection {Uα ⊂ X} of open sets, the union
⋃
Uα is open in X.

iii) Given a finite collection {U1, . . . , Uk} of open sets, the intersection
⋂k
i=1 Ui is open in

X.

Remark 2.4: (Which properties of metric are needed?!)

You should need 1a to show that x ∈ Bd(x, r), and hence, X is open. You should need 3

to show that
Bd(x,min {r1, r2}) ⊂ Bd(x, r1) ∩Bd(x, r2),

which is needed for the finite intersection.
In particular, 1b and 2 are not needed to verify the properties of open sets. Indeed, such
general “metric” exists, known as pseud-metric and asymmetric metric.

2.2 Topological Spaces

Definition 2.5: (Topology)
Given a set X, a topology on X is a collection T of subsets of X (i.e., T ⊂ P(X)), such that
the following holds.

a) ∅ ∈ T and X ∈ T .

b) T is closed under arbitrary unions. That is, for any collection of elements Uα ∈ T with
α ∈ I, an indexing set, we have

⋃
α∈I Uα ∈ T .

c) T is closed under finite intersections. That is, for any finite collection of elements
U1, . . . , Un ∈ T , we have

⋂n
i=1 Ui ∈ T .

The tuple (X, T ) is called a topological space.
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Example 2.6

Given any set X we always have two standard topologies on it.

a) (Discrete Topology) T0 = P(X).

b) (Indiscrete Topology) T1 = {∅, X}.

They are distinct whenever X has at least 2 points.

Exercise 2.7

Given any set X, verify that both the discrete and the indiscrete topologies are indeed topologies,
that is, check that they satisfy the axioms.

Definition 2.8: (Metric topology)
Given a metric space (X, d), the collection of open sets in X form a topology, called the metric
topology (or the topology induced by the metric).

Exercise 2.9: (Metric inducing discrete and indiscrete topology)

Given a set X, can you give a metric on it such that the induced topology on X is the discrete
topology? Can you do the same for indiscrete topology?

Exercise 2.10: (Topologies on 3-point set)

Suppose X = {a, b, c}. Note that

|P (P(X))| = 2|P(X)| = 22
|X|

= 22
3

= 256.

Thus, there are 256 possible collections of subsets of X. How many of them are topologies?
How many are distinct if you are allowed to permute the elements {a, b, c}?

Hint
The answers should be 29 and 9.

Definition 2.11: (Open and closed sets)
Given a topological space (X, T ), a subset U ⊂ X is called an open set if U ∈ T , and a subset
C ⊂ X is called a closed set if X \ C ∈ T (i.e., if X \ C is open).

Caution 2.12

Given (X, T ), a subset can be both open and closed! Think about the discrete topology. Such
subsets are sometimes called clopen sets.
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Exercise 2.13: (Topology defined by closed sets)

Given X, suppose C ⊂ P(X) is a collection of subsets that satisfy the following.

a) ∅ ∈ C, X ∈ C.

b) C is closed under arbitrary intersections.

c) C is closed under finite unions.

Define the collection,
T := {U ⊂ X | X \ U ∈ C} .

Prove that T is a topology on X.

Exercise 2.14

On the real line R, consider the collection of subsets

T← := {∅,R}
⋃

{(−∞, a) | a ∈ R} .

Show that T← is a topology on R.

2.3 Basis of a topology

Definition 2.15: (Basis of a topology)
Given a topological space (X, T ), a basis for it is a sub-collection B ⊂ T of open sets such that
every open set U ∈ T can be written as the union of some elements of B.

Example 2.16: (Usual topology on R)

The collection of all open intervals B = {(a, b) | a, b ∈ R} is a basis for the usual topology on
the real line R.

Proposition 2.17: (Necessary condition for basis)

Suppose (X, T ) is a topological space, and consider a basis B ⊂ T . Then, the following holds.

(B1) For any x ∈ X, there exists some U ∈ B such that x ∈ U .

(B2) For any U, V ∈ B and any element x ∈ U ∩ V , there exists some W ∈ B such that
x ∈ W ⊂ U ∩ V .

Proof
Suppose B is a basis of (X, T ). Since X is open in X, we have X =

⋃
O∈B O, which implies (B1).

Now, for any U, V ∈ B, we have U ∩V is open as well. Thus, U ∩V is the union of some elements
of B, which implies (B2). �
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Example 2.18

Consider the collection
B = {(a,∞) | a ∈ R} .

This is a subcollection of open sets of R (in the usual topology), and moreover, B satisfies both
B1 and B2 (Check!). But B is not a basis for the usual topology on R. Thus, B1 and B2 is
not a sufficient condition for B to be a basis.

Exercise 2.19: (Topology generated by a basis)

Suppose B ⊂ P(X) is a collection of subsets of X satisfying (B1) and (B2). Consider T to be
the collection of all possible unions of elements of B. Show that T is a topology on X and B is
a basis for it.

Exercise 2.20: (Basis for metric topology)

Suppose (X, d) is a metric space. Consider the collection

B := {Br(x) | x ∈ X, r > 0} ,

where Br(x) := {y | d(x, y) < r} is the ball of radius r, centered at x. Show that B is a basis
for a topology on X, known as the metric topology induced by the metric d.

Exercise 2.21: (Closed discs generate discrete topology)

Let (X, d) be a metric space, and B̄r(x) = {y ∈ X | d(x, y) ≤ r} be the closed ball of radius r
centered at x. Show that the collection

B :=
{
B̄r(x)

∣∣ x ∈ X, r ≥ 0
}

is a basis for the discrete topology on X.

Exercise 2.22: (Usual topology on R2)

Consider the following collections of subsets of the plane R2.

a) B1 be the collection of all open discs with all possible radii and center at any point.

b) B2 be the collection of all open discs with radius less than 1, and center at any point.

c) B3 be the collection of all open squares (i.e, only the insides, not the boundary) with
sides parallel to the two axes.

Show that all three are bases for the usual topology on R2.

Hint
Draw pictures!
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2.4 Subbasis of a topology

Definition 2.23: (Subbasis of a topology)
Given a topological space (X, T ), a subbasis is a collection of subsets S ⊂ T such that T is
the smallest topology on X containing S.

Proposition 2.24: (Topology generated by subbasis)

Let X be a set, and S be any collection of subsets of X (i.e, S ⊂ P(X)). Then, S is a subbasis
for a (unique) topology on X (called the topology generated S).

Proof
Consider the collection

T := {T ⊂ P(X) | T is a topology and S ⊂ T } .

Note that it is a nonempty collection, as P(X) ∈ T. Denote T0 =
⋂
T ∈T T . Then T0 is a topology,

and by definition, it is the smallest one containing S. �

Explicitly, an open set of the topology generated by a subbasis S can be (non-uniquely) written as
an arbitrary union of finite intersections of elements of S.

Exercise 2.25: (Trivial subbases)

Given any set X, figure out the topologies generated by the following sub-bases :

S1 = ∅, S2 = {∅} , S3 = {X} , S4 = {∅, X} .

Exercise 2.26

Given the plane R2 consider the collection

S :=
{
B1(x)

∣∣ x ∈ R2
}
,

where B1(x) is the unit open disc centered at x. Show that

a) S is not a basis for any topology on R2, but

b) the topology generated by S is the usual metric topology.

Hint
Place 4 unit discs with centers at the four corners of a square, with side length strictly less
than 2. Look at the intersection!
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2.5 Fine and coarse topology

Definition 2.27: (Fine and coarse topology)
Given two topologies T1, T2 on a set X, we say that T1 is finer than T2 (and T2 is said to be
coarser than T1) if T1 ⊃ T2.

Caution 2.28

One way to remember the terminology is to think of each open set as small pebbles. If you crush
each pebble in to finer pebbles, then you get more of it! Thus, the finer collection is larger (has
more open sets), and the coarser collection is smaller (has less number of open sets).

Exercise 2.29

Check that the discrete topology on a set X is the finest, i.e., finer than any other topology that
can be given on X. Dually, the indiscrete topology is the coarsest topology.

Caution 2.30

Not all topologies on a set are comparable to each other! Can you construct such examples on
{a, b, c}?

Exercise 2.31

Show that the lower limit topology Rl is stictly finer than the usual topology on R.

Day 3 : 14th August, 2025
closure -- interior -- boundary -- subspaces -- continuous function

3.1 Limit points and closure

Definition 3.1: (Limit point)
Given a space X and a subset A ⊂ X, a point x ∈ X is called a limit point (or cluster point, or
point of accumulation) of A if for any open set U ⊂ X, with x ∈ U , we have A∩U contains a
point other than x.

Exercise 3.2

Show that if A is a closed set of X, then A contains all of its limit points. Give an example of
a space X and a subset A ⊂ X, such that

a) there is a limit point x of A which is not an element of A, and

b) there is an element a ∈ A which is not a limit point of A.
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Definition 3.3: (Adherent and isolated points)
Given a subset A ⊂ X, a point x ∈ X is called an adherent point (or points of closure) if every
open neighborhood of x intersects A. An adherent point which is not a limit point is called an
isolated point of A (which is then necessarily an element of A).

Definition 3.4: (Closure of a set)
Given A ⊂ X, the closure of A, denoted Ā (or clA), is the smallest closed set of X that contains
A.

Exercise 3.5

Show that A ⊂ X is closed if and only if A = Ā.

Exercise 3.6

For any A ⊂ X, show that Ā is the intersection of all closed sets of X containing A. In particular,
A ⊂ Ā.

Proposition 3.7

Given A ⊂ X, we have

Ā = {x ∈ X | x is an adherent point of A} .

Proof
Suppose x ∈ X is an adherent point of A. Let C ⊂ X be a closed set containing A. If possibly,
say x 6∈ C ⇒ x ∈ X \C. Now, X \C is an open set, and A∩ (X \C) = ∅. This contradicts that
x is an adherent point of A. Thus, x ∈ C. Since C was arbitrary, we get x ∈ Ā. Thus, Ā contains
all the adherent points of A.
Conversely, suppose x ∈ Ā. If possible, suppose x is not an adherent point of A. Then, there exists
some open set U such that x ∈ U and U ∩A = ∅. Now, A ⊂ (X \U), and X \U is a closed set.
So, Ā ⊂ X \ U ⇒ Ā ∩ U = ∅. This means, x 6∈ Ā, a contradiction. Thus, x must be an adherent
point of A. This concludes the claim. �

Exercise 3.8

Suppose A = {xn} ⊂ R is an infinite set.

a) If x = limn xn exists, then show that x is a limit point of A.

b) If x ∈ R is a limit point of A, then show that there is a subsequence {xnk
} with

x = limk xnk
.

Suppose,

xn =

1− 1
k
, n = 2k,

2 + 1
k
, n = 2k + 1.

What are the limit points of A = {xn | n ∈ N}?
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Definition 3.9: (Locally finite)
Given any collection A of subsets of a space X, we say A is a locally finite collection if for each
x ∈ X, there exists an open neighborhood x ∈ U , such that U intersects only finitely many
subsets from A

Proposition 3.10: (Closure of locally finite collection)

Suppose A = {Aα}α∈I is a locally finite collection of subsets of X. Then,
⋃
αAα =

⋃
αAα.

Proof
We only show

⋃
αAα ⊂

⋃
αAα. If possible, suppose x ∈

⋃
αAα and x 6∈

⋃
Aα. By local finiteness,

we have some open neighborhood U of x, which only intersects, say, Aα1 , . . . , Aαn ∈ A (the list
can be empty as well). Now, consider the set V = U \

⋃n
i=1Aαi

, which is open (check). Clearly
x ∈ V . But V ∩ (

⋃
Aα). This contradicts the fact that x is a closure point. �

3.2 Interior
Definition 3.11: (Interior of a set)

Given A ⊂ X, the interior of A, denoted Å (or intA), is the largest open set contained in A.
A point x ∈ Å is called an interior point of A.

Exercise 3.12: (Interior of open sets)

For any A ⊂ X show that Å is the union of all open sets contained in A. In particular, show
that A ⊂ X is open if and only if A = Å.

Exercise 3.13: (Interior point)

Given A ⊂ X, show that a point x ∈ X is an interior point of A if and only if there exists some
open set U ⊂ X such that x ∈ U ⊂ A.

3.3 Boundary

Definition 3.14: (Boudary of a set)
Given A ⊂ X, the boundary of A, denoted ∂A (or bdA), is defined as

∂A = Ā ∩ (X \ A).

Clearly boundary of any set is always a closed set. Also, observe the following. Given any A ⊂ X,
a point x ∈ X can satisfy exactly one of the following.

a) There exists an open set U with x ∈ U ⊂ A (whence x is an interior point of A).

b) There exists an open set U with x ∈ U ⊂ X \ A (whence x is an interior point of X \ A).

c) For any open set U with x ∈ U , we have U ∩ A 6= ∅ and U ∩ (X \ A) = ∅ (whence x is a
boundary point of A).
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Exercise 3.15

Given A ⊂ X, show that

∂A = {x ∈ X | for any U ⊂ X open, with x ∈ U , we have U ∩ A 6= ∅ 6= U ∩ (X \ A)}

Exercise 3.16

Find out the boundaries of A, when

a) A = {(x, y) | x2 + y2 < 1} ⊂ R2, and

b) A = {(x, y, z) | x2 + y2 < 1, z = 0} ⊂ R3.

Caution 3.17

The above exercise shows that our intuitive notion of boundary of a disc may be misleading! In
order to justify our intuition that “the boundary of a disc is the circle”, one needs to treat it as
a ‘manifold with boundary’.

3.4 Subspaces

Definition 3.18: (Subspace topology)
Given a topological space (X, T ) and a subset A ⊂ X, the subspace topology on A is defined
as the collection

TA := {U ⊂ A | U = A ∩O for some O ∈ T } .

We say (A, TA) is a subspace of (X, T ).

Exercise 3.19

Suppose U ⊂ X is an open set. What are the open subsets of U in the subspace topology?
What are the closed sets?

Proposition 3.20: (Closure in subspace)

Let Y ⊂ X be a subspace. Then, a subset of Y is closed in Y if and only if it is the intersection
of Y with a closed set of X. Consequently, for any A ⊂ Y , the closure of A in the subspace
topology is given as ĀY = Ā ∩ Y .

Proof
For any C ⊂ Y , we have

C is closed in Y ⇔ Y \ C is open in Y (by definition of closed set)
⇔ Y \ C = Y ∩ U , for some U ⊂ X open (by definition of subspace topology).

Then,
C = Y \ (Y \ C) = Y \ (Y ∩ U) = Y \ U = Y ∩ (X \ U)︸ ︷︷ ︸

closed in X

.
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On the other hand, for any closed set F ⊂ X, we have

Y \ (Y ∩ F ) = Y \ F = Y ∩ (X \ F )︸ ︷︷ ︸
open in X

,

which implies Y \ (Y ∩ F ) is open in F . But then Y ∩ F is closed in Y .

Now,

ĀY =
⋂

C ⊂ Y closed
A⊂C

C =
⋂

C ⊂ X closed
A⊂C

(Y ∩ C) = Y ∩

 ⋂
C ⊂ X closed

A⊂C

C

 = Y ∩ Ā.

This concludes the proof. �

Exercise 3.21: (Interior and subspace)

Prove or disprove : Let Y ⊂ X be a subspace, and A ⊂ Y . Then, the interior of A in Y (with
respect the subspace topology) is Å ∩ Y .

Exercise 3.22: (Metric topology and subspace)

Suppose (X, d) is a metric space. Given any A ⊂ X, show that d restricts to a metric on A.
Show that the subspace topology on any A ⊂ X is the same as the metric topology for the
induced metric space (A, d).

3.5 Continuous function
Definition 3.23: (Continuous function)
Given two topological spaces (X, TX) and (Y, TY ), a function f : X → Y is said to be continuous
if f−1(U) ∈ TX for any U ∈ TY (i.e., pre-image of open sets are open).

Exercise 3.24: (Pre-image of closed set)

Show that f : X → Y is continuous if and only if preimage of closed sets of Y is closed in X.

Exercise 3.25: (Continuity of the identity)

Suppose X is equipped given topologies T1 and T2. Show that T1 is finer than T2 if and only if
Id : (X, T1) → (X, T2) is continuous.

Definition 3.26: (Open map)
Given two topological spaces (X, TX) and (Y, TY ), a function f : X → Y is said to be open if
f(U) ∈ TY for any U ∈ TX (i.e, image of opens sets are open).

Exercise 3.27: (Openness of the identity)

Suppose X is equipped given topologies T1 and T2. Show that T2 is finer than T1 if and only if
Id : (X, T1) → (X, T2) is open.
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Exercise 3.28: (Openness of bijection)

Suppose f : X → Y is a bijection. Show that f is open if and only if f−1 is continuous.

Definition 3.29: (Homeomorphism)
Given two topological spaces (X, TX) and (Y, TY ), a function f : X → Y is said to be a
homeomorphism if the following holds.

a) f is bijective, with inverse f−1 : Y → X.

b) f is continuous.

c) f is open (or equivalently, f−1 is continuous).

Exercise 3.30: (Continuous bijective map)

For 0 ≤ t < 1, consider f(t) = (cos 2πt, sin 2πt). Check that f : [0, 1) → R2 is a continuous,
injective map. Draw the image. Is it a homeomorphism onto the image (with the corresponding
subspace topologies)?

Caution 3.31: (Invariance of domain)

In general, a continuous bijection need not be a homeomorphism. However, there is a special
situation known as the Invariance of domain. Suppose U ⊂ Rn is an open set. Consider a
continuous injective map f : U → Rn. Denote V := f(U). Clearly, f : U → V is a continuous
bijection.
It is a very important theorem in topology that states : V is open and f : U → V is a
homeomorphism.

Definition 3.32: (Closed map)
Given two topological spaces (X, TX) and (Y, TY ), a function f : X → Y is said to be closed if
f(C) is closed in Y for any closed set C ⊂ X.

Exercise 3.33: (Open and closed map)

Give examples of continuous maps which are :

a) open, but not closed,

b) closed, but not open,

c) neither open nor closed,

d) both open and closed.

Hint

Consider f1(x, y) = x, f2(x) =

0, x < 0

x, x ≥ 0
, f3(x) = sin(x), and f4(x) = x.
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Exercise 3.34: (Continuity is local)

Suppose X =
⋃
Uα, for some open sets Uα. Show that f : X → Y is continuous if and only if

f |Uα → Y is continuous for all α.

Theorem 3.35: (Pasting lemma)

Suppose X = A ∪ B, for some closed sets A,B ⊂ X. Let f : A → Y, g : B → Y be given
continuous maps, such that f(x) = g(x) for any x ∈ A ∩ B. Then, there exists a (unique)

continuous map h : X → Y such that h(x) =

f(x), x ∈ A

g(x), x ∈ B.

Proof
Clearly, h is a well-defined function, and it is uniquely defined. We show that h is continuous. Let
C ⊂ Y be a closed set. Then,

h−1(C) = f−1(C) ∪ g−1(C).

Now, f−1(C) ⊂ A and g−1(C) ⊂ B are closed sets (in the subspace topology). But then they are
closed in X, since A,B are closed. Then, h−1(C) is closed. Since C was arbitrary, we have h is
continuous. �

Exercise 3.36: (Pasting lemma for finite collection)

Suppose X =
⋃n
i=1Ci for some closed sets Ci ⊂ X. Let fi : Ci → Y be continuous functions

such that
fi(x) = fj(x), x ∈ Ci ∩ Cj, 1 ≤ i < j ≤ n.

Show that there exists a (unique) continuous function h : X → Y such that h(x) = fi(x)

whenever x ∈ Ci.

Caution 3.37: (Pasting lemma for infinite collection)

Pasting lemma need not hold true for infinite collection! ConsiderX to be the integers Z equipped
with the cofinite topology (i.e., open sets are either ∅ or complements of finite subsets). Check
that {n} ⊂ X is closed, and the inclusion map ι : X ↪→ R is continuous on each {n}. Finally,
check that ι is not continuous itself.

Day 4 : 20th August, 2025
product spaces
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4.1 Product space

Definition 4.1: (Finite product)
Given X1, . . . , Xn, the product space is the Cartesian product X = X1 × · · · × Xn, equipped
with the topology generated by the basis

B := {U1 × · · · × Un | Ui ⊂ Xi is open for all 1 ≤ i ≤ n} .

Caution 4.2: (Product topology and basis)

Note that the product topology on X × Y is generated by the basis
{U × V | U ⊂ X,V ⊂ Y are open}. In particular, not all open sets look like a product.

U1

U2

V2

V1

An open set (U1 × V1) ∪ (U2 ∪ V2)

Exercise 4.3: (Finite product induced by projection)

Show that the product topology on X := X1×· · ·×Xn is induced by the collection of projection
maps {πi : X → Xi}ni=1.

Motivated by this, let us define the product of arbitrary many spaces.

Definition 4.4: (Product topology)
Let {Xα}α∈I be an arbitrary collection topological spaces, indexed by the set I. Denote the
product as the set of tuples

X := Πα∈IXα = {(xα) | xα ∈ Xα for all α ∈ I} .

Then, the product topology (or the Tychonoff topology) on X is defined as the topology induced
by the collection of projection maps {πα : X → Xα}α∈I

Proposition 4.5: (Product topology basis)

The product topology is generated by the basis

B := {ΠαUα | Uα ⊆ Xα is open, and Uα = Xα for all but finitely many α ∈ I} .
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Proof
It is easy to see that B is a basis. Indeed, elements of B are of the form

π−1α1
(Uα1) ∩ · · · ∩ π−1αk

(Uαk
),

for some open sets Uα1 ⊂ Xα1 , . . . , Uαk
⊂ Xαk

. The claim follows. �

Definition 4.6: (Box topology)
Given a collection {Xα} of spaces, the box topology on X = ΠXα is generated by the subbasis

S := {ΠUα | Uα ⊂ Xα is open} .

Clearly, the box topology is finer than the product topology. In particular, the projection maps are
continuous with respect to the box topology as well.

Exercise 4.7: (Box and product topology)

Show that for a finite product X1×· · ·×Xn of spaces, the box and the product topology agree.
Moreover, show that for an infinite product, the box topology is always strictly finer than the
product topology.

Caution 4.8: (Product topology always means Tychonoff topology)

Unless explicitly mentioned, always assume that a product space is given the Tychonoff topology.
The box topology is usually too fine (i.e, has too many open sets), and is useful in constructing
counter-examples.

Theorem 4.9: (Universal property of the product topology)

Let {Xα}α∈I be a collection of topological spaces. For a space (Z, T ), and a collection of
continuous maps gα : Z → Xα, consider the following property.

P(Z, gα) : Given a space Y and any collection of continuous maps fα : Y →
Xα, there exists a unique continuous map h : Y → Z, such that
fα = gα ◦ h.

Then, the following holds.

a) The product space X = ΠXα with the product topology, and the projection maps
πα : X → Xα satisfies the property P(X, πα)

b) If (Z, gα) is any other tuple satisfying the property P(Z, gα), then there is a homeomor-
phism Φ : Z → X such that πα ◦ Φ = gα

Proof
Given any fα : Y → Xα, define h : Y → X = ΠXα by

h(y) = (fα(y)) ,

which clearly satisfies πα ◦ h = fα, and hence, is unique. Let us show h is continuous. We only
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need to check continuity for subbasic open sets, which are of the form π−1α0
(U) for some U ⊂ Xα0

open. Now,
h−1 (πα0(U)) = (πα0 ◦ h)

−1 (U) = f−1α0
(U),

which is open as fα0 is continuous. Thus, the property P(X, πα) holds.

The second part is a standard diagram chasing argument. Suppose (Z, γα) is a tuple satisfying
P(Z, γα). Then, consider the collection of commutative diagrams.

ΠXα

Z Xα.

πα

Ψ

gα

The existence of (unique) Ψ : ΠXα → Z is justified by P(Z, gα). Next, consider the collection of
commutative diagrams

Z

ΠXα Xα.

gα

Φ

πα

Again, existence of (unique) Φ is justified by P(ΠXα, πα). Now, consider the following case.

ΠXα

ΠXα Xα.

πα

Id

Φ◦Ψ

πα

Let us observe that
πα ◦ (Φ ◦Ψ) = (πα ◦ Φ) ◦Ψ = gα ◦Ψ = πα,

which follows from the previous two diagrams. Also, clearly

πα ◦ Id = πα.

Hence, by the uniqueness in P(ΠXα, πα), we must have Φ ◦ Ψ = IdΠXα . By a similar argument,
we get Ψ ◦ Φ = IdZ . Hence, Φ is a homeomorphism, with inverse given by Ψ. �

Exercise 4.10: (Map into box topology)

Suppose X = RN, equipped with the box topology. Show that the map f : R → X defined by
f(t) = (t, t, . . . ) is not continuous.

Hint

Consider the open set U = Π(− 1
n
, 1
n
) = (−1, 1)×

(
−1

2
, 1
2

)
×
(
−1

3
, 1
3

)
× · · · ⊂ X.
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Day 5 : 21th August, 2025
Hausdorff axiom -- T2, T1, T0 -- convergence of sequence -- sequential continuity
-- quotient space

5.1 Hausdorff Axiom
Definition 5.1: (Hausdorff space)
A space X is called Hausdorff (or a T2-space) if for any x, y ∈ X with x 6= y, there exists open
neighborhoods x ∈ Ux ⊂ X, y ∈ Uy ⊂ X, such that Ux ∩ Uy = ∅. In other words, any two
points of a Hausdorff space can be separated by open sets.

Exercise 5.2: (Product of T2-spaces)

Suppose {Xα} is a collection of T2-spaces. Show that X = ΠXα is T2 with respect to the
product topology (and hence, with respect to the box topology as well).

Being Hausdorff is a very desirable property of a space.

Exercise 5.3: (Metric spaces are Hausdorff)

If (X, d) is a metric space, then show that the metric topology is Hausdorff.

Proposition 5.4: (Points are closed in Hausdorff space)

Suppose X is a Hausdorff space. Then, {x} is a closed subset of X for any x ∈ X.

Proof
Suppose y 6= x. Then, by Hausdorff property, we have some open sets U and V such that x ∈
U, y ∈ V and U ∩ V = ∅. In particular, y is not a closure point of {x}. Thus, {x} is closed. �

Note that in the proof, the full strength of the Hausdorff property is not used.

Definition 5.5: (T1 space)
A space X is called a T1-space (or a Fréchet space) if for any x ∈ X, the subset {x} is a closed
set.

Exercise 5.6: (T1 but not T2 space)

Given an example of a space X which is T1 but not T2.

Exercise 5.7: (T1-space equivalent definition)

Let X be a space. Show that the following are equivalent.

a) X is a T1 space.

b) For any x, y ∈ X with x 6= y, there exists open neighborhoods x ∈ Ux ⊂ X and
y ∈ Uy ⊂ X such that y 6∈ Ux and x 6∈ Uy.

c) Any A ⊂ X is the intersection of all open sets containing A.
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d) For any A ⊂ X and x ∈ X, we have x is a limit point of A if and only every open
neighborhood of x contains infinitely many points of A. (What happens when X is
finite?!)

Definition 5.8: (T0-space)
A space X is called a T0-space (or a Kolmogorov space) if for any two points x 6= y ∈ X, there
exists an open set U ⊂ X which contains exactly one of x and y.

Remark 5.9: (Topolgoically distinguishable and separable)

Suppose x, y ∈ X are two points. Note the following hierarchy.

• (Distinct) If x 6= y, we say x, y are distinct.

• (Topologically distinguishable) If there is at least one open set that contains exactly one
of x and y, we say x, y are topologically distinguishable.

• (Separable) If there are two neighborhoods Ux, Uy of x, y respectively, which does not
contain the other, we say x, y are topologically separable.

• (Separated by opens) If there are two neighborhoods Ux, Uy of x, y respectively, such that
Ux ∩ Uy = ∅, we say x, y are separated by open sets.

Later, we shall see how this continues to points and closed sets as well.

Exercise 5.10: (T0 but not T1 space)

Given an example of a space X which is T0 but not T1. What about

Exercise 5.11: (Zariski topology)

Suppose F = R or C. Give it the topology T = {∅,F×,F}, where F× = F \ {0}. Consider the
family of polynomial functions F := {p : Fn → F}. The topology induced by F on Fn is known
as the Zariski topology . Determine whether it is T0, T1 or T2.

5.2 Convergence of sequence

Definition 5.12: (Convergence of sequence)
Suppose {xn}n≥1 is a sequence of points in a space X (i.e, x : N → X is a function). We say
{xn} converges to a limit x ∈ X if for any open neighborhood U of x, there is a natural number
NU such that xn ∈ U for all n ≥ NU .

Exercise 5.13: (Convergence in metric)

Check that the notion of convergence in a metric space is equivalent to the usual notion (i.e,
xn → x if and only if d(xn, x) → 0). In particular, they are the same from real analysis.
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Example 5.14

Suppose X is an indiscrete space, with at least two distinct points x, y ∈ X. Consider the
sequence

xn =

x, n is odd,
y, n is even.

Observe that the sequence converges to both x and y. In fact, any sequence in X converges to
every point in the space X. Note that an indiscrete space is not even T0.

Example 5.15

Suppose X = {0, 1}, with topology T = {∅, {0} , {0, 1}}. This space (X, T ) is known as
Sierpiński space. Clearly it is T0, but not T1 since {0} is not closed. Now, consider the sequence
xn = 0 for all n ≥ 1. Then, {xn} converges to both 0 and 1.

Proposition 5.16: (Convergence in T2)

Suppose {xn} is a sequence in a T2-space X. Then, {xn} can converge to at most one point in
X.

Proof
If possible, suppose {xn} converges to distinct point x 6= y. By Hausdorff property, we have
two open neighborhoods Ux, Uy of x, y respectively, such that Ux ∩ Uy = ∅. We also have two
natural numbers N1, N2 such that xn ∈ Ux for all n ≥ N1 and xn ∈ Uy for all n ≥ N2. Set
N = max {N1, N2}. Then,

xn ∈ Ux ∩ Uy, for all n ≥ N.

This is a contradiction. Thus, any sequence can converge to at most one point. �

5.3 Sequential Continuity

Definition 5.17: (Sequenttial continuity)
A function f : X → Y is said to be sequentially continuous if for any converging sequence
xn → x in X, we have f(xn) → f(x) in Y .

Proposition 5.18: (Continuous functions are sequentially continuous)

Suppose f : X → Y is a continuous map. Then f is sequentially continuous.

Proof
Suppose xn → x is a converging sequence in X. Let f(x) ∈ U ⊂ Y be an arbitrary open
neighborhood. Then, it follows from continuity of f that f−1(U) ⊂ X is open. Clearly x ∈ f−1(U).
Hence, there is some N ≥ 1 such that xn ∈ f−1(U) for all n ≥ N . This implies f(xn) ∈ U for
all n ≥ N . Since U was arbitrary, we see that f(xn) → f(x). But this means f is sequentially
convergent. �
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Proposition 5.19: (Sequential continuity in metric spaces)

Suppose (X, d) is a metric space with the metric topology, and Y be any space. Then, any
sequentially continuous map f : X → Y is a continuous map.

Proof
Let U ⊂ Y be open. In order to show f−1(U) ⊂ X is open, we show that any x ∈ f−1(U) is
an interior point of f−1(U). Consider the metric balls Bn := Bd

(
x, 1

n

)
⊂ X. If possible, suppose

Bn 6⊂ f−1(U) for any n. Pick points xn ∈ f−1(U)\Bn, and observe that xn → x (Check!). Then,
we have f(xn) → f(x). Since U is an open neighborhood of f(x), we have some N ≥ 1 such that
f(xn) ∈ U for all n ≥ N . But then xn ∈ f−1(U) for n ≥ N , which is a contradiction. Hence, we
must have that for some N0 ≥ 1 the metric ball BN0 ⊂ f−1(U). Thus, x is an interior point. Since
x is arbitrary, we get f−1(U) is open. Consequently, f is continuous. �

Caution 5.20: (Sequential conitinuity may not imply continuity)

In general, sequential continuity may not imply continuity! Consider X to be a space equipped
with the cocountable topology. Then, any convergent sequence in X is eventually constant.
That is, if xn → x in X, then for some N ≥ 1, we have xn = x for all n ≥ N . But then any
function f : X → Y is sequentially continuous (Why?). Assume X is uncountable, so that the
cocountable topology is not the discrete topology. Then, there are non-continuous maps on X.
For example, consider Y = X equipped with the discrete topology, and then look at the identity
map Id : X → Y .

5.4 Quotient space

Definition 5.21: (Quotient map)
Given a space (X, T ) and a function f : X → Y to a set Y , the quotient topology on Y is
defined as

Tf :=
{
U
∣∣ f−1(U) ∈ T

}
.

The map f : (X, T ) → (Y, Tf ) is called a quotient map. In other words, f is a quotient map if
U ⊂ Y is open if and only if f−1(U) ⊂ X is open.

Proposition 5.22: (Quotient topology is topology)

The quotient topology Tf is indeed a topology on Y , and f : (X, T ) → (Y, Tf ) is continuous.

Proof
We check the axioms.

i) ∅ ∈ Tf since ∅ = f−1(∅) ∈ T .

ii) Y ∈ Tf since X = f−1(Y ) ∈ T .

iii) For any collection {Uα ∈ Tf}, we have f−1(
⋃
Uα) =

⋃
f−1(Uα) ∈ T . Thus, Tf is cloes

under arbitrary union.

iv) For a finite collection {Ui}ki=1, we have f−1 (
⋂
Ui) =

⋂
f−1(Ui) ∈ T . Thus, Tf is closed
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under finite intersection.

Hence, Tf is a topology. By construction, f is then continuous. �

Theorem 5.23: (Universal property of quotient topology)

Suppose (X, TX) and (Y, TY ) are given. Then, for any set function, q : X → Y , the following
are equivalent.

1. TY is the quotient topology induced by q (in other words, q is a quotient map).

2. TY is the finest (i.e, largest) topology for which q is continuous.

3. TY is the unique topology having the following property :

X Y

Z

q

f◦q

f

for any space (Z, TZ) and any set map f : Y → Z, we have f is continuous if and only if
f ◦ q is continuous

Proof
Suppose q is a quotient map. If possible, there is some topology SY on Y such that TY ( SY
and q : (X, TX) → (Y,SY ) is continuous. Since SY is strictly finer than TY , there is some set
U ∈ SY \TY . But then q−1(U) ∈ TX , as q is continuous. This implies U ∈ calTY , a contradiction.
Hence, the quotient topology is the finest topology on Y making q continuous.

Conversely, suppose TY is the finest topology so that q is continuous. Recall the quotient topology
is

Tq =
{
U
∣∣ q−1(U) ∈ TX

}
Since q is continuous, for each U ∈ TY we have q−1(U) ∈ TX . In particular, TY ⊂ Tq. Also,
q : (X, TX) → (Y, Tq) is continuous. Since TY is the finest such topology, we must have TY = Tq.

Next, suppose TY is the quotient topology. Let us choose some space (Z, TZ) and set map f :

Y → Z. If f is continuous, then we have f−1(U) ∈ TY for all U ∈ TZ . Then,

(f ◦ q)−1 (U) = q−1
(
f−1(U)

)
∈ TX ,

by the definition of quotient topology. Thus, f ◦ q is continuous. On the other hand, suppose
f ◦ q is continuous. Then, for any U ◦ TZ , we have q−1 (f−1(U)) ∈ TX . But then again by the
definition of quotient topology, we have f−1(U) ∈ TY , which shows that f is continuous. Thus,
TY satisfies the property. If possible, suppose SY is another topology on Y satisfying the property.
Let us take Z = (Y, TY ) and f = IdY : (Y,SY ) → (Y, TY ). Then, we have f is continuous if and
only if f ◦ q is continuous. But, f ◦ q = q : (X, TX) → (Y, TY ), which is continuous being the
quotient map. Hence, f is continuous. This implies TY ⊂ SY . But TY is the finest topology for
which q is continuous, and hence, TY = SY . This proves the uniqueness.
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Finally, suppose TY is the unique topology satisfying the property above. We show that the quotient
topology Tq satisfies the property. Suppose (Z, TZ) is some space, and f : Y → Z is a set map. If
f : (Y, Tq) → (Z, TZ) is continuous, then for any U ∈ TZ we have

(f ◦ q)−1(U) = q−1(f−1(U)) ∈ TX ,

since f−1(U) ∈ Tq. On the other hand, if f ◦ q is continuous, then for any U ∈ TZ we have
q−1 (f−1(U)) ∈ TX , which implies, f−1(U) ∈ Tq. Thus, f is continuous. In particular, Tq satisfies
the property, and hence, TY is the quotient topology by uniqueness.

This concludes the proof. �

Remark 5.24: (Quotient map and surjectivity)

Suppose f : X → Y is a quotient map. Assume that f is not surjective. Then, for any y ∈ Y \f(X)

we have f−1(y) = ∅ ⊂ X open, and hence, {y} is open in Y . In other words, Y \ f(X) has the
discrete topology. Also, f(X) ⊂ Y is both an open and closed set. Hence, the open and closed
sets of f(X) in the subspace topology are precisely the same in the actual (quotient) topology on
Y . For these reasons, we can (and usually we do) assume that a quotient map is surjective.

Remark 5.25: (Surjective map and equivalence relation)

Suppose f : X → Y is a surjective map. Then, the collection
⊔
y∈Y f

−1(y) is a partition on X, and
hence, induces an equivalence relation. Indeed, we can define x1 ∼ x2 if and only if f(x1) = f(x2).
Conversely, given any equivalence relation ∼ on X, we see that q : X → X/∼, is a surjective map,
where X/∼ is the collection of all equivalence classes under the relation ∼.

Given a set map f : X → Y , a subset S ⊂ X is called saturated (or f -saturated) if S = f−1(f(S))

holds.

Exercise 5.26: (Saturated open set)

Given a quotient map q : X → Y , a set U ⊂ X is q-saturated if and only if it is the union of
the equivalence classes of its elements (i.e, U =

⋃
x∈U [x]).

Definition 5.27: (Identification topology)
Given an equivalence relation ∼ on a space X, the identification topology on the set Y = X/∼
of all equivalence classes is the quotient topology induced by the map q : X → Y , which sends
x 7→ [x]. The quotient map q is called the identification map.

Proposition 5.28: [0, 1]/0, 1 is S1

Consider {0, 1} ⊂ [0, 1], and let X = [0, 1]/{0,1} be the identification space. Then, X is home-
omorphic to the circle S1 := {(x, y) | x2 + y2 = 1} ⊂ R2.
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Proof
Consider the map f : [0, 1] → S1 given by f(t) = (cos(2πt), sin(2πt)). Clearly, f is continuous
and surjective. Also, f(0) = (1, 0) = f(1).

[0, 1] S1

X

f

q

f̃

Passing to the quotient X = [0, 1]/ {0, 1}, we get a map f̃ : X → S1 defined by f̃ ([x]) = f(x).
It is easy to see that f̃ is well-defined, and hence, by the property of the quotient topology, f̃ is
continuous. Now, f̃ is surjective (as f was), and moreover, it is injective.
In order to show f̃ is open, we consider the two cases.

i) Suppose V ⊂ X is an open set, such that [0] = [1] = {0, 1} 6∈ V . Then, q−1(V ) ⊂ [0, 1]

is an open set, which is actually contained in (0, 1). In particular, q−1(V ) is a union of
open intervals. Observe that (by drawing picture or otherwise) f maps such open intervals
to open arcs of S1 (which are open in S1). Then, f̃(V ) = f (q−1(V )) is open.

ii) Suppose V ⊂ X is an open set, such that [0] = [1] = {0, 1} ∈ V . Then, q−1(V ) is the
union of open intervals of (0, 1), as well as, [0, ε1)∪(1−ε2, 1] for some ε1, ε2 > 0. We have
already seen that any open intervals get mapped to open arcs. Also, f ([0, ε1) ∪ (1− ε2, 2])

is another open arc in S1 containing the point (0, 1). Thus, f̃(V ) = f (q−1(V )) is open
in S1.

Hence, f̃ : X → S1 is a homeomorphism. �

Exercise 5.29: (R/Z is S1)

Consider the quotient space X = R/Z, where the equivalence relation is given as a ∼ b if and
only a− b ∈ Z. Show that X is homeomorphic to the circle S1.

Day 6 : 27th August, 2025
connectedness -- components

6.1 Connectedness
Definition 6.1: (Connected space)
A space X is called connected if the only clopen sets (i.e., simultaneously open and closed
sets) of X are ∅ and X itself. If there is a nontrivial clopen set ∅ ( U ( X, then X is called
disconnected .

Proposition 6.2: (Disconnected space)

For a space X, the following are equivalent.

1) X is disconnected.
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2) X can be written as the disjoint union of two open sets X = U t V , such that,
∅ ( U ( X and ∅ ( V ( X.

3) X can be written as the disjoint union of two closed sets X = F t G, such that,
∅ ( F ( X and ∅ ( G ( X.

4) There is a surjective continuous map X → {0, 1}, where {0, 1} is given the discrete
topology.

Proof
The equivalence of 1, 2, 3 follows from the definition. Suppose f : X → {0, 1} is a surjective
continuous map. Then, X can be written as the disjoint union X = f−1(0) t f−1(1), each of
which are non-trivial open sets. Conversely, if X = U t V for some nontrivial open sets, then
f : X → {0, 1} defined by f(U) = 0 and f(V ) = 1 is a surjective continuous map. �

Theorem 6.3: (Image of connected set)

Suppose f : X → Y is a continuous map. Then, for any connected A ⊂ X, we have f(A) ⊂ Y

is connected. In particular, if X is connected, then so is f(X).

Proof
Suppose f(A) ⊂ Y is disconnected. Then, there is a surjective continuous map g : f(A) → {0, 1}.
But then, h := g ◦ f : A→ {0, 1} is a surjective continuous map, a contradiction. Hence, f(A) is
connected. �

Definition 6.4: (Connected component)
Given x ∈ X, the connected component of X containing x is the largest possible connected
subset containing x.

Proposition 6.5: (Existence of connected component)

Given x ∈ X, the connected component of X containing X is defined as the

C(x) :=
⋃

{A | x ∈ A ⊂ X,A is connected} .

Proof
Observe that {x} is a connected set, and hence, the family is non-empty. Let us check C(x) is
connected. If not, then there exists open sets U, V ⊂ X such that

• ∅ ( C(x) ∩ U ( C(x),

• ∅ ( C(x) ∩ V ( C(x), and

• C(x) = (C(x) ∩ U) t (C(x) ∩ V ).

Now, for any connected set A containing x, we have

A = (A ∩ U) t (A ∩ V ).
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Then, both
∅ ( A ∩ U ( A, and ∅ ( A ∩ V ( A

cannot appear simultaneously. Hence, either A ⊂ U or A ⊂ V . Thus, we can define the two
collections

U := {A | x ∈ A ⊂ X, A is connected, A ⊂ U} ,V := {A | x ∈ A ⊂ X, A is connected, A ⊂ V } .

Since x ∈ A for all such A, we must have either U = ∅ or V = ∅. Without loss of generality, assume
V = ∅. But then, C(x)∩V = ∅, a contradiction. Hence, C(x) is connected. By construction, it is the
largest such connected set which contains x. Thus, C(x) is the connected component containing
x. �

Exercise 6.6: (Hyperbola and axes)

Suppose
A = {(x, y) | xy = 1} ∪ {(x, y) | xy = 0} ⊂ R.

Show that A has three connected components.

Theorem 6.7: (Closure is connected)

If A ⊂ X is a connected set, then for any subset B satisfying A ⊂ B ⊂ Ā, we have B is
connected. In particular, Ā is connected.

Proof
Suppose, we have B = U tV for some open sets ∅ ( U, V ( B. Since A ⊂ B, we have A ⊂ U or
A ⊂ V (otherwise, A = (A ∩ U) t (A ∩ V ) will be a separation of A). Without loss of generality,
say, A ⊂ U ⇒ ĀB ⊂ ŪB. Now, U ⊂ B is closed (in B), as B\U = V is open (in B). In particular,
ŪB = U . On the other hand, ĀB = Ā ∩ B ⊃ B ⇒ B ⊂ ĀB ⊂ ŪB = U . This contradicts that
∅ ( V ( B. Hence, B is connected. �

Example 6.8: (Discrete space)

In a discrete space X, every singleton {x} is a connected component. Any subset with at least
two elements is then disconnected.

Definition 6.9: (Totally disconnected space)
A space X is called totally disconnected if the only connected components of x are precisely the
singletons.

Note that totally disconnected spaces need not be discrete.

Day 7 : 29th August, 2025
product of connected spaces -- interval connected
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7.1 Connectedness (cont.)

Theorem 7.1: (Product of connected spaces is connected)

Suppose {Xα}α∈I is a collection of connected spaces. Let X = ΠXα be the product space.
Then, X is connected.

Proof
For finite product X × Y , fix a point y0 ∈ Y , and observe that

X × Y =
⋃
x∈X

{x} × Y ∪X × {y0}︸ ︷︷ ︸
Cx

 .

Note that Cx is connected since it is the union of two connected sets {x} × Y ∼= Y and
X × {y0} ∼= X (check!), and they have a common point (x, y0). But then X × Y is connected,
as
⋂
x∈X Cx = X × {y0} 6= ∅. This can be generalized to any finite product.

As for the infinite product, fix a point z = (zα) ∈ X (If you don’t want to assume axiom of choice,
then X could be empty, which is still a connected set). Consider the subset

A := {(xα) ∈ X | all but finitely many xα = zα} .

Since X = Ā, it is enough to show that A is connected. Firstly, for any finite J ⊂ I, define

AJ := {(xα) ∈ X | xα = zα for any α ∈ I \ J} .

Observe that AJ ∼= Πα∈JXα (check!), and hence, connected. Next, observe that A =⋃
J ⊂I finite AJ , and

⋂
J ⊂I finite AJ = {z}. Thus, A is connected as well. But then X = Ā is

connected. �

Exercise 7.2: (Box topology may not be connected)

Consider X = RN equipped with the box topology, where R has the usual topology. Check that
the following sets are nontrivial clopen sets of X.

a) U0 := {(xn) | limxn = 0 in R}.

b) U1 := {(xn) | {xn} is a bounded sequence in R }.

Theorem 7.3: (Closed interval is connected)

The closed interval [a, b] ⊂ R for some a < b is connected.

Proof
Suppose [a, b] = A t B for some open (and hence closed) nontrivial subsets ∅ ( A,B ⊂ [a, b].
Without loss of generality, assume that a ∈ A. Consider the set

C := {c | [a, c] ⊂ A} .
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Observe that since a ∈ C since {a} = [a, a] ⊂ A. Clearly b is an upper bound for C. Then, there
is a least upper bound, say, L := supC.

As A is open, there is some ε0 > 0 such that [a, a + ε0) ⊂ A, and thus L ≥ a + ε0 > a. Let us
show that L ∈ C. Firstly, note that for any 0 < ε ≤ ε0, we have some L− ε ≤ c0 ∈ C, and thus,
[a, L− ε] ⊂ [a, c0] ⊂ A. In other words, (L− ε, L+ ε) ∩ A 6= ∅. But then, L is a closure point of
A (in the subspace topology of [0, 1]). Since A is closed, we have L ∈ A. As A is open as well, we
have some ε1 ≤ ε0 such that (L− ε1, L+ ε1) ∩ [a, b] ⊂ A. But then,

[a, L] = [a, L− ε1] ∪ (L− ε1, L] ⊂ A,

which shows that L ∈ C.

Now, L ≤ b, as b is an upper bound of C. If possible, suppose L < b. Then, for some ε > 0

small, we have [L − ε, L + ε] ⊂ [a, b]. Choosing ε smaller, and using the openness of A, we have
[a, L + ε] = [a, L] ∪ (L,L + ε] ⊂ A, which implies L + ε ∈ C, contradicting L = supC. Hence,
L = b. But then, [a, L] = [a, b] ⊂ A, contradicting that B 6= ∅.

Thus, [a, b] is connected. �

Proposition 7.4: (All intervals are connected)

Any finite or infinite interval, whether open, closed or semi-open, of R is connected. In particular,
R is connected

Proof
Let us show that R is connected. If not, then R = U t V is a separation by open sets. Pick some
a ∈ U and b ∈ V . Then, [a, b] = ([a, b] ∩ U) t ([a, b] ∩ V ) is a separation of [a, b]. This is a
contradiction as [a, b] is connected. Hence, R is connected.
Similar argument works for the other cases. �

Exercise 7.5: (Intermediate value property)

Suppose f : [a, b] → R is a continuous map. If f(a) < f(b), then for any f(a) < x < f(b) there
exists some a < c < b such that f(c) = x.

Day 8 : 9th September, 2025
path connectedness

8.1 Path connectedness
Definition 8.1: (Path connected space)
A space X is called path connected if for any x, y ∈ X, there exists a continuous map f :

[0, 1] → X with f(0) = x and f(1) = y. Such an f is called a path joining x to y. A subset
P ⊂ X is called a path connected set if P is path connected in the subspace topology.
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Exercise 8.2: (Path connected set)

Check that P ⊂ X is a path connected set if and only if for any x, y ∈ P , there exists a path
γ : [0, 1] → X joining x = γ(0) to y = γ(1), such that γ is contained in P .

Exercise 8.3: (Star connected spaces are path connected)

Given a space X and fixed point x0 ∈ X, suppose for any x ∈ X there exists a path in X joining
x0 to x. Show that X is path connected. What about the converse?

Proposition 8.4: (Path connected spaces are connected)

If X is a path connected space, then X is connected.

Proof
Suppose not. Then, there is a continuous surjection g : X → {0, 1}. Pick x ∈ g−1(0) and y ∈
g−1(1). Get a path f : [0, 1] → X such that f(0) = x and f(1) = y. Then, h := g◦f : [0, 1] → 0, 1

is a continuous surjection, which contradicts the connectivity of [0, 1]. Hence, X is connected. �

Proposition 8.5: (Connected open sets of Rn are path connected)

Connected open sets of Rn are path connected.

Proof
Let U be a connected open subset of Rn. If U = ∅, there is nothing to show. Fix some x ∈ u.
Consider the subset

A = {y ∈ U | there is path in U from x to y} .

Clearly A 6= ∅ as x ∈ A.

Let us show A is open. Say, y ∈ A. Then, there exists a Euclidean ball y ∈ B(y, ε) ⊂ U . Now,
it is clear that for any z ∈ B(y, ε) the radial line joining y to z is a path, contained in B(y, ε),
and hence, in U . Thus, by concatenating, we get a path from x to any z ∈ B(y, ε), showing
B(y, ε) ⊂ A. Thus, A is open.
Next, we show that A is closed. Let y ∈ U be an adherent point of A. As U is open, we get some
ball y ∈ B(y, ε) ⊂ U . Now, B(y, ε) ∩A 6= ∅. Say, z ∈ B(y, ε) ∩A. Then, we can get a path from
x to y by first getting a path to z (which exists, since z ∈ A), and then considering the radial line
from z to y. Clearly, this path is contained in U . Thus, y ∈ A. Hence, A is closed.
But U is connected. Hence, the only non-empty clopen set of U is U . That is, A = U . But then
clearly U is path connected. �

In general, connected spaces need not be path connected! Here is one such example. Consider
K0 :=

{
1
n

∣∣ n ≥ 1
}

, and the set

C := ([0, 1]× {0}) ∪ (K0 × [0, 1]) ⊂ R.
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(0, 1)

Comb space. Removing the dotted blue line {0} × (0, 1), we get the deleted comb space.

In the picture, this is the collection of vertical black lines, along with the ‘spine’ [0, 1] along the x-axis.
It is easy to see that C is path connected, and hence, connected. Indeed, any point can be joined by
a path to the origin (0, 0). The closure of C in R2 is called the comb space. One can easily see that

C̄ := C ∪ ({0} × [0, 1]) .

The deleted comb space D is obtained by removing the segment {0} × (0, 1) from the comb space.

Theorem 8.6: (Deleted comb space is connected but not path connected)

The deleted comb space is connected, but not path connected.

Proof
Since C is connected, and C ⊂ D ⊂ C̄, we have both the comb space and the deleted comb
space are connected.

Intuitively, it is clear that there cannot be a path from p = (0, 1) ∈ D to any other point of D.
Let us prove this formally. If possible, suppose f : [0, 1] → D is a path from p to some point in D.
Consider the set

A := {t | f(t) = p} = f−1(p).

Clearly, A is closed in [0, 1], and it is non-empty as 0 ∈ A.

Let us show that A is open. Let t0 ∈ A. Since f is continuous, there exist some ε > 0 such that
for any t ∈ [0, 1] with |t− t0| < ε, we have ‖f(t)− f(t0)‖ < 1

2
. In particular, such f(t) does not

intersect the x-axis. Consider B =
{
x ∈ R2

∣∣ ‖x− p‖ < 1
2

}
∩ C̄, and denote the interval

J = (t0 − ε, t0 + ε) ∩ [0, 1].

Consider the first-component projection map π1 : R2 → R, which is continuous. Observe
that π1 restricts to the continuous map π : B → K0 ∪ {0} (this is where we are using the
fact B does not intersect the x-axis). Now, h := π ◦ f |J : J → K0 ∪ {0} is a continuous
map. We have K0 ∪ {0} is totally disconnected, i.e, the only components are singletons. Now,
h(t0) = π (f(t0)) = π(p) = 0. Hence, we must have h(t) = 0 for all t ∈ J , as J is connected
and continuous image of a connected set is again connected. But then, f(t) ∈ π−1(0) = {p}
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for any t ∈ J , i.e, f(t) = p for all t ∈ J . This shows that t0 is an interior point of A. Thus, A is open.

Since [0, 1] is connected, we must have A = [0, 1], as it is a nonempty clopen set. But then the
original path f is constant at p. Since f was an arbitrary path from p, we see that D is not path
connected. �

Remark 8.7

The above argument is a very common method of proving many statements in analysis and topol-
ogy. So try to understand it thoroughly!

Day 9 : 10th September, 2025
path connectedness -- path component -- locally connected -- locally path
connected -- compactness

9.1 Path connectedness (cont.)

Proposition 9.1: (Image of path connected set)

Let f : X → Y be continuous. Then, for any path connected subset A ⊂ X, we have f(A) ⊂ Y

path connected. In particular, if X is path connected, then so is f(X).

Proof
Pick x, y ∈ f(A). Then, x = f(a) and y = f(b) for some a, b ∈ A. Get a path γ : [0, 1] → A

joining a to b. Then, h = f ◦ γ : [0, 1] → f(A) is a path in f(A) joining x to y. Thus, f(A) is
path connected. �

Exercise 9.2: (Product of path connected)

Let {Xα} be a family of path connected spaces. Show that the product space X = ΠXα is path
connected. Give an example to show that X may not be path connected equipped with the box
topology.

Definition 9.3: (Path component)
Given x ∈ X, the path component of X containing x is the largest possible path connected set
of X containing x.

Proposition 9.4: (Existence of path component)

Given x ∈ X, the path component of X can be defined as

P(x) := {y ∈ X | there is a path f : [0, 1] → X with f(0) = x and f(1) = y} .

Equivalently,
P(x) :=

⋃
{P ⊂ X | x ∈ P, P is path connected} .
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Proof
Let us check the first part. Firstly, note that P(x) is path connected. Indeed, given any two
y, z ∈ P(x), we have two paths f : [0, 1] → P(x) and g : [0, 1] → P(x) joining, respectively, x to
y and x to z. We can construct the concatenated path h as follows

h(t) =

f(1− 2t), 0 ≤ t ≤ 1
2
,

g(2t− 1), 1
2
≤ t ≤ 1.

Check that h is continuous! Clearly, h is a then a path connecting y to z. Thus, P(x) is path
connected.

Now, suppose A is the union of all path connected sets of X containing x. For any y, z ∈ A, we
have y ∈ P and z ∈ Q for some path connected sets x ∈ P,Q ⊂ X. Then, we can get a path
joining y to x and then from x to z, which is in P ∪Q ⊂ A. Thus, A is path connected, which is
clearly the larges such set containing x. Hence, the second definition of P(x) is also true. �

Exercise 9.5: (Path component equivalence relation)

Define a relation x ∼ y if and only if x, y are in the same path component. Check that ∼ is an
equivalence relation, and the equivalence classes are precisely the path components of X.

9.2 Locally connected and locally path connected spaces

Definition 9.6: (Locally connected)
A space X is called locally connected at x ∈ X if given any open neighborhood x ∈ U , there
exists a (possibly smaller) open neighborhood x ∈ V ⊂ U , such that V is connected. The space
is called locally connected if it is locally connected at every point x ∈ X.

Theorem 9.7

A space X is locally connected if and only if for all open set U ⊂ X, all the components of U
are open.

Proof
Suppose X is locally connected. Pick some U ⊂ X open, and a component C ⊂ U . Now, for any
x ∈ C ⊂ U , by local connectedness, there is a connected open set x ∈ V ⊂ U . Since x ∈ V ∩ C,
we see that V ∪C is connected. But C is the larges connected set containing x. Thus, x ∈ V ⊂ C,
proving that x ∈ C̊. Thus, C is open.

Conversely, suppose for any open U ⊂ X, each component of U is open. Fix some x and some
open neighborhood x ∈ U . Consider the component of x in U to be C. Then, C is open. Hence,
X is locally connected. �
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Definition 9.8: (Locally path connected)
A space X is called locally path connected at x ∈ X if given any open neighborhood x ∈ U ,
there exists a (possibly smaller) open neighborhood x ∈ V ⊂ U , such that V is path connected.
The space is called locally path connected if it is locally path connected at every point x ∈ X.

Theorem 9.9

A space X is locally path connected if and only if for all open set U ⊂ X, all the path components
of U are open.

Theorem 9.10

The path components of X lies in a single component. If X is locally path connected, then the
path components and the components coincide.

Proof
Suppose P is a path component, which is path connected, and hence, connected. But then P can
only lie in a single component.

Suppose X is locally path connected. Then, every path components of X is open. Let C be a
component. For some x ∈ C, consider P to be the path component of x. Then, x ∈ P ⊂ C.
If P 6= C, then consider Q to be the union of every other path components of points of C \ P .
Again, we have Q ⊂ C. Now, we have a separation C = P t Q by nontrivial open sets, which
contradicts the fact that C is connected. Hence, P = C. Thus, path components of X coincide
with the components. �

9.3 Compactness

Definition 9.11: (Covering)
Given a set X, a collection A ⊂ P(X) of subsets of X is called a covering of X if we have
X =

⋃
A∈AA. Given a topological space (X, T ), we say A is an open cover (of X) A is a

covering of X and if each A ∈ A is an open set. A sub-cover of A is a sub-collection B ⊂ A,
which is again a covering, i.e, X =

⋃
B∈B B.

Definition 9.12: (Compact space)
A space X is called compact if every open cover of X has a finite sub-cover. A subset C ⊂ X

is called compact if C is compact as a subspace.

Example 9.13: (Finite space is compact)

Any finite topological space is compact, since there can be at most finitely many open sets in
X. An infinite discrete space is not compact.
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Proposition 9.14: (Compact subspace)

A subset C ⊂ X is compact if and only if given any collection A = {Aα} of open sets of X,
with C ⊂

⋃
Aα, we have a finite sub-collection {Aα1 , . . . , Aαk

} such that C ⊂
⋃k
i=1Aαi

.

Proof
Suppose C is compact (as a subspace). Consider a cover A = {Aα} of C by opens of X. Then,
A′ = {Aα ∩ C} is an open cover of C in the subspace topology. Since C is compact, we have a
finite sub-cover, say, {Aα1 ∩ C, . . . , Aαk

∩ C}. But then C ⊂
⋃k
i=1Aαi

.
Conversely, suppose given any cover of C by open sets of X, we have a finite sub-cover. Choose
any open cover of C (in the subspace topology), say, U = {Uα ⊂ C}. Now, each Uα = C ∩ Vα
for some open Vα ⊂ X. Then, C ⊂

⋃
Vα is a cover, which has finite sub-cover, C ⊂

⋃k
i=1 Vαi

.
Clearly, C =

⋃k
i=1C ∩ Vαi

=
⋃k
i=1 Uαi

. Thus, C is compact. �

Exercise 9.15: (Compactness is independent of subspace)

Let Y ⊂ X be a subspace. A subset C ⊂ Y is compact if and only if C is compact as a subspace
of X.

Proposition 9.16: (Closed in compact is compact)

Suppose X is a compact space, and C ⊂ X is closed. Then, C is compact.

Proof
Fix some cover {Uα} of C by open sets Uα ⊂ X. Now, C being closed, we have V := X \ C is
open. We have, X = V ∪

⋃
Uα. Since X is compact, there is a finite subcover. Without loss of

generality, X = V ∪
⋃k
i=1 Uαi

. Then, C ⊂
⋃k
i=1 Uαi

. Hence, C is compact. �

Example 9.17: (Compact need not be closed)

Let X be an indiscrete space. Then, any subset is compact, but there are non-closed subsets.

Proposition 9.18: (Compact in T2 is closed)

Let X be a T2 space. Then, any compact C ⊂ X is closed.

Proof
If C = X, then there is nothing to show. Otherwise, we show that any y ∈ X\C is an interior point.
For each c ∈ C, by T2, there is some open neighborhoods y ∈ Uc, c ∈ Vc, such that Uc ∩ Vc = ∅.
Now, C ⊂

⋃
c∈C Vc. Since C is compact, there are finitely many points, c1, . . . , ck, such that

C ⊂
k⋃
i=1

Vci .

Let us consider U :=
⋂k
i=1 Uci , which is an open neighborhood of y. Also, U ∩

(⋃k
i=1 Vci

)
= ∅ ⇒

U ∩ C = ∅ ⇒ U ⊂ X \ C. Thus, y ∈ int(X \ C). Since y was arbitrary, C is closed. �
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Example 9.19: (Compact is not closed in T1)

Let X be an infinite set, equipped with the cofinite topology. Then, X is T1, but not T2.
Let C = X \ {x0} for some x0 ∈ X, which is clearly not closed.
Suppose C ⊂

⋃
α∈I Uα is some open covering. Choose some Uα0 . Now, Uα0 = X \ {x1, . . . , xk}

(if Uα0 = X, then there is nothing to show). For each 1 ≤ i ≤ k with xi ∈ C, choose some Uαi

such that xi ∈ Uαi
. If xi 6∈ C, choose Uαi

arbitrary. Then, C ⊂
⋃k
i=0 Uαi

. Thus, C is compact,
but not closed.

Day 10 : 11th September, 2025
compactness -- finite product of compact

10.1 Compactness (cont.)

Theorem 10.1: (Image of compact space)

f : X → Y be a continuous map. If X is compact, then f(X) is compact.

Proof
Consider an open cover V = {Vα} of f(X) by opens of Y . Then, U = {Uα := f−1(Vα)} is an open
cover of X. Since X is compact, there is a finite subcover, say X =

⋃k
i=1 Uαk

=
⋃k
i=1 f

−1(Vαi
).

But that, f(X) ⊂
⋃k
i=1 Vαi

. Thus, f(X) is compact. �

Theorem 10.2: (Maps from compact space to T2)

Let f : X → Y be a surjective continuous map. Suppose X is compact, and Y is T2. Then, f
is an open map.

Proof
Let U ⊂ X be an open set. Then, C = X \U is closed, and hence, compact. Since f is continuous,
f(C) ⊂ Y is compact. As Y is T2, we have f(C) is closed in Y . Finally, as f is surjective, we have
f(U) = Y \ f(X \ U) = Y \ f(C), which is then open. Thus, f is an open map. �

Remark 10.3: (Non-surjective map from compact to T2)

Consider the inclusion map of the point {0} in R. Clearly, {0} is compact, but the inclusion map
is not open!

Exercise 10.4: (Compact to T2 is closed)

Suppose X is compact, Y is T2, and f : X → Y is a continuous map (not necessarily surjective).
Then, show that f is a closed map.

Theorem 10.5: (Compactness of closed interval)

The closed interval [a, b] ⊂ R is compact (in the usual topology).

39



Proof
Suppose A = {Uα} is a collection open sets of R covering [a, b]. Consider the set

C = {c ∈ [a, b] | [a, c] is covered by a finite number of opens from A} .

Note that C 6= ∅, since [a, a] = {a} is clearly contained in some Uα. Let L =
∑
C be the least

upper bound. Observe that a ∈ Uα ⇒ [a, a + ε) ⊂ Uα for some e > 0. Thus, a < L ≤ b.
Now, there is some Uβ such that L ∈ Uβ. Then, there is some ε > 0 such that a < L − ε < L

and (L − ε, L] ⊂ Uβ. Also, L being the least upper bound, there is some c ∈ C such that
L − ε < c < L. Thus, [a, c] is covered by finitely many opens, say, {Uα1 , . . . , Uαk

}. But then
[a, L] = [a, c] ∪ [L− ε, L] is covered by a finite collection {Uα1 , . . . , Uαk

, Uβ}. Thus, L ∈ C.
Now, if L < b, then, there is some ε > 0 such that L < L + ε < b, and [L,L + ε] ⊂ Uβ. By a
similar argument, it follows that [a, L+ ε] is covered by finitely many opens of A. This contradicts
L be the least upper bound. Hence, L = b.
Thus, [a, b] is covered by a finitely many sub-collection of A. Since A is arbitrary, it follows that
[a, b] is compact. �

Exercise 10.6: (Real line is noncompact)

Show that R is not compact.

10.2 Product of compacts

Lemma 10.7: (Tube lemma)

Suppose Y is a compact space. Fix a point x0 ∈ X, and suppose W ⊂ X×Y is an open set such
that {x0}×Y ⊂. Then, there exists an open set x0 ∈ U ⊂ X such that {x0}×Y ⊂ U×Y ⊂ W .

Proof
For each y ∈ Y , consider a basic open set (x0, y) ∈ Uy×Vy ⊂ W . Now, {x0}×Y ⊂

⋃
y∈Y Uy×Vy.

Since Y , and hence {x0}×Y , is compact, we have a finite cover, say, {x0}×Y ⊂
⋃k
i=1 Uyi ×Vyi .

Now, set U =
⋂k
i=1 Uyi , which is an open set with x0 ∈ U . Clearly {x0} × Y ⊂ U × Y . Now, for

any (x, y) ∈ U×Y , we have (x0, y) ∈ Uyi0 ×Vyi0 for some i0. Then, y ∈ Vyi0 . Also, x ∈ U ⊂ Uyi0 .
Thus, (x, y) ∈ Uyi0 × Vyi0 . In other words, we have

{x0} × Y ⊂ U × Y ⊂
k⋃
i=1

Ui × Vi ⊂ W.

�

Theorem 10.8: (Finite product of compacts are compact)

If X,Y are compact, then so is X × Y .
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Proof
Suppose W is an open cover of X × Y . For each x ∈ X, the space {x} × Y is compact, and
hence, can be covered by a finite collection, say

{x} × Y ⊂
kx⋃
i=1

Wx,i,

for Wx,i ∈ W . Then, by the tube lemma, there exists some x ∈ Ux ⊂ X such that

{x} × Y ⊂ Ux × Y ⊂
kx⋃
i=1

Wx,i.

Now, {Ux} is an open cover of X, which is also compact. Hence, we have a finite cover, say,
X =

⋃n
i=1 Uxi . Then, clearly,

X × Y =
n⋃
i=1

Uxi × Y ⊂
n⋃
i=1

kxi⋃
j=1

Wxi,j.

Thus, X × Y can be covered by finitely many elements of W . Hence, X × Y is compact. �

Day 11 : 16th September, 2025
sequential compactness -- limit point compactness -- first countability

11.1 Sequential and limit point compactness

Definition 11.1: (Sequentially compact)
A space X is called sequentially compact if every sequence {xn} has a convergent subsequence.
A subset Y ⊂ X is sequentially compact if every sequence {yn} in Y has a subsequence, that
converges to some y ∈ Y .

Theorem 11.2: (Sequentially compact is equivalent to compact in metric space)

Suppose (X, d) is a metric space. Then, Y ⊂ X is sequentially compact if and only if Y is
compact.

Proof
Suppose Y is compact. Then, Y is closed and bounded. Consider a sequence {xn} in Y .
If possible, suppose {xn} has no convergent subsequence in Y . Then, {xn} is an infinite
sequence (i.e., there are infinitely many distinct elements). Now, for each y ∈ Y , there exists
a ball y ∈ By = Bd(y, δy) ⊂ X such that By contains at most finitely many {xn} (as no
subsequence of {xn} converge to y). We have Y ⊂

⋃
y∈Y By, which admits a finite subcover,

say, Y ⊂
⋃n
i=1Byi . But this implies Y contains at most finitely many {xn}, which is a contradiction.

Conversely, suppose every sequence in Y has a subsequence converging in Y . Consider an open
cover U = {Uα} of Y by opens of X.
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• Let us first show that for any δ > 0, the collection {Bd(a, δ) | a ∈ A} has a finite sub-cover.
Suppose not. Then, there is x1 ∈ A such that A 6⊂ Bd(x1, δ). Pick x2 ∈ A \ Bd(x1, δ).
Then, A 6⊂ Bd(x1, δ) ∪ Bd(x2, δ). Inductively, we have a sequence {xn} in A. Now, by
construction, d(xi, xj) ≥ δ for all i 6= j. Consequently, {xn} has no convergent subsequence,
a contradiction. Indeed, if xnk

→ x ∈ A, then d(xnk
, x) < δ

2
for all k ≥ N . But then,

d(xnk1
, xnk2

) < δ for any k1 6= k2 ≥ N .

• Next we claim that there exists a δ > 0 such that for any y ∈ Y , we have Bd(y, δ) ⊂ Uα
for some α. Suppose not. Then, for each n ≥ 1, there exists some yn ∈ Y such that
Bd(yn,

1
n
) 6⊂ Uα for each α. Passing to a subsequence, we have yn → y0 ∈ A. Now, y0 ∈ Vα

for some α, and so, y0 ∈ Bd(y0, ε) ⊂ Vα. There exists some N1 ≥ 1 such that yn ∈ Bd(y0,
ε
2
)

for all n ≥ N1. Also, there is N2 ≥ 1 such that 1
N2

< ε
2
. Then, for any n ≥ max {N1, N2},

and for any d(yn, y) < 1
n

we have,

d(y0, y) ≤ d(y0, yn) + d(yn, y) < ε.

Thus, Bd(yn,
1
n
) ⊂ Bd(y0, ε) ⊂ Vα for all n ≥ max {N1, N2}, a contradiction.

• Finally, pick the δ from the last step. Then, we have a cover A ⊂
⋃n
i=1Bd(xi, δ) with xi ∈ A.

But each of these balls are contained in some Vαi
. So, we have A ⊂

⋃n
i=1 Vαi

.

�

Definition 11.3: (Limit point compactness)
A space X is called limit point compact (or weakly countably compact) if every infinite set
A ⊂ X has a limit point in X

Exercise 11.4: (Sequential compact implies limit point compact)

Show that a sequentially compact space is limit point compact.

Proposition 11.5: (Compact implies limit point compact)

A compact space is limit point compact.

Proof
Suppose X is a compact space which is not limit point compact. Then, there exists an infinite set
A which has no limit point. In particular, A is closed, as it contains all of its limit points (which
are none). Also, for every x ∈ X, there is an open set x ∈ Ux ⊂ X such that A∩ (Ux \ {x}) = ∅.
Observe that we have a covering X = (X \ A) ∪

⋃
x∈A Ux, which admits a finite subcover, say,

X = (X \A) ∪
⋃n
i=1 Uxi . Now, A ⊂

⋃n
i=1 Uxi . But this implies A is finite, as A ∩ Uxi \ {xi} = ∅.

This is a contradiction. �

Example 11.6: (Limit point comact but neither compact nor sequentially compact)

Consider the space X = N×{0, 1}, where give N the discrete topology, and {0, 1} the indiscrete
topology. Consider the sequence xn = (n, 0). Then, it does not have a convergent subsequence
(otherwise, the first component projection will give convergent subsequence, as continuity implies
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sequential continuity). Also, X is not compact either, as the open cover Un = {(n, 0), (n, 1)}
has no finite subcover. On the other hand, X is limit point compact. Indeed, say A ⊂ X is
infinite, and, without loss of generality, pick some (a, 0) ∈ A. Then, check that (a, 1) is a limit
point of A. Indeed, any open set containing (a, 1) contains the open set {(a, 0), (a, 1)}, which
obviously intersects A in a different point (a, 0).

Definition 11.7: (First countable)
Given x ∈ X, a neighborhood basis is a collection {Uα} of open neighborhoods of x such that
given any open neighborhood x ∈ U ⊂ X, there exists some Uα such that x ∈ Uα ⊂ U . We say
X is first countable at x if there exists a countable neighborhood basis {Ui} of x. The space X
is called first countable if it is first countable at every point.

Remark 11.8: (Decreasing neighborhood basis)

Suppose {Ui} is a countable neighborhood basis of x ∈ X. Set V1 = U1, V2 = U1 ∩ U2, . . . , Vj =

Vj−1 ∩ Uj =
⋂j
i=1 Uj. Clearly, we have

V1 ⊃ V2 ⊃ · · · 3 x.

We claim that {Vj} is a neighborhood basis of x as well. Let x ∈ U ⊂ X be an open neighborhood.
Then, there is some x ∈ Uj ⊂ U . But then x ∈ Vj ⊂ Uj ⊂ U as well. Thus, we can always assume
that a countable neighborhood basis is decreasing. Note : in a discrete space {Un = {x}} is a
non-strictly decreasing countable neighborhood basis of x.

Example 11.9: (Metric space is first countable)

Any metric space (X, d) is first countable. The converse is evidently not true, as any indiscrete
space is also first countable.

Proposition 11.10: (Compact first countable is sequentially compact)

Suppose X is a first countable compact space. Then X is sequentially compact.

Proof
Let {xn} be a sequence in X with no convergent subsequence. Then {xn} must be an infinite
set. Without loss of generality, assume each xn are distinct (just extract such a subsequence). For
each x ∈ X, fix some neighborhood basis Ux. Now, since no subsequence of {xn} converges to
x, there must be some Ux ∈ Ux

i such that only finitely many {xn} is contained in Ux. Otherwise,
using the countability of Ux, we can extract a subsequence converging to x. Now, we have a cover
X = ∪x∈XUx, which admits a finite subcover, say, X = ∪ni=1Uxi . But this implies the sequence
{xn} is finite, a contradiction. �

Day 12 : 17th September, 2025
sequential compactness -- limit point compactness -- second countable --
Lindelöf
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12.1 Sequential Compactness (Cont.)

Definition 12.1: (Countably compact)
A space X is called countably compact if every countable open cover admits a finite sub-cover.

Proposition 12.2: (Limit point compact T1 is countably compact)

A limit point compact T1-space is countably compact.

Proof
Let X =

⋃
Ui be a countable cover. If possibly, suppose there is no finite subcover. In particular,

X \
⋃n
i=1 Ui 6= ∅ for each n ≥ 1. Moreover, X \

⋃n
i=1 Ui 6= ∅ must be infinite, otherwise we can

readily get a finite sub-cover. Inductively choose xn 6∈
⋃n
i=1 Ui ∪ {x1, . . . , xn−1}. Thus, we have

an infinite set A = {xi}, which admits a limit point, say, x. Since X is T1, it follows that for any
open nbd x ∈ U ⊂ X, we must have A∩ (U \ {x}) is infinite (Check!). Now, we have x ∈ Ui0 for
some i0. But by construction, Ui0 contains at most finitely many xi, a contradiction. Hence, we
must have a finite subcover. Thus, X is countably compact. �

Proposition 12.3: (Countably compact first countable is sequentially compact)

A first countable, countably compact space is sequentially compact.

Proof
Suppose, {xn} is a sequence. WLOG, assume element is distinct. If possible, suppose A = {xn}
has no convergent subsequence.
If possible, A = {xn} has no convergent subsequence. Since X is first countable, for any x ∈ X,
we must have some open set x ∈ Ux ⊂ X such that Ux ∩A is finite (Check!). Now, for any finite
subset, F ⊂ A, consider the open set

OF :=
⋃

{Ux | Ux ∩ A = F} .

Since A is countable, there are countable finite subsets of F . Thus, O := {OF | F ⊂ A is finite}
is a countable collection, which is clearly an open cover. By countable compactness, we have a
finite subcover X =

⋃k
i=1 OFi

. Consider F = ∪ki=1Fi, which is again finite. Pick some xi0 ∈ A\F .
Now, OFi

∩A = Fi ⇒ xi0 6∈ ∪ki=1Fi =
⋃k
i=1OFi

∩A = X ∩A = A, a contradiction. Hence, {xn}
must have a convergent subsequence. Thus, X is sequentially compact. �

Proposition 12.4: (Limit point compact, T1, first countable is sequentially compact)

Suppose X is a first countable, T1, limit point compact space. Then X is sequentially compact.

Proof
Since X is limit point compact and T1, we have X is countably compact. Since X is countably
compact and first countable, we have X is sequentially compact. �
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Example 12.5: (Necessity of T1)

Recall the topolgoy T→ = {∅,R}∪{(a,∞) | a ∈ R} on R. For any infinite subset A ⊂ R, choose
any x such that x < a for some a ∈ A. Then, x is a limit point of A. Also, for any x ∈ R, we
have a countable neighborhood basis

{
Ui = (x− 1

n
,∞)

∣∣ n ≥ 1
}

. We have seen that (R, T→)
is not T1. Finally, observe that the sequence {xn = −n} has no convergent subsequence.

Definition 12.6: (Second countable)
A space X is called second countable if it admits a countable basis.

Definition 12.7: (Lindelöf)
A space X is called Lindelöf if every open cover admits a countable sub-cover.

Proposition 12.8: (Second countable is Lindelöf)

A second countable space is Lindelöf.

Proof
Suppose U = {Uα}α∈I is an open cover. Fix a countable base B = {Bi}i∈N. Suppose J ⊂ N
is the subset of indices for which Bi is contained in some Uα ∈ U . For each Bj with j ∈ J , fix
some Uαj

∈ U with Bj ⊂ Uαj
. Clearly

{
Uαj

}
j∈J is a countable collection. For any x ∈ X, we

have x ∈ Uα for some Uα ∈ U . Now, there is some basic open set x ∈ Bi0 ⊂ Uα. But then
x ∈ Bi0 ⊂ Uαi0

. Thus,
{
Uαj

}
j∈J is a countable open cover, showing that X is Lindelöf. �

Proposition 12.9: (Limit point compact, Lindelöf, T1 is compact)

A limit point compact, T1, Lindelöf space is compact.

Proof
A limit point compact T1 space is countably compact. A countably compact Lindelöf space is
compact. �

Remark 12.10

We have observed the implications

Compact Sequentially compact

Countably compact

Limit point compact

+First countable

+Lindelöf
+First countable

+T1
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Day 13 : 18th September, 2025
order topology -- compact interval -- well-ordereing -- uncountable ordinal

13.1 Order topology and compactness

Definition 13.1: (Order topology)
Given any totally ordered set (X,≤), the order topology on X is defined as the topology
generated by the subbasis consisting of rays {x ∈ X | x < a} and {x ∈ X | a < x} for all a ∈ X.

Exercise 13.2: (Order topology basis)

Given a total order (X,≤) (with at least two points), check that the following collection

B := {(a, b) | a, b ∈ X, a < b} ,

is a basis for the order topology. Here, the intervals are defined as (a, b) := {x ∈ X | a < x < b}.

Proposition 13.3: (Order topology is T2)

Let (X,≤) be a totally ordered set equipped with the order topology. Then, X is T2.

Proof
Let a 6= b ∈ X. Without loss of generality, a < b. There are two possibilities. Suppose there is some
c such that a < c < b. Then, consider U = {x ∈ X | x < c} and V = {x ∈ X | c < x}. Clearly,
a ∈ U, b ∈ V and U ∩ V = ∅. If no such c exists, take U = {x | x < b} and V = {x | a < x}. �

Theorem 13.4: (Compact sets in ordered topology)

Suppose X is a totally ordered space, with the least upper bound property : any upper bounded
set A ⊂ X has a least upper bound. Then, for any , b ∈ X with a < b, the interval [a, b] =
{c ∈ X | a ≤ c ≤ b} is compact.

Proof
Suppose U = {Uα} be an open cover of [a, b].
For any x ∈ [a, b), we first observe that there is some y ∈ (x, b] such that [x, y] is covered by at
most two elements of U . If x has an immediate successor in X, let y = x + 1. Then, y ∈ (x, b],
and [x, y] contains exactly two points. Clearly, [x, y] can be covered by at most two open sets of
U . If there is no immediate successor, get x ∈ Uα, and some x < c ≤ b such that [x, c) ⊂ Uα.
Since x has no immediate successor, we have some x < y < c so that [x, y] ⊂ [x, c) ⊂ Uα.
Now, consider the collection

A := {c ∈ [a, b] | [a, c] is covered by finitely many Uα.}

Observe that for a, we have some a < y ≤ b such that [a, y] is covered by at most two open sets
of U . Thus, y ∈ A. Clearly A is upper bounded by b. Let c be the least upper bound of A. We
then have, a < c ≤ b.
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We show that c ∈ A. We have c ∈ Uα for some α. Then, there is some c′ such that (c′, c] ⊂ Uα.
Now, being the least upper bound, we must have some z ∈ A such that c′ < z ≤ c. Then,
[a, z] lies in finitely many opens of U . Adding Uα to that finite collection, we get a finite cover of
[a, c] = [a, z] ∪ [z, c]. Thus, c ∈ A.
Finally, we claim that c = b. If not, then there is some c < y ≤ b such that [c, y] is covered by
at most two opens from U . This implies that [a, y] = [a, c] ∪ [c, y] admits a finite sub-cover, and
hence, y ∈ A. But this contradicts c is an upper bound. Thus, c = b.
In other words, [a, b] is covered by finitely many open sets of U . �

Corollary 13.5: (Intervals are compact)

For any real numbers a < b, the interval [a, b] is compact in the usual topology of real line.

Proof
It is clear that R is a totally ordered set, equipped with the order topology. Also, R has the least
upper bound property. Hence, [a, b] is compact. �

13.2 Well-ordering

Definition 13.6: (Well-order)
A well-ordering on a set X is a total order, such that every non-empty subset has a least element.
Explicitly, it is a relation R ⊂ X × X, denote, a ≤ b if and only if (a, b) ∈ R, such that the
following hold.

a) (Reflexivity) x ≤ x for all x ∈ X.

b) (Transitivity) If x ≤ y and y ≤ z, then x ≤ z.

c) (Totality) For x, y ∈ X either x ≤ y or y ≤ x.

d) (Antisymmetric) If x ≤ y and y ≤ x, then x = y.

e) For any ∅ 6= A ⊂ X, there exists a0 ∈ A such that for all a ∈ A we have a0 ≤ a. We
call it the least element of A (which is unique, by antisymmetry)

Given a well-ordered set (X,≤), and a point x ∈ X, the section (or initial segment) is defined
as Sx := {y ∈ X | y < x}.

Proposition 13.7: (Successor in well-order)

Given a well-ordering (X,≤), each x ∈ X (except possibly the greatest element) has an im-
mediate successor, denoted, x + 1. That is, x < x + 1, and there is no y ∈ X such that
x < y < x+ 1.

Proof
For any x ∈ X, consider the set

Ux := {y ∈ X | x < y} .
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If x is not the greatest element of X, then Ux 6= ∅, and hence, has a least element. This least
element is the successor (Check!). �

Theorem 13.8: (Well-ordering principle)

Every set admits a well-ordering.

Remark 13.9: (Construction of uncountable well-order)

The well-ordering principle (also known as Zermelo’s theorem named after Ernst Zermelo) is equiv-
alent to the axiom of choice. On the other hand, explicitly constructing an uncountable well-order
is possible without using the (full strength of) axiom of choice!

Theorem 13.10: (Construction of an uncountable well-order)

There exists an uncountable well-ordered set.

Proof
Consider N with the usual order, and observe that any subset A ⊂ N is a well-ordering with this
ordering. Consider the set

A := {(A,≺) | A ∈ P(N),≺ is a strict well-order on A} .

Since P(N) is uncountable, and since every subset admits at least one well-order, clearly, A is
uncountable. Let us define a relation

(A,≺A) ∼ (B,≺B) ⇔ ((A,≺A)) is order-isomorphic to (B,≺B).

Then, ∼ is an equivalence relation on A (check!). On the equivalence classes, define a new relation

[A,≺A] � [B,≺B] ⇔ (A,≺A) is order-isomorphic to some section of (B,≺B).

Then, � is a well-defined (strict) well-ordering on Ω := A/∼ (Check! (It is tricky!)). �

Proposition 13.11: (Construction of SΩ)

There exists a well-ordering, denoted SΩ (or, ω1, known as the first uncountable ordinal), such
that

i) SΩ is uncountable, and

ii) for each x ∈ SΩ the section Sx := {y ∈ SΩ | y < x} is countable.

Proof
Suppose (A,≤) is an uncountable well-ordered set. Then, on B = A×{0, 1}, the dictionary order is
again a well-ordering (check!). Observe that for any x = (a, 1), the section Sx = {y ∈ B | y < x}
is uncountable. Consider the set

S := {x ∈ B | Sx is uncountable} .
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This is non-empty, and hence, admits a least element Ω ∈ S. Denote

SΩ := {x ∈ B | x < Ω} .

Clearly SΩ itself is uncountable, as Ω ∈ S. But that for any x ∈ SΩ, we have the section Sx is
countable. Since SΩ is a section of a well-ordering, it is itself well-ordered (check!). �

We shall denote
S̄Ω := SΩ ∪ {Ω} ,

and give it the obvious ordering : for any x ∈ SΩ set x < Ω. Note that SΩ is a section in S̄Ω, so that
the notation is consistent.

Theorem 13.12: (S̄Ω is compact)

The space S̄Ω = SΩ ∪ {Ω} is compact.

Proof
Let m0 be the least element of SΩ. On S̄Ω = SΩ ∪ {Ω}, extend the ordering by setting x < Ω for
all x ∈ SΩ. Observe that this is a total order. And moreover, S̄Ω = [m0,Ω] is a closed interval.
Let us check the least upper bound property. Say A ⊂ S̄Ω. If Ω ∈ A, then clearly, Ω is the least
upper bound of A. WLOG, assume Ω 6∈ A, that is, A ⊂ SΩ. We have two possibilities. If A is
bounded in SΩ, consider the set

X = {b ∈ SΩ | b is an upper bound of A} .

As X is nonempty, there exists a least element, say, b0 ∈ X. By definition, it is the least upper
bound of A. Suppose A is unbounded in SΩ. Clearly, Ω is an upper bound of A. We claim that Ω is
the least upper bound. If not, then there is some upper bound x < Ω, which implies A is bounded
by x ∈ SΩ, a contradiction. Thus, S̄Ω has the least upper bound property. So, S̄Ω is compact. �

Day 14 : 19th September, 2025
uncountable ordinal -- filter -- ultrafilter lemma -- Tychonoff's theorem

14.1 Properties of SΩ

Proposition 14.1: (Properties of SΩ)

Suppose SΩ is given the order topology.

a) For any set A ⊂ SΩ, the union
⋃
a∈A Sa is either a section (and hence countable), or all

of SΩ.

b) Any countable set of SΩ is bounded

c) SΩ is sequentially compact.

d) SΩ is limit point compact.
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e) SΩ is not compact.

f) SΩ is first countable.

Proof
a) If A admits an upper bound, then it admits a least upper bound, say, b. We claim that⋃

a∈A Sa = Sb. Indeed, for any x < a ∈ A, we have x < a ≤ b and so x ∈ Sb. On the
other hand, for any x < b, we have x is not an upper bound of A, and so, x < a ≤ b for
some a ∈ A. Then, x ∈ Sa.

Otherwise, assume A is not bounded. Suppose
⋃
a∈A Sa is not all of SΩ. Pick some b ∈

SΩ \
⋃
a∈A Sa. Now, b is not an upper bound of A (as A is not upper bounded). So,

b < a ∈ A. But then b ∈ Sa, a contradiction.

b) For a countable set A ⊂ SΩ, the subset
⋃
a∈A Sa+1 is countable, and hence, not all of SΩ.

Then, A ⊂
⋃
a∈A Sa+1 = Sb for some b. Clearly, b is an upper bound of A.

c) WLOG, suppose {xn} be a sequence of distinct elements in SΩ. Consider

xnk
= min {xn | n ≥ k} .

Then, clearly xn1 < xn2 < . . . . Now, {xnk
} being countable set, is bounded, and hence

admits a least upper bound, say b. Clearly b 6∈ {xnk
}, as the subsequence is strictly

increasing. For any open set b ∈ U ⊂ SΩ, we have b ∈ (x, b] ⊂ U . Now, x is not an upper
bound of {xnk

}, and hence, a < xnk0
< b for some k0. But then a < xnl

< b for any
l ≥ k0. In other words, xnl

∈ U for all l ≥ k0. Thus, xnk
→ b.

d) Since SΩ is sequentially compact, it is limit point compact.

e) For each x ∈ SΩ, consider the open sections Sx+1 := {y ∈ X | y < x+ 1}, which are
open. Here x + 1 is the successor of x. Clearly, SΩ =

⋃
x∈SΩ

Sx+1. If possible, suppose,
there is a finite subcover, SΩ =

⋃n
i=1 Sxi+1. But the right-hand side is a finite union of

countable sets, and hence countable, whereas SΩ is uncountable. This is a contradiction.

f) For any x ∈ SΩ, we have the section Sx = {a | a < x} is countable. Consider the open
sets {Ua = (a, x+ 1) | a < x}, which are all open neighborhoods of x. It is clear that this
is a countable basis at x (Check!).

�

Proposition 14.2: (S̄Ω is not first countable)

The space S̄Ω = SΩ ∪ {Ω} is not first countable at Ω.

Proof
Observe that the basic open sets containing Ω are of the form (x,Ω] for x ∈ SΩ. If possible,
suppose, there is countable neighborhood basis at Ω, say, {Ui}. We then have Ω ⊂ (xi,Ω] ⊂ Ui
for some xi ∈ SΩ. Now,

⋃
Sxi = Sb for some b ∈ SΩ. Consider the basic open set (b+1,Ω]. There
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is some Ω ∈ (xi,Ω] ⊂ Ui ⊂ (b+1,Ω]. But then b+1 ≤ xi, a contradiction. Hence, S̄Ω is not first
countable at Ω. �

14.2 (Ultra)Filters

Definition 14.3: (Filter and ultrafilter)
Given a set X, a filter on it is a collection F ⊂ P(X) of subsets such that the following holds.

a) ∅ 6∈ F .

b) For any A,B ⊂ X, we have A ∩B ∈ F if and only if A,B ∈ F .

A filter F on a set X, is called an ultrafilter if for any A ⊂ X either A ∈ F or X \ A ∈ F .

Exercise 14.4: (Filter equivalent definition)

Given any collection F ⊂ P(X) of subsets, the following are equivalent.

a) For any A,B ⊂ X, we have A ∩B ∈ F if and only if A,B ∈ F

b) F satisfies the following.

i) F is closed under finite intersection, i.e, F1, . . . , Fn ∈ F implies ∩ni=1Fn ∈ F .

ii) F is closed under supersets, i.e, if A ∈ F , then B ∈ F whenver B ⊃ A.

Example 14.5: (Principal ultrafilter)

For any x ∈ X fixed, consider the collection

F = {A ⊂ X | x ∈ A} .

It is easy to see that F is an ultrafilter on X, Such ultrafilters are called the principal ultrafilter .
Any ultrafilter which is not principal, is called a free ultrafilter .

Theorem 14.6: (Ultrafilter lemma)

Every filter on a set X is contained in an ultrafilter.

Proof
Let F be a filter on X. Consider the collection

F := {G | G is a filter on X, and F ⊂ G} .

It follows that every chain (ordered by inclusion) in F admits a maximal element, given by the
union. Then, by Zorn’s lemma, F admits a maximal element, say, F . Since F is a maximl filter, it
is an ultrafilter, which contains F by construction. �
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Definition 14.7: (Convergence of filter)
Given a filter U on a space X, we say U converges to a point x ∈ X, if for any open neighborhood
x ∈ U , we have U ∈ U .

Theorem 14.8: (Ultrafilter and compactness)

A space X is compact if and only if every ultrafilter on X converges to at least one point.

Proof
Suppose X is a compact space. Let U be an ultrafilter on X. If possible, suppose U does not
converge to any point in X. Then, for each x ∈ X, there exists an open nbd x ∈ Ux such that
Ux 6∈ U . Since U is ultrafilter, this means X \ Ux ∈ U . Now, X =

⋃
x∈X Ux admits a finite

sub-cover, say, X =
⋃k
i=1 Uxi . This, means

∅ = X \X =
k⋂
i=1

(X \ Uxi) ∈ U ,

as U is closed under finite intersection. This is a contradiction as ∅ 6∈ U .
Conversely, suppose X is not compact. Then, there exists an open cover, U = {Uα} such that
there is no finite sub-cover. Consider the collection

F := {Fα = X \ Uα} .

Note that for any finite collection, we have ∩ki=1Fαi
= X \

⋃k
i=1 Uαi

6= ∅. In other words, F
has finite intersection property. Then, we can close F under finite intersections, and then under
supersets, to get a filter, say, F ⊃ F . But F is contained in some ultrafilter, say U ⊃ F. Now, for
any x ∈ X, we have X ∈ Uα for some α. Then, Fα = X \ Uα ∈ U ⇒ Uα 6∈ U. Thus, U does not
converge to any x ∈ X, a contradiction. �

14.3 Tychonoff’s Theorem

Theorem 14.9: (Tychonoff’s Theorem)

Given a collection {Xα} of compact spaces, the product X = ΠXα, with the product topology,
is a compact space.

Proof
Suppose U is an ultrafilter on X. For the projection map πα : X → Xα, we have the ultrafilter

Uα := (πα)∗ U =
{
A ⊂ Xα

∣∣ (πα)−1(A) ∈ U
}

on Xα. Since Xα is compact, Uα converges to some point in Xα. By the axiom of choice, we have
some x = (xα) ∈ X such that Uα converges to xα for each α. Let us show that U converges to
x. Observe that for any open neighborhood x ∈ U ⊂ X, we have U is generated by the sub-basic
open sets of the form {π−1α (V ) | V ⊂ Xα}. Since a filter is closed under finite intersection and
supersets, if we are able to show that any sub-basic open neighborhood of x is an element of U , we
are done. But for any V ⊂ Xα open, with x ∈ π−1α (V ) precisely when xα ∈ V . Since Uα converges
to xα, we have V ∈ Uα ⇒ π−1α (V ) ∈ U . Hence, U converges to x. Since U is an arbitrary ultrafilter,
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we have X is compact. �

Proposition 14.10: (Axiom of choice from Tychonoff)

Suppose Tychonoff’s theorem is true. Then, axiom of choice holds.

Proof
Let {Xα} be an arbitrary collection nonempty sets. Since a set cannot be an element of itself, we
have new sets Yα = Xα t {Xα}. For simplicity, denote pα = {Xα} ∈ Yα. Now, give a topology on
Yα as

Tα = {∅, {pα} , Xα, Yα}

. Clearly (Yα, Tα) is a compact space, having only finitely many open sets. Consider the product
Y = ΠαYα. Now, for each α, we have the sub-basic open set

Uα := {y ∈ Y | πα(y) = pα} = π−1α (pα),

since {pα} is open in Yα. We claim that {Uα} has not finite sub-cover. If possible, suppose,
Y =

⋃n
i=1 Uαi

. Then, make finitely many choices : xi ∈ Xαi
, and define x by setting πα(x) = pα

for α 6∈ {a1, . . . , αn} and παi
(x) = xi for 1 ≤ i ≤ n. Then, clearly x 6∈

⋃n
i=1 Uαi

, a contradiction.
Thus, the collection {Uα} admits no finite sub-cover. By Tychonoff’s theorem, Y is compact. Hence,
{Uα} is not a covering of Y . So, there exists some y ∈ Y \

⋃
α Uα. Observe that πα(y) ∈ Xα, as

yα 6= pα. Thus, y ∈ ΠXα. This is precisely the axiom of choice. �

Proposition 14.11: (Compact but not sequentlly compact)

The product space X = [0, 1][0,1] = Π0≤t≤1[0, 1] is compact, but not sequentially compact.

Proof
It follows from Tychonoff’s theorem that the product space X = [0, 1][0,1] is compact, since each
[0, 1] is so. For each n ≥ 1, consider the function αn : [0, 1] → {0, 1} defined by

αn(x) = the nth digit in the binary expansion of x.

Clearly, {αn} is a sequence in X. If possible, suppose, αnk
→ α ∈ X. Then, for each x ∈ [0, 1], we

must have αnk
(x) → α(x). Consider any point x such that αnk

(x) is 0 or 1 according as k is even
or odd. Clearly the sequence αnk

(x) cannot converge, a contradiction. Thus, X is not sequentially
compact. �

Day 15 : 25th September, 2025
Zorn's lemma -- well-ordering principle -- ultrafilter lemma
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15.1 A digression : Zorn’s Lemma and applications

Definition 15.1: (Partial ordering)
A relation ≤ on a set X is called a partial order if it satisfies the following.

1. x ≤ x for all x ∈ X.

2. x ≤ y, y ≤ z ⇒ x ≤ z

3. x ≤ y, y ≤ x⇒ x = y

The tuple (X,≤) is called a partially ordered set (or a poset). A point x ∈ X is called a maximal
element if for any y ∈ X with x ≤ y, we have x = y.

Definition 15.2: (Chain)
A subset C of a poset (X,≤) is called a chain if C is totally ordered with respect to ≤, i.e, for
any c1, c2 ∈ C, either c1 ≤ c2 or c2 ≤ c1 holds.

Lemma 15.3: (Zorn’s lemma)

Given a non-empty poset (X,≤), suppose every chain has an upper bound in X. Then, X has
a maximal element.

Theorem 15.4: (Basis of a vector space)

Given a field K, any non-zero vector space V over K admits a basis.

Proof
Consider the collection

B := {B ⊂ V | B is linearly independent over K} .

Note that B 6= ∅, since for any 0 6= v ∈ V , we have B = {v} ∈ B. Define

B1 ≤ B2 ⇔ B1 ⊂ B2, B1, B2 ∈ B

which is clearly a partial order. Let us consider a chain C = {Bi}i∈I in (B,≤). Consider the set
B =

⋃
i∈I Bi. We check that B is linearly independent. Say, b1, . . . , bk ∈ B. Since C is a chain,

without loss of generality, we have b1, . . . , bk ∈ Bi0 for some i0 ∈ I. But then clearly {b1, . . . , bk}
is linearly independent. Hence, B ∈ B. By construction, we have Bi ≤ B for all i ∈ I. Thus, B is
an upper bound of C. Then, we have a maximal element, say, B ∈ B. We claim that B is a basis
of V . If not, then B fails to span V . Thus, we must have some

v0 ∈ V \ Span 〈B〉 .

Consider the set B0 = Bt{v0}. Clearly, B0 is linearly independent, and B ( B0. Thus contradicts
the maximality of B. Hence, V = Span 〈B〉. Thus, V admits a basis. �
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Theorem 15.5: (Well-ordering principle)

Every nonempty set S admits a well-ordering.

Proof
Consider the collection

W = {(W,≤W ) | ∅ 6= W ⊂ S, and ≤W is a well-ordering on W} .

Clearly W 6= ∅, since for any x ∈ S, we have the singleton set {x} is trivially well-ordered. Let us
define (A,≤A) � (B,≤B) if and only if

i) A ⊂ B,

ii) ≤A is the restriction of ≤B (i.e, a1 ≤A a2 if and only if a1 ≤B a2), and

iii) for any b ∈ B \ A we have b >B a for all a ∈ A.

It is easy to see that � is a total order on W (Check!). Suppose C = {(Wα,≤α)}α∈I is a chain in
(W ,�). Consider

W =
⋃
α∈I

Wα.

Let us define ≤W as follows. For any w1, w2 ∈ W , using the chain condition, we have w1, w2 ∈ Wα0

for some α0 ∈ I. Then, define
w1 ≤W w2 ⇔ w1 ≤α0 w2.

Again from the chain condition, it follows that ≤W is well-defined (Check!). Moreover, it is easy
to see that ≤W is a total order (Check!). Let us show that ≤W is actually a well-order. Say,
∅ 6= A ⊂ W is given. Then, A ∩Wα 6= ∅ for some α ∈ I. Now, (Wα,≤α) being a well-order, we
have a least element m0 = minA ∩Wα. We claim that m0 is the least element of A in the order
≤W . If not, then there is some a ∈ A, with a <W m0. Now, a ∈ Wβ for some β ∈ I. From the
chain condition, we have two cases.

1. If Wβ ≤ Wα, then we have a ∈ Wβ ⊂ Wα. But then a ∈ Wα ∩A⇒ m0 ≤α a⇒ m0 ≤W a,
a contradiction.

2. Say, Wα ≤ Wβ. We again have two possibilities.

(a) Say, a ∈ Wβ \Wα. Then, by the definition of �, we have a ≥β x for all x ∈ Wα. In
particular, a ≥β m0 ⇒ a ≥W m0, a contradiction.

(b) Say, a ∈ Wα. But then m0 ≤α a⇒ m0 ≤W a, again a contradiction.

Thus, it follows that m0 = minA in the order ≤W . Thus, (W,≤W ) ∈ W . Clearly, it is an upper
bound of the chain C (Check!). Now, by Zorn’s lemma, there exists a maximal element, say,
(W,≤W) ∈ W . We claim that W = S. If not, then there exists x ∈ S \W. Consider

W0 = W t {x} .

Define an order ≤0 on W0 by extending the order ≤W, and declaring w <0 x for all w ∈ W. Then,
(W0,≤0) is a well-order, which moreover satisfies (W,≤W) ≺ (W0,≤0) (Check!). This violates
the maximality. Hence, W = S, and thus, S admits a well-ordering. �
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Theorem 15.6: (Ultrafilter lemma)

A filter F on a set X is contained in an ultrafilter on X.

Proof
Consider the collection

F := {F | F is a filter on X, and F ⊂ F .}

Then, F 6= ∅ as F ∈ F. Order F by inclusion, i.e, F1 ≤ F2 if and only if F1 ⊂ F2. Clearly (F,≤)

is a poset. Consider a chain C = {Fi}i∈I in (F,≤). Consider

F =
⋃
i∈I

Fi.

Clearly F ⊂ F . Let us check that F is a filter on X.

i) Since ∅ 6∈ Fi for all i ∈ I, we have ∅ 6∈ F .

ii) For any A,B ∈ F , by the chain condition, we have A,B ∈ Fi0 for some i0 ∈ I. But then
A ∩B ∈ Fi0 ⇒ A ∩B ∈ F .

iii) Say A ∈ F , and B ⊃ A. Now, A ∈ Fi for some i ∈ I, and then, B ∈ Fi ⇒ B ∈ F .

Thus, F is a filter on X, containing F , and clearly, it is an upper bound of C. Then, by Zorn’s
lemma, there exists some maximal element, say, U ∈ F. We claim that U is an ultrafilter on X,
which evidently contains F . If not, then there exists some set S ⊂ X such that

S 6∈ U , and X \ S 6∈ U .

Then, the collection U0 = U ∪ {S} has finite intersection property (Check!). But then there is a
filter, say, F0 ⊃ U0 ) U , a contradiction to maximality. Hence, U is an ultrafilter, containing F .�

Here are some more applications, that you can try to do if you want! Or have a look at this note
by Keith Conrad.

Exercise 15.7: (Existence of spanning tree)

Using Zorn’s lemma, show that every connected (undirected) graph has a spanning tree.

Exercise 15.8: (Existence of maximal ideal)

Let R be a commutative ring with 1. Using Zorn’s lemma, show that every ideal I ⊂ R is
contained in a maximal ideal.

Exercise 15.9: (Description of nilradical)

Let R be a commutative ring with 1. Using Zorn’s lemma, show that⋂
p ⊂ R is a prime ideal

= {x ∈ R | xn = 0 for some n ≥ 1} ,

which is also known as the nilradical of R.
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Day 16 : 26th September, 2025
locally compact space -- compactification

16.1 Local compactness

Definition 16.1: (Neighborhood)
Given a space X, a neighborhood of a point x ∈ X is any set N ⊂ X such that x ∈ intN ⊂ N .

Definition 16.2: (Locally compact space)
A space X is called locally compact at x ∈ X if for any given open nbd x ∈ U , there exists a
compact neighborhood x ∈ C ⊂ U . The space X is called locally compact if it is so at every
point x ∈ X.

Proposition 16.3: (Locally compact Hausdorff)

Suppose X is a Hausdorff space. Then the following are equivalent.

a) X is locally compact.

b) For any x ∈ X and any open nbd x ∈ U ⊂ X, there exists an open nbd x ∈ V ⊂ U ⊂
X, such that V̄ ⊂ U and V̄ is compact.

c) Every x ∈ X has a cpt nbd.

Proof
That b) implies local compactness is clear, even without the Hausdorff assumption. Now, suppose
X is locally compact, T2. For an open nbd x ∈ U ⊂ X, we have some compact nbd x ∈ C ⊂ U .
By the definition of nbd, we have some open nbd x ∈ V ⊂ C ⊂ U . Now, since X is T2, we have
C is closed. Hence,

V ⊂ C ⇒ V̄ ⊂ C̄ = C ⊂ U.

Also, closed subsets of compact is always compact. Thus, V̄ is compact. Thus, a) implies b).
Again a) ⇒ c) is clear from the definition. Suppose c) holds. Let x ∈ U ⊂ X be an open nbd,
and x ∈ C ⊂ X be a compact nbd. Clearly x ∈ W = U ∩ int(C) is an open nbd. It follows that
K = C \W is a closed subset of the compact set C, and hence, K is compact. Now, x 6∈ K. Since
X is T2, we have open sets x ∈ A,K ⊂ B, such that A∩B = ∅ Set V = W ∩A = U∩ int(C)∩A,
which is an open nbd x ∈ V ⊂ U . We observe

V ⊂ W ⊂ C ⇒ V̄ ⊂ C̄ = C.

U

C

B

x
V K

C̊
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Consequently, V̄ is compact, being a closed subset of a compact set. Also, V ⊂ A and Ā∩B = ∅
(as A ∩B = ∅, and B is open). Thus,

V̄ ⊂ C ∩ (X \B) = C \B = (K tW ) \B = W \B ⊂ W ⊂ U.

This proves b), and hence a). �

Example 16.4: (R is locally compact)

Since R is Hausdorff, it is enough to check that for any x ∈ R, we have [x−1, x+1] is a compact
nbd. Similarly, any Rn is also locally compact. As for Q ⊂ R, for any open set U = (−ε, ε) ∩Q
it follows that Ū = [−ε, ε]∩Q is not compact, as it is not sequentially compact. Thus, Q (which
is T2) is not locally compact.

16.2 Compactification

Definition 16.5: (Compactification)

Given a space X, a compactification of X is a continuous injective map ι : X ↪→ X̂, such that
X̂ = ι(X) is a compact space. We shall identify X ⊂ X̂ as a subspace, and understand X̂ as
the compactification.

Example 16.6: (Compactification of compact space)

Suppose X is compact. Then Id : X → X is trivially a compactification. In fact, if X̂ is a
Hausdorff compactification of X, then necessarily X̂ = X (Check!).

Proposition 16.7: (Alexandroff compactification)

Given any noncompact space (X, T ), there exists a compactification X̂ = X t {∞}, where ∞
is a point not in X (also denoted as X?).

Proof
Consider the space X̂ = X t {∞}, along with the topology

T∞ := T ∪ {{∞} ∪ (X \ C) | C ⊂ X is closed and compact} .

Let us verify that T∞ is a topology.

i) ∅ ∈ T ⊂ T∞

ii) X̂ = {∞} ∪ (X \ ∅) ∈ T∞, since ∅ ⊂ X is a closed, compact subset.

iii) For any Uα = {∞}∪(X\Cα), where Cα ⊂ X is closed compact, we have
⋃
Uα = {∞}∪

(X \
⋂
αCα). Since arbitrary intersection of closed is closed, and arbitrary intersection

of compact is compact, we have
⋂
αCα ⊂ X is closed, compact. Thus,

⋃
α Uα ∈ T∞.

Since finite union of closed (resp. compact) sets are closed (resp. compact), we see that⋂
i=1 Ui ∈ T∞, if Ui = {∞} ∪ (X \ Ci) for some Ci ⊂ X closed, compact.

iv) Since T is a topology, it is closed under arbitrary union and finite intersection.
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v) Finally, let us consider some U ⊂ X open, and some V = {∞} ∪ (X \ C) for C ⊂ X

closed, compact. We have U ∩ V = U \ C, which is open in X. Also,

U ∪ V = {∞} ∪ (X \ C) ∪ U = {∞} ∪ (X \ (C \ U)) .

Since C \ U is a closed subset of a compact set, it is again closed, compact. Thus,
U ∩ V ∈ T∞.

Thus, T∞ is indeed a topology. It is easy to see that the inclusion ι : X ↪→ X̂ is a homeomorphism
onto the image (Check!). Also, for ∞, any open neighborhood clearly intersects X, since X itself
is not compact. Thus, X̂ = ι(X). Finally, let us check that X̂ is compact. Indeed, for any open
cover U = {Uα}, choose some ∞ ∈ Uα0 . Then, Uα0 = {∞}∪(X \C), where C ⊂ X is closed and
compact. We have U is an open cover of X, and so, we have a finite subcover, say C ⊂

⋃k
i=1 Uαi

.
Then, {Uαi

, i = 0, . . . , k} is a finite subcover of X̂. �

Remark 16.8: (Alexandroff compactification of compact space)

If X is compact to begin with, then the Alexandroff compactification still produces a compact
space X̂ = X t {∞}, which contains X as a subspace. But here {∞} is an isolated point, and
X̄ = X ( X̂. Thus, by our definition, it is not exactly a compactification!

Exercise 16.9: (One-point compactification and Alexandroff compactification)

Consider the space
X = {p, q, x1, x2, . . . , y1, y2, . . . } .

Give the subspace {x1, x2, . . . , y1, y2, . . . } the discrete topology. For p, declare the open neigh-
borhoods as {p}∪A, where A ⊂ {y1, y2, . . . } is cofinite. For q, declare the open neighborhoods
as {q} ∪ B, where B ⊂ {x1, x2, . . . , y1, y2, . . . } is cofinite. Check that X is compact with this
topology. Now, consider Y = {p, x1, x2, . . . , y1, y2, . . . }, which is noncompact (Check!). Clearly,
Y = X. Thus, X is a compactification of Y . We claim that X is not the Alexandroff compact-
ification of Y . Indeed, consider the set K = {p, y1, y2, . . . } ⊂ Y , which is compact (Check!).
Also, K is closed in Y . But, {q} ∪ (Y \K) = {q, x1, x2, . . . } is not open in X.

Theorem 16.10: (One-point compactification of locally compact Hausdorff space)

Let X be a noncompact space. Then, the one-point compactification X̂ is T2 if and only if X
is locally compact, T2.

Proof
Suppose X̂ is T2. Then, X ⊂ X̂ is clearly T2. Also, for any x ∈ X, we have open sets x ∈ U,∞ ∈ V

such that U ∩ V = ∅. Then, U ⊂ X, and V = {∞} ∪ (X \ C), where C ⊂ X is a compact (and
also closed, as X is T2). Then, x ∈ U ⊂ C, that is, C is a compact neighborhood of x. Since X
is T2, it follows that X is locally compact.
Conversely, suppose X is locally compact, T2. We only need to show that for any x ∈ X, there
open sets x ∈ U,∞ ∈ V such that U ∩ V = ∅. Since X is T2, we have an open set x ∈ U ⊂ X

such that Ū is compact (and hence closed). Then, we have V = X \ Ū is an open nbd of ∞ in
X̂. Clearly, U ∩ V = ∅. Thus, X̂ is T2. �
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Day 17 : 16th October, 2025
properties of Lindelöf spaces -- separable spaces

17.1 Properties of Lindelöf spaces

Proposition 17.1: (Image of Lindelöf spaces)

A continuous image of a Lindelöf space is again Lindelöf

Proof
Suppose f : X → Y is a continuous surjection, and X is Lindelöf. Consider an open cover
Y =

⋃
α Vα. Then, we have an open cover X =

⋃
α f
−1 (Uα), which admits a countable sub-cover,

X =
⋃∞
i=1 f

−1(Uαi
). Then, Y = f(X) =

⋃∞
i=1 Uαi

. Thus, Y is Lindelöf. �

Lindelöf spaces are not well-behaved when considering product or subspaces.

Example 17.2: (R` is Lindelöf)

Let us show that the lower limit topology R` on R is Lindelöf. Suppose {Uα} is an open cover.
For each x, we have [x, rx) ⊂ Uαx , for some rx ∈ Q. Clearly, R` =

⋃
x[x, rx). Let us consider

the space C =
⋃
x(x, rx). We claim that R \C is countable. Indeed, for each u, v ∈ R \C, with

u < v, we must have ru < rv, since otherwise we get u < v < rv ≤ ru and then, v ∈ (u, ru) ⊂ C

a contradiction. Thus, we have an injective map

R \ C → Q
u 7→ ru.

But then R \ C is countable, as Q is countable. Say, R \ C = {ui}∞i=1. On the other hand,
considering C =

⋃
x∈R(x, rx) as a collection of open sets in the usual topology of R, we have a

countable subcover C =
⋃∞
i=1(xi, rxi). Thus, we have a countable cover,

R` =
∞⋃
i=1

[ui, rui) ∪
∞⋃
i=1

[xi, rxi) ⊂
⋃

Uαui
∪
⋃

Uαxi
.

Hence, R` is Lindelöf.

Example 17.3: (R` × R` is not Lindelöf)

Let us now show that the product X = R`×RI (also known as Sorgenfrey plane) is not Lindelöf.
Consider the subset A = {(x,−x) | x ∈ R} ⊂ X. It is easy to see that A is open. Next, for
each x ∈ R, consider the open set Ux = [x, x + 1) × [−x,−x + 1) ⊂ X. It follows that
A ∩ Ux = {(x,−x)}. Now, consider the open cover

X = (X \ A) ∪
⋃
x∈R

Ux.

This cannot have a countable subcover, since A is uncountable.
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Definition 17.4: (Hereditarily Lindelöf)
A space X is called hereditarily Lindelöf if every subspace A ⊂ X is Lindelöf.

Proposition 17.5: (Hereditarily Lindelöf if and only if open subsets are Lindelöf)

A space X is hereditarily Lindelöf if and only if every open subspace U ⊂ X is Lindelöf.

Proof
One direction is trivial. So, suppose every open subspace of X is Lindelöf. Consider an arbitrary
subset A ⊂ X, with the subspace topology. Suppose, we have an open cover A =

⋃
α Uα, where

Uα = A ∩ Vα for Vα ⊂ X open. Now, U =
⋃
α Vα is a open cover, which admits a countable

subcover, say U =
⋃∞
i=1 Vαi

. But then, A = A ∩ U =
⋃∞
i=1A ∩ Vαi

=
⋃∞
i=1 Uαi

. Thus, A is
Lindelöf. Since A was arbitrary, we have X is hereditarily Lindelöf. �

Example 17.6: (S̄Ω is not hereditarily Lindelöf)

Recall the space X = S̄Ω = SΩ ∪ {Ω}, which was shown to be compact, and hence, Lindelöf.
Now, for each a ∈ SΩ, consider the open sets Ua = (a, a+2) = {a+ 1}. Since SΩ is uncountable,
we have the uncountable discrete space A =

⋃
a∈SΩ

(a, a + 2) =
⋃
a∈SΩ

{a+ 1}. Clearly, this is
not Lindelöf. Thus, S̄Ω is not hereditarily Lindelöf.

17.2 Separable space

Definition 17.7: (Separability)
Given A ⊂ X, we say A is dense in X if X = Ā. A space X is called separable if there exists a
countable dense subset.

Exercise 17.8: (Dense set and open set)

Show that A ⊂ X is dense if and only for any nonempty open set U ⊂ X we have U ∩ A 6= ∅.

Exercise 17.9: (Second countablity and seperability)

Show that a second countable space is separable. Check that R with the cofinite topology is
separable, but not second countable.

Proposition 17.10: (Image of separable space)

Let f : X → Y be countinuous surjection. If X is separable, then so is Y .

Proof
Suppose A ⊂ X is a countable dense subset. Since f is continuous, we have, f(Ā) ⊂ f(A) ⇒
f(A) ⊃ f(X) = Y ⇒ f(A) = Y . Thus, f(A) is dense in Y , which is clearly countable. Hence, Y
is separable. �
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Proposition 17.11: (Product of separable spaces)

Suppose {Xα}α∈I is a countable collection of separable spaces. Then, the product X = ΠXα is
separable.

Proof
Fix countable dense subsets Aα ⊂ Xα. Fix some aα ∈ Aα. Then, consider the collection

A = {(xα) ∈ ΠAα | xα = aα for all but finitely many α ∈ I} .

By construction, A is countable. Let us show that A is dense in X. Let U ⊂ X be a basic open
sets. Then, U = ΠαUα, where Uα = Xα for all α ∈ I \ {α1, . . . , αk}. Since Xα = Aα, we have
bαi

∈ Uαi
∩Aαi

for i = 1, . . . , k. Set bα = aα for all α ∈ I \{α1, . . . , αk}. Then, clearly b ∈ U ∩A.
Thus, Ā = X. Hence, X is separable. �

Example 17.12: (Subspaces of separable space)

Subspaces of a separable space need not be separable! Consider an uncountable set X, and fix
a point x0 ∈ X. Equip X with the particular point topology based at x0 (i.e, a nonempty set
is open in X if and only if it contains x0). Then, {x0} is dense in X, and thus X is separable.
On the other hand, the set X \ {x0} is an uncountable discrete subspace, and hence, cannot be
separable.

Definition 17.13: (Nowhere dense subset)
A subset A ⊂ X is called nowhere dense if int(Ā) = ∅.

Example 17.14

Z ⊂ R is nowhere dense, and so is the Cantor set (which is uncountable). If X has discrete
topology, no subset A ⊂ X is nowhere dense. The set A := Z∪ ((0, 1) ∩Q) ⊂ R is not nowhere
dense.

Exercise 17.15: (Nowhere dense discrete subspace of R)

Show that any discrete subspace A ⊂ R is nowhere dense. In particular,
{

1
n

∣∣ n ≥ 1
}

is nowhere
dense.

Theorem 17.16: (Nowhere dense equivalence)

Let A ⊂ X is given. The following are equivalent.

a) int(Ā) = ∅.

b) For any nonempty open set ∅ 6= UsubsetX, we have A ∩ U is not dense in U (in the
subspace topology).

c) X \ Ā is dense in X.
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Proof
Suppose int(Ā) = ∅. Fix some ∅ 6= U ⊂ X open set. Then, U 6⊂ Ā. Pick some y ∈ U \ Ā.
Since Ā is closed, we have V := U \ Ā is open in X, and hence, open in U as well. Now, clearly
V ∩ (U ∩ A) = ∅, and hence, y 6∈ U ∩ AU . Thus, U ∩ A is not dense in U .
Conversely, suppose A ∩ U is not dense in U for any nonempty open set U ⊂ X. If possible,
suppose int(Ā) 6= ∅. Then, there exists some nonempty open set U ⊂ Ā. Pick y ∈ U and some
arbitrary open neighborhood y ∈ V ⊂ U . Since U is open in X, we have V is open in X as well.
Now, V ⊂ U ⊂ Ā ⇒ V ∩ A 6= ∅ (since V ∩ A = ∅ ⇒ V ∩ Ā = ∅ for V open). Thus, we have
∅ 6= V ∩A = (V ∩U)∩A = V ∩ (U ∩A). Since V was an arbitrary open neighborhood of y in U ,
we have y is an adherent point of U ∩A (in the subspace topology). Thus, we have A ∩ UU

= U ,
a contradiction. Hence, int(Ā) = ∅.
Let us now assume that X \ Ā is dense in X. Then, for any nonempty open set U ⊂ X, we must
have U ∩ (X \ Ā) 6= ∅ ⇒ U 6⊂ Ā. But then, int(Ā) = ∅. Conversely, suppose int(Ā) = ∅. Then,
for any nonempty open set U ⊂ X, we have U 6⊂ Ā ⇒ U ∩ (X \ Ā). But this means X \ Ā is
dense in X. �

Day 18 : 17th October, 2025
countability axioms in metric space -- Lebesgue number lemma

18.1 Countability axioms in metric spaces

Remark 18.1

We have the implications

Second countable First countable

Hereditarily Lindelöf

Lindelöf Separable
+Gδ-space

Recall, a space is called a Gδ-space if every closed set can be written as the intersection of countably
many open sets.

Example 18.2: (Lindelöf is not separable)

Consider an uncountable space X, and fix a point x0 ∈ X. Let T be the excluded point topology
on X : a proper subset U ( X is open if and only if x0 6∈ U . Then, the only open set containing
x0 is X itself, and hence, X is Lindelöf (in fact, compact). On the other hand, it cannot be
separable : for any set A ⊂ X, one can see that Ā = A∪{p}. Thus, there cannot be a countable
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dense subset.

Example 18.3: (Separable is not Lindelöf)

Consider an uncountable space X, and fix a point x0 ∈ X. Let T be the particular point
topology on X based at x0 : a nonempty set is open if and only if it contains x0. Then, (X, T )

is separable, as the singleton {x0} is dense in X. But (X, T ) is not Lindelöf, as the open cover
{{x0, x} | x ∈ X} does not have any countable sub-cover.

Theorem 18.4: (Metric space and countability axioms)

Suppose (X, d) is a metric space. Then, X is first countable. Moreover, the following are equiv-
alent.

a) X is second countable.

b) X is separable.

c) X is Lindelöf.

Proof
Given any x ∈ X, consider the open balls Bn := Bd

(
x, 1

n

)
. It is easy to see that {Bn} is a

countable basis at x. Thus, X is first countable.
Since any second countable space is separable and Lindelöf, clearly a) ⇒ b) and a) ⇒ c) holds.
Let us assume X is separable. Then, we have a countable subset A ⊂ X which is dense in X.
Consider the collection

B :=

{
Bd

(
a,

1

n

) ∣∣∣∣ a ∈ A, n ≥ 1

}
,

which is clearly a countable collection. Let us show that B is a basis for the topology on (X, d).
Suppose x ∈ X, and pick some arbitrary open neighborhood x ∈ U ⊂ X. Then, for some n ≥ 1,
we have

x ∈ Bd

(
x,

1

2n

)
⊂ Bd

(
x,

1

n

)
⊂ U.

Since A is dense, we have some a ∈ A ∩Bd

(
x, 1

2n

)
. Then, for any y ∈ Bd

(
a, 1

2n

)
, we have

d(x, y) ≤ d(x, a) + d(a, y) <
1

2n
+

1

2n
=

1

n
⇒ y ∈ Bd

(
x,

1

n

)
⊂ U.

Thus, Bd

(
a, 1

2n

)
⊂ U . Also, d(x, a) ≤ 1

2n
and so, x ∈ Bd

(
a, 1

2n

)
. Thus, B is a basis, showing b)

⇒ a).
Now, suppose X is Lindelöf. For each n ≥ 1, consider the collection

Un :=

{
Bd

(
x,

1

n

) ∣∣∣∣ x ∈ X

}
,

which is clearly an open cover of X. Hence, there is a countable subcover Vn ⊂ Un. Consider the
collection V =

⋃
n≥1 Vn, which is clearly a countable collection of open sets. Let us show that V

is a basis for the topology on (X, d). Fix some x ∈ X, and some open neighborhood x ∈ U ⊂ X.
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Then, for some n ≥ 1 we have x ∈ Bd

(
x, 1

2n

)
⊂ Bd

(
x, 1

n

)
⊂ U . Since V2n is a cover, there is

some a ∈ X such that Bd

(
a, 1

2n

)
∈ V2n and x ∈ Bd

(
a, 1

2n

)
. Now, for any y ∈ Bd

(
a, 1

2n

)
, we have

d(x, y) ≤ d(x, a) + d(a, y) <
1

2n
+

1

2n
=

1

n
⇒ y ∈ Bd

(
x,

1

n

)
⊂ U.

Thus, x ∈ Bd

(
x, 1

2n

)
⊂ U . This shows that V is a basis, proving c) ⇒ a). �

Proposition 18.5: (Compact in metric space)

A compact subset of a metric space is closed and bounded.

Proof
Let (X, d) be a metric space, and C ⊂ X is a compact subset. Since metric spaces are T2, clearly any
compact subset is closed. For any x0 ∈ C fixed, consider the open covering C ⊂

⋃
n≥1Bd(x0, n).

This admits a finite subcover, say, C ⊂
⋃k
i=1Bd(x0, ni). Taking n0 := max1≤i≤k ni, we have

C ⊂ Bd(x0, n0). Thus, C is bounded. �

Example 18.6: (Closed bounded set in metric space)

In an infinite space X, consider the metric

d(x, y) :=

0, x = y,

1, x 6= y.

The induced topology is discrete, and hence, X is not compact. But clearly X is closed in itself,
and bounded as X ⊂ Bd(x0, 2).

Lemma 18.7: (Lebesgue number lemma)

Suppose (X, d) is a compact metric space, f : X → Y is a continuous map. Let V = {Vα} be
an open cover of f(X). Then, there exists a δ > 0 (called the Lebesgue number of the covering)
such that for any set A ⊂ X, we have

Diam(A) := sup
x,y∈A

d(x, y) < δ ⇒ f(A) ⊂ Vαfor some α.

Proof
For each x ∈ X, clearly, f(x) ∈ Vαx for some αx. By continuity of f , we have some δx > 0 such
that the ball x ∈ Bd(x, δx) ⊂ f−1(Vαx). Now, X =

⋃
x∈X Bd

(
x, δx

2

)
has a finite subcover, say,

X =
⋃n
i=1Bd

(
xi,

δxi
2

)
. Set

δ := min
1≤i≤n

δxi
4
.

We claim that δ is a Lebesgue number for the covering. Let A ⊂ X be a set with Diam(A) < δ.
For some a ∈ A, there exists 1 ≤ i0 ≤ n, such that a ∈ Bd

(
xi0 ,

δxi0
2

)
. Now, for any b ∈ A, we

have d(a, b) ≤ Diam(A) < δ. Then,

d(xi0 , b) ≤ d(xi0 , a) + d(a, b) <
δxi0
2

+ δ ≤
δxi0
2

+
δxi0
4

=
3δxi0
4

< δxi0 .
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Thus, A ⊂ Bd(xi0 , δxi0 ) ⇒ f(A) ⊂ f
(
Bd

(
xi0 , δxi0

))
⊂ Vαxi0

. �

Day 19 : 21st October, 2025
T2 1

2
-space -- completely T2 space -- Arens square

19.1 T2 1
2
-space and completely Hausdorff space

Definition 19.1: (T2 1
2
-space)

A space X is called a T2 1
2
-space (or a Urysohn space) if given any two distinct points x, y ∈ X,

there exists disjoint closed neighbrohoods of them, i.e, there are closed sets A,B ⊂ X such that
x ∈ Å ⊂ A, y ∈ B̊ and A ∩B = ∅.

Remark 19.2: T2 1
2
⇒ T2

Alternatively, we can define T2 1
2
-space as follows : given any two distinct x, y ∈ X, there exists

open sets U, V ⊂ X, such that x ∈ U, y ∈ V , and Ū ∩ V̄ = ∅. Thus, it is immediate that
T2 1

2
⇒ T2.

Example 19.3: (T2 6⇒ T2 1
2
)

Let us consider the double origin plane. Let X be R2, with an additional point 0∗. For any x ∈ X

with x 6= 0, 0∗, declare the open neighborhoods of x to be the usual open sets x ∈ U ⊂ R2\{0}.
For the origin 0, declare the basic open neighborhoods

Un :=

{
(x, y) ∈ R2

∣∣∣∣ x2 + y2 <
1

n
, y > 0

}
∪ {0} , n ≥ 1,

and similarly, for 0∗, declare the basic open neighborhoods to be

Vn :=

{
(x, y) ∈ R2

∣∣∣∣ x2 + y2 <
1

n
, y < 0

}
∪ {0∗} , n ≥ 1.

It is easy to see that these basic open sets form a basis for a topology on X. With this topology,
X is called the double origin plane. It is easy to see that X is T2. But for any two open
neighborhoods of 0 and 0∗, there is always some point of the form (x, 0) with x 6= 0, which is
a limit point of both open sets. Thus, 0 and 0∗ cannot be separated by closed neighborhoods.
Hence, X is not a T2 1

2
-space.

Definition 19.4: (Completely Hausdorff space)
A space X is said to be a completely Hausdorff space (or a functionally Hausdorff space), if
given any two distinct points x, y ∈ X, there exists a continuous function f : X → [0, 1] such
that f(x) = 0 and f(y) = 1.
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Remark 19.5

Suppose, given x 6= y ∈ X, we have a continuous map f : X → R such that f(x) 6= f(y).
Without loss of generality, assume f(x) < f(y). Consider the function

g : R −→ R

t 7−→


f(x), t ≤ f(x),

t, f(x) ≤ t ≤ f(y),

f(y), f(y) ≤ t.

By the pasting lemma, g is continuous. Then, h = g ◦ f : X → [f(x), f(y)] is a continuous map.
By composing with a suitable homeomorphism [f(x), f(y)] → [0, 1], we can then get a continuous
map F : X → [0, 1] such that F (x) = 0 and F (y) = 1.

Exercise 19.6

Suppose Y is a completely T2 space. Given a space X, suppose for any x 6= y ∈ X, there
is a continuous map f : X → Y such that f(x) 6= f(y). Verify that X is completely T2. In
particular, subspaces and products of completely T2 spaces are again completely T2.

Proposition 19.7: (Metric space is completely T2)

A metrizable space X is completely T2. Consequently, given a space Y and a continuous injective
map ι : Y ↪→ X, we have X is completely T2. A space which admits a continuous injective map
into a metrizable space is called a submetrizable space.

Proof
Any metrizable space X is T2. Thus, we only need to show that it is regular. Suppose d is a metric
on X inducing the topology. Then, ε := d(x, y) 6= 0. Consider the function,

f(z) = d(x, z) + (ε− d(z, y)) , z ∈ X.

Since distance function is continuous, it follows that f : X → R is a continuous function. Also,
f(y) = 2ε 6= 0 = f(x). But then we can get a continuous map h : X → [0, 1] such that h(x) = 0

and h(y) = 1. Thus, X is completely T2. �

Proposition 19.8: (Completely T2-spaces are T2 1
2
)

A completely T2-space is T2 1
2
.

Proof
Let X be completely T2. For any distinct x, y ∈ X, get a continuous function f : X → [0, 1] such
that f(x) = 0, f(y) = 1. Then, consider the closed sets A := f−1([0, 1

4
]), B := f−1([3

4
, 1]), which

are clearly disjoint. Also, x ∈ f−1
([

0,
1

4

))
︸ ︷︷ ︸

open in X

⊂ A, and so, x ∈ Å. Similarly, y ∈ B̊. Thus, X is a

T2 1
2
-space. �
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Example 19.9: (Arens square)

Consider Q := (0, 1) ∩ Q, and let Q = tq∈QQq be a disjoint union of dense subsets Qq ⊂ Q,
indexed by q ∈ Q. As an explicit example, index each prime number as {pq | q ∈ Q}, and then
consider

Qq =

{
a

piq

∣∣∣∣ 1 ≤ a ≤ piq, gcd(a, pq) = 1, i ≥ 1

}
.

Clearly, Qq is dense in Q, and they are disjoint. Now, consider A = Q \
⋃
q∈QQq. Just modify,

say, Q′1
2

= Q 1
2
∪ A. We still have disjoint dense sets.

Let us now consider the set

X = {(0, 0), (1, 0)} ∪
⋃
q∈Q

{q} ×Qq ⊂ R2

(
1
2
, r
)Wn

Un Vn

(1, 0)(0, 0) 1
4

1
2

3
4

Let us topologize X by declaring basic open neighborhoods for each point.

• For (0, 0), declare basic open neighborhoods as the collection

Un := {(0, 0)} ∪
{
(x, y) ∈ X

∣∣∣∣ 0 < x <
1

4
, 0 < y <

1

n

}
, n ≥ 1

• For (1, 0), declare basic open neighborhoods as the collection

Vn := {(1, 0)} ∪
{
(x, y) ∈ X

∣∣∣∣ 34 < x < 1, 0 < y <
1

n

}
, n ≥ 1

• For any
(
1
2
, r
)
∈ 1

2
×Q 1

2
, , declare basic open neighborhoods as the collection

Wn(r) :=

{
(x, y)

∣∣∣∣ 14 < x <
3

4
, |y − r| < 1

n

}
, n ≥ 1.

• Let X \ {(0, 0), (1, 0)} ∪
{

1
2

}
×Q 1

2
inherit the usual subspace topology from R2.

These neighborhoods form a basis for a topology on X. This space is called the Arens square.

Proposition 19.10: (T2 1
2
6⇒ Completly T2 : Arens square space)

Arens square is T2 1
2
-space, but not completely T2.
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Proof
Let us consider the points a = (0, 0) and some b =

(
1
2
, r
)
. Fix some m,n ≥ 1 such 0 < 2

m
<

r − 1
n
< r + 1

n
< 1. Then, it is easy to see that Um ∩Wn = ∅. Similar argument can be applied

to b and a′ = (1, 0). For any point c = (q, s) with q 6= 1
2
, observe that the y-coordinate s cannot

be repeated as
(
1
2
, s
)
, since we started with a disjoint partition. Thus, using the denseness, we can

again get some closed neighborhoods. Hence, the Arens square is a T2 1
2
-space.

Let us show that it is not completely T2. If possible, suppose f : X → [0, 1] is a continuous map,
where X is the Arens square, such that f(0, 0) = 0 and f(1, 0) = 1. Since f is continuous, we
must have some m,n ≥ 1 such that

(0, 0) ∈ Un ⊂ f−1
[
0,

1

4

)
, (1, 0) ∈ Vm ⊂ f−1

(
3

4
, 1

]
.

Let us fix some r ∈ Q 1
2
, with r < min

{
1
n
, 1
m

}
. This is possible since Q 1

2
is dense in Q. Now,

f
(
1
2
, r
)

cannot be in both
[
0, 1

4

)
and

(
3
4
, 1
]
. Without loss of generality, we can assume that exists

some open interval U ⊂ [0, 1] such that

f

(
1

2
, r

)
∈ U,

[
0,

1

4

]
∩ Ū = ∅.

Then, the pre-images f−1
[
0, 1

4

]
and f−1Ū are disjoint closed neighborhoods of (0, 0) and

(
1
2
, r
)

respectively. Now, Un ⊂ f−1
[
0, 1

4

)
⊂ f−1

[
0, 1

4

]
. Since r < 1

n
, it follows (Check!) that Un∩Wk 6= ∅

for any k ≥ 1. This contradicts f−1
[
0, 1

4

]
∩ Ū = ∅. Hence, the Arens quare is not completely T2.

�

Remark 19.11: (Totally disconnected spaces may not be completely T2)

It is easy to see that Q, which is a totally disconnected set, is completetly T2. Indeed, for any
r, s ∈ Q, with r < s, get some irrational r < x < s. Then,

f(t) =

0, t < x

1, x < t,

is a continuous function, with f(r) = 0, f(s) = 1. But in general, a totally disconnected space
need not be completely T2.
Indeed, we have seen that the Arens square X is not completely T2. Let us show that it is totally
disconnected. Firstly, observe that the second component projection π : X → [0, 1] ∩ Q is a
continuous map (but the first component projection is not continuous). Now, any two points of
X cannot share the same second component, and thus π is injective. Hence, if a connected set
A ⊂ X contains more than one point, π(A) will be a connected set of [0, 1] ∩Q, with more than
one point, a contradiction. Thus, X is totally disconnected.

Day 20 : 23rd October, 2025
regular space -- T3 space -- half-disc topology -- Tychonoff plank -- Tychonoff
corkscrew
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20.1 Regular space and T3-space

Definition 20.1: (Regular space)
A space X is called regular if given any closed set A ⊂ X and any point x ∈ X \A, there exists
open sets U, V ⊂ X such that

x ∈ U, A ⊂ V, U ∩ V = ∅.

Proposition 20.2: (Regularity via closed neighborhood base)

Given a space X, the following are equivalent.

a) X is regular.

b) Given any x ∈ X and open neighborhood x ∈ U ⊂ X, there exists a closed neighborhood
x ∈ C̊ ⊂ C ⊂ U .

c) Given any x ∈ X and open neighborhood x ∈ U ⊂ X, there exists an open neighborhood
x ∈ V ⊂ V̄ ⊂ U .

In other words, regularity is equivalent to the fact that closed neighborhoods of any point forms
a local base at that point.

Proof
Suppose X is regular. Let x ∈ U ⊂ X be an open neighborhood. Then A = X \U is a closed set,
and x 6∈ A. By regularity, there are open sets P,Q ⊂ X such that

x ∈ P, A ⊂ Q, P ∩Q = ∅.

Note that
P ∩Q = ∅ ⇒ P ⊂ X \Q⇒ P̄ ⊂ X \Q = X \Q ⊂ X \ A = U.

Thus, we have a closed neighborhood x ∈ P ⊂ P̄ ⊂ U . This proves a) ⇒ b).
Let us show b) ⇒ c). Suppose x ∈ U ⊂ X is given. Then, by b), we have some closed neighborhood
x ∈ C̊ ⊂ C ⊂ U . But then taking V = C̊, we have x ∈ V ⊂ V̄ ⊂ C̄ = C ⊂ U . This proves b) ⇒
c).
Finally, suppose c) holds. Let A ⊂ X be closed, and x 6∈ A be a point. Then, x ∈ U := X \A. By
c), there is an open neighborhood such that x ∈ V ⊂ V̄ ⊂ U . Consider P = V and Q = X \ V̄ .
Then, x ∈ V = P , and A = X \U ⊂ X \ V̄ = Q. Clearly, P ∩Q = ∅. Thus, X is regular, proving
a). �

Definition 20.3: (T3-space)
A space X is called a T3-space if X is regular and T0.

Example 20.4: (Regularity does not imply T3)

Consider X = {0, 1} with the indiscrete topology. Then, X is a regular space (in fact any
indiscrete space is regular). But X is not T0. Thus, X is not T3.
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Proposition 20.5: (T3 is equivalent to regular, T2)

A space X is T3 if and only if it is regular, T2.

Proof
Suppose X is regular, T2. Since T2 ⇒ T0, we have X is T3. Conversely, suppose X is T3. Let
us show that X is T2. Let x 6= y ∈ X. Since X is T0, there is an open set U ⊂ X, such that,
without loss of generality, x ∈ U and y 6∈ U . Then, there is an open neighborhood such that
x ∈ V ⊂ V̄ ⊂ U . Take W := X \ V̄ . Then, y ∈ X \U ⊂ X \ V̄ = W . Clearly, V ∩W = ∅. Thus,
X is T2. �

Proposition 20.6: (T3 ⇒ T2 1
2
)

A T3-space is T2 1
2
.

Proof
Let x 6= y ∈ X. Since X is T2, we have open sets U, V ⊂ X such that

x ∈ U, y ∈ V, U ∩ V = ∅.

But then there are open sets A,B ⊂ X such that x ∈ A ⊂ Ā ⊂ U and y ∈ B ⊂ B̄ ⊂ V . Clearly,
Ā ∩ B̄ = ∅. Thus, X is T2 1

2
. �

Example 20.7: (T2 1
2
6⇒ T3 : Arens square is T2 1

2
, but not regular)

Recall that the Arens square X is a T2 1
2
-space. Let us show that X is not regular. For the

point (0, 0), consider an open neighborhood Un. But then for any basic open neighborhood
(0, 0) ∈ Um ⊂ Un, we must have that Um contains points with y-coordinate value 1

4
. Thus,

Um 6⊂ Un. This means that the closed neighborhoods at (0, 0) does not form a local base.
Hence, X is not regular.

Exercise 20.8

Check that the double origin plane is not T3.

Example 20.9: (Half-disc topology)

Consider the upper half plane H = {(x, y) | y > 0} and the x-axis L = {(x, 0) | x ∈ R}. On
the set X := H ∪ L, consider the following topology.

• For any (x, y) ∈ H, consider the usual neighborhoods from R2 as the neighborhood basis.

• For (x, 0) ∈ L, consider the open neighborhoods as {x} ∪ (H ∩ U), where U ⊂ R2 is a
usual open neighborhood of (x, 0).

H

L
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This space X is called the half-disc topology .

Proposition 20.10: (Completely T2 6⇒ Regular : Half-disc topology)

The half-disc topology X is completely T2, but not regular.

Proof
Observe that the inclusion map ι : X ↪→ R2 is continuous. Since R2 is a metric space, it is
completely T2. Consequently, it follows that X is again completely T2. Indeed, for any x 6= y ∈ X,
we have g : R2 → [0, 1] continuous such that f(x) = 0 and f(y) = 1. Then, f := g◦ι : X → [0, 1]

gives a functional separation.
Let us now show that X is not regular (and hence not T3 either). For any point (x, 0) ∈ L, consider
the half disc D = H ∩B ((x, 0), ε) of radius ε > 0 and center (x, 0). Then, U = {(x, 0)}∪D is an
open set. These open sets clearly form a neighborhood basis at (x, 0). Observe that

∫
Ū contains

all the points on the diameter of the half disc. Hence, we cannot find neighborhood basis of regular
open sets at (x, 0) (recall : an open set O is regular if int(Ō) = O). Thus, the half-disc topology
is not regular. �

Example 20.11: (Tychonoff Plank)

Recall the first infinite ordinal ω and the first uncountable ordinal SΩ. We get the well-ordered
“intervals” [0, ω] (which you can think of as {0, 1, 2, . . . , ω}), and [0,Ω] (which you can think
of as SΩ = SΩ ∪ {Ω}). These are topological spaces equipped with the order topology, and in
particular, they are compact. The Tychonoff plank is the product [0,Ω]× [0, ω]. You can imagine
this as the first quadrant of a coordinate grid : the x-axis corresponds to the first uncountable
ordinal, whereas the y-axis corresponds to the first infinite ordinal. The deleted Tychonoff plank
is the space [0,Ω]× [0, ω] \ {(Ω, ω)}

Example 20.12: (Corkscrew construction)

For the ordinal ω or Ω, we have the totally ordered sets

Aω := [−0,−1, . . . , ω, . . . , 1, 0], AΩ := [−0,−1, . . . ,−ω, . . . ,Ω, . . . , ω, . . . , 1, 0],

equipped with the order topology. Here, the negative of an element is a new element (so, −0

and 0 different!). Taking product, we get a “coordinate plane”, with all four quadrants a copy
of Tychonoff plank.

(Ω, ω) (0, ω)

(Ω, 0)

(Ω,−0)

(−0, ω)

(0, 0)

(0,−0)(−0,−0)

(−0, 0)

1st2nd

3rd 4th
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Delete the “origin” (Ω, ω). Now, take countable infinitely many copies of these planes (indexed
by Z), and stack them vertically. Next, cut all the planes along the positive x-axis. Then, along
the cut, identify the north edge of the fourth quadrant of one plane to the south edge of the first
quadrant of the plane just below. This is an identification space; since the origin was removed
from all the planes, there is no issue about well-definedness.

This construction can be formalized as follows. For each k ∈ Z, consider the following spaces

T 1
k = ([Ω, 0]× [ω, 0] \ {(Ω, ω)})× {k}, T 2

k = ([−0,Ω]× [ω, 0] \ {(Ω, ω)})× {k},
T 3
k = ([−0,Ω]× [−0, ω] \ {(Ω, ω)})× {k}, T 4

k = ([Ω, 0]× [−0, ω] \ {(Ω, ω)})× {k}.

These are copies of the deleted Tychonoff planks, representing the four quadrants at the kth-
stage. Let us identify the edges to make the corkscrew (see the picture above). We consider the
set X =

⋃
k∈Z (T

1
k ∪ T 2

k ∪ T 3
k ∪ T 4

k ), and on it define an equivalence relation as follows. For any
x ∈ X, set x ∼ x. Then, for each k ∈ Z, consider the following collection of relations (and their
reverse, to make it symmetric).

i) x ∼ y for x = (Ω, n, k) ∈ T 1
k and y = (Ω, n, k) ∈ T 2

k (identify the west-side of the first
quadrant T 1

k with the east-side of the second quadrant T 2
k , along the positive y-axis).

ii) x ∼ y for x = (−α, ω, k) ∈ T 2
k and y = (−α, ω, k) ∈ T 3

k (identify the south-side of the
second quadrant T 2

k with the north-side of the third quadrant T 3
k , along the negative

x-axis).

iii) x ∼ y for x = (Ω,−n, k) ∈ T 3
k and y = (Ω,−n, k) ∈ T 4

k (identify the east-side of
the third quadrant T 3

k with the west-side of the fourth quadrant T 4
k , along the negative

y-axis).

iv) x ∼ y for x = (α, ω, k) ∈ T 4
k and y = (α, ω, k − 1) ∈ T 1

k−1 (identify the north-side of
the fourth quadrant T 4

k with the south-side first quadrant T 1
k−1 of the plane below,

along the positive x-axis).

The quotient space X/∼ looks like a corkscrew. This construction can be performed with other
‘coordinate plane’ whenever it makes sense!
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Example 20.13: (Tychonoff Corkscrew)

Before performing the corkscrew construction as above with the Tychonoff planks, let us now
add two extra points {α±}, and consider the space

Z = {α+, α−} ∪
⋃
k∈Z

(
T 1
k ∪ T 2

k ∪ T 3
k ∪ T 4

k

)
.

The topology on Z is defined as follows. For any point (±α,±n, k), an open neighborhood
basis is obtained from the induced topology of the deleted Tychonoff plank. Thus, basic open
neighborhoods are products of intervals. For the point α+, a basic open neighborhood consist
of all of

⋃
k>i (T

1
k ∪ T 2

k ∪ T 3
k ∪ T 4

k ) for some i ∈ Z, i.e, everything above ith-stage. Similarly,
for α−, open neighborhoods consist of all of

⋃
k<i (T

1
k ∪ T 2

k ∪ T 3
k ∪ T 4

k ) for some i ∈ Z, i.e,
everything below ith-stage. It is easy to see that these collections of neighborhood bases forms a
basis for a topology on Z. Let us now perform the identification as above, the points {α±} are
identified only to themselves,i.e, α+ ∼ α+, α− ∼ α−, and no other point. The quotient space
Z/∼ is called the Tychonoff corkscrew .

Day 21 : 24th October, 2025
Tychonoff corkscrew property -- completely regular space

21.1 Regular space and T3 space (cont.)

Proposition 21.1: (Continuous map from SΩ is eventually constant)

Given any continuous map f : SΩ → R, there exists some α ∈ SΩ such that f(x) = c for all
x ≥ α. Consequently, f can only have countably many distinct values.

Proof
If possible, suppose there exists some ε > 0 such that for any α ∈ SΩ there exists some β(α) > α

with |f(α)− f(β)| ≥ ε. Otherwise, for each n ≥ 1, there exists some αn such that for all β > αn,
we have |f(β)− f(αn)| < 1

n
. If the sequence {αn} is finite (i.e, there are finitely many points),

then just take θ = maxαn. It follows that for any β > θ, we have |f(β)− f(θ)| < 1
n

for all n. In
particular, f(β) = f(θ) for all b > θ, proving the claim. If the sequence is not finite, without loss
of generality, assume α1 < α2 < . . . . Now, recall that [0,Ω) is sequentially convergent. Hence,
without loss of generality, the sequence {αn} converges to some θ ∈ [0,Ω), and θ ≥ αi for all i.
Then, by continuity of f we have f(θ) = limn f(αn). Now, for any β > θ, we have

|f(β)− f(θ)| ≤ |f(β)− f(αn)|+ |f(αn)− f(θ)| → 0, n→ ∞.

Thus, f(β) = f(θ) for any β > θ, again proving the claim.

Thus, let us now assume that there exists some ε > 0 such that for any α ∈ SΩ there exists
some β(α) > α with |f(α)− f(β)| ≥ ε. Starting with α0 = 0, we can construct an increasing
sequence α0 < α1 < . . . , where each αj is inductively obtained as some β(αj−1). Now, {αj} is a
countable set, and hence, upper bounded. Suppose θ ∈ SΩ is the least upper bound of {αj}. Now,
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by continuity, we have some δ < θ such that

f ((δ, θ]) ⊂
(
f(θ)− ε

2
, f(θ) +

ε

2

)
.

Since θ is the least upper bound of the strictly increasing sequence αj, there exists some δ < αj0 ≤
θ. Now, for αj < αj+1 ≤ θ. But then, |f(αj+1)− f(αj)| < ε, a contradiction.
Hence, we have that there is some α ∈ SΩ such that f(x) is constant for all x ≥ α. �

Proposition 21.2: (T3 6⇒ Completely T2 : Tychonoff Corkscrew)

The Tychonoff corkscrew is T3, but not completely T2.

Proof
For any point other than α±, one can easily construct a basis of open sets which are regular (i.e,
int(Ō) = O). Indeed, if the point is not on any of the “slits”, we can take product of intervals.
For a point on the slit, we might need to take the intervals in two different planks, but we can
still get a basis of regular open sets. For α+, the image of the basic open neighborhoods are
open (Check!), and they are clearly regular open sets. Similar argument works for α−. Thus, the
Tychonoff corkscrew is a regular space. In fact, it is T0 as every point is closed, and hence, T3.

Let us now show that the space is not completely T2. Suppose f is a real-valued continuous
function. Observe that for n 6= 0, on each of the horizontal lines AΩ × {n} × {k}, the function
f is constant on an interval of the form [−α, α] about Ω. Same argument works for the x-axis as
well, and we get a deleted neighborhood about {(Ω, ω, k)} where f is constant. Now, there are
countable infinitely many such intervals, on each of which f is constant. Indeed, on each stage,
there are countable infinitely many horizontal lines (counting two lines for the x-axis), and there
are countable infinitely many stages (the positive x-axes are getting counted twice, which is not
an issue). Again, using the well-ordering, we can get a common α such that f is constant on each
of the [−α, α]× {±n} × {k} and on ([−α, α]× {ω} \ {(Ω, ω)})× {k}, for all k ∈ Z.

Fix some −β ∈ [−α,Ω), and the corresponding β ∈ (Ω, α]. Then, denote the same points (i.e,
their equivalence classes) in different stages as

−βk = (−β, ω, k) , βk = (β, ω, k) .

Next, get the sequences

−βk±n = (−β,±n, k) , βk±n = (β,±n, k) .

Clearly, as ±n→ ω, we have

−βk±n → −βk, βkn → βk, βk−n → βk−1,

where the last convergence follows since the north edge of the fourth quadrant is identified with
the south edge of the first quadrant of the stage just below! Now, f

(
−βk±n

)
= f

(
βk±n
)
. Hence,

by continuity,
f(−βk) = lim f

(
−βkn

)
= lim f

(
βkn
)
= f(βk),

and also,
f(−βk) = lim f

(
−βk−n

)
= lim f

(
βk−n
)
= f

(
βk−1

)
.
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But then, inductively we see that f(±βk) are all constant. This implies that f is constant on the
union of deleted intervals

I =
⋃
k∈Z

([−α, α]× {ω} \ {(Ω, ω)})× {k} .

We can now get a sequence {ai}∞i=−∞ ∈ I (in fact, taking a±i = ±βi will do) such that limi→∞ ai =

α+ and limi→−∞ ai = α−. This follows since the basic open neighborhoods of {αpm} contains all
the stages after (resp. below) a certain ‘height’. By continuity of f , we have f(α+) = f(α−).
Thus, Tychonoff corkscrew is not functionally T2, as no continuous function is able to distinguish
the points α±. �

21.2 Completely regular space

Definition 21.3: (Completely regular space)
A space X is called a completely regular space if given any closed set A ⊂ X and a point
x ∈ X \A, there exists a continuous function f : X → [0, 1] such that f(x) = 0 and f(A) = 1.

Remark 21.4

It is immediate that a completely regular space is regular.

Definition 21.5: (T3 1
2
-space)

A space X is called a T3 1
2
-space (or a Tychonoff space) if it is completely regular, and T0.

Remark 21.6

It is immediate that a T3 1
2
-space is completely T2, and hence, T2 1

2
. Also, T3 1

2
⇒ T3 is clear as well.

Moreover, one can check that a completely regular space is T3 1
2

if and only if it is T2. Thus, one
can define T3 1

2
-space as a completely regular, Hausdorff space.

Proposition 21.7: (Metrizable ⇒ Tychonoff)

Metrizable spaces are Tychonoff.

Proof
Say (X, d) is a metric space. Let A ⊂ X be closed, and p ∈ X \ A be a point. Consider the map

f(x) :=
d(p, x)

d(p, x) + d(A, x)
, x ∈ X.

It is easy to see that f : X → R is continuous, and f(p) = 0, f(A) = 1. Thus, X is completely
regular, and hence, Tychonoff. �

Proposition 21.8: (T3 6⇒ T3 1
2

: Tychonoff corkscrew)

The Tychonoff corkscrew X is T3 but not T3 1
2
.
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Proof
We have seen that X is T3 but not completely T2. Since T3 1

2
implies completely T2, it follows that

X is not T3 1
2
. �

Proposition 21.9: (Completely T2 6⇒ T3 1
2

: Half-disc topology)

The half-disc topology X is a completely T2 space, which is not T3 1
2
.

Proof
We have seen X is completely T2 (as it was submetrizable), but not regular (in fact not even
semiregular). Hence, X cannot be T3 1

2
. �

Day 22 : 29th October, 2025
normal space -- Urysohn's lemma

22.1 Normal space

Definition 22.1: (Normal space)
A space X is called a normal space if given any two disjoint closed sets A,B ⊂ X, there exists
disjoing open sets separting them, i.e, there are open sets U, V ⊂ X such that A ⊂ U,B ⊂ V

and U ∩ V = ∅

Remark 22.2: (Normal 6⇒ Regular)

Consider the space X = {−1, 0, 1}, with the topology T = {∅, X, {−1} , {1} , {−1, 1}}. This
space is the excluded point topology on the three point set. It is easy to see that X is normal, since
there are no disjoint nonempty closed sets! Indeed, the closed sets are {∅, X, {0} , {0, 1} , {0,−1}}.
Now, consider A = {0, 1} and the point x = −1 ∈ X \ A. If possible, suppose f : X → [0, 1]

is a continuous map, with f(x) = 0 and f(A) = 1. But then, A = f−1
(
1
2
, 1
]

must be open, a
contradiction. Thus, X is not completely regular. In fact, X is not regular either : 1 ∈ {−1, 1},
but {1} = X, which implies that we can not find any open U such that 1 ∈ U ⊂ Ū ⊂ {−1, 1}.

Proposition 22.3: (Normality by closed neighborhood)

X is normal if and only if given any closed set A and an open set U ⊂ X, with A ⊂ U , there
exists an open set V ⊂ X such that A ⊂ V ⊂ V̄ ⊂ U .

Proof
Suppose X is normal. Let A ⊂ X be closed and U ⊂ X be open, with A ⊂ U . Then, B = X \U
is a closed set, disjoint from A. We have open sets P,Q ⊂ X such that A ⊂ P,B ⊂ Q and
P ∩Q = ∅. Note that

P ⊂ X \Q⇒ P̄ ⊂ X \Q = X \Q ⊂ X \B = U.

That is, we have A ⊂ P ⊂ P̄ ⊂ U .

77



Conversely, suppose for any closed A and open U , with A ⊂ U , we have some open V such that
A ⊂ V ⊂ V̄ ⊂ U . Let A,B be disjoint closed sets. Then, A ⊂ X \ B, which is open. Get
open set U such that A ⊂ U ⊂ Ū ⊂ X \ B. Let us take V := X \ U , which is open. Then,
Ū ⊂ X \B ⇒ B ⊂ X \ Ū = V . Clearly, U ∩ V ⊂ Ū ∩ V = ∅ ⇒ U ∩ V = ∅. Thus, X is a normal
space. �

Exercise 22.4: (Normality is equivalent to separation by closed neighborhoods)

Check that a space X is normal if and only if for any closed sets A,B ⊂ X with A ∩ B, there
are closed sets P,Q ⊂ X such that A ⊂ P̊ ⊂ P,B ⊂ Q̊ ⊂ Q and P ∩Q = ∅.

Theorem 22.5: (Urysohn’s Lemma)

A space X is normal if and only if given disjoint closed sets A,B ⊂ X, there exists a continuous
function f : X → [0, 1] such that f(A) = 0 and f(B) = 1.

Proof
Let X be a normal space. Fix two closed sets A,B ⊂ X with A ∩B = ∅.

Step 1: Let us consider the dyadic rationals D =
{
m
2n

∣∣ m,n ≥ 0, m odd
}
∩ (0, 1) in [0, 1]. For

each r ∈ D, using the normality, we shall inductively construct an open set Ur ⊂ X and a closed
Vr ⊂ X, satisfying the following.

i) A ⊂ Ur and Vr ⊂ X \B for all r ∈ D.

ii) Ur ⊂ Vr for all r ∈ D.

iii) Vr ⊂ Us whenever r < s in D.

Here are the first few steps of the induction.

A ⊂ Bc

A ⊂ U 1
2

⊂ V 1
2

⊂ Bc

A ⊂ U 1
4

⊂ V 1
4

⊂ U 1
2

⊂ V 1
2

⊂ U 3
4

⊂ V 3
4

⊂ Bc

Let us describe this formally. We induct over n ≥ 1 where n appears as the exponent of 2 in m
2n

∈ D,
where 1 ≤ m < 2k+1 are odd numbers. For notational convenience, let us denote U1 = Bc and
V0 = A.

Base case n = 1: We just have one value 1
2

in this case. Since A ⊂ Bc, by normality, we
have an open set U 1

2
and a closed set V 1

2
= U 1

2
such that A ⊂ U 1

2
⊂ V 1

2
.

Inductive assumption n = k: Suppose, we for some k ≥ 1, we have constructed the open
and closed sets for all m

2l
∈ D with l ≤ k.

Induction step n = k + 1: We need to get the sets labeled by
{

1
2k+1 ,

3
2k+1 , . . . ,

2k+1−1
2k+1

}
. But

these appear in the middle of two sets already defined. As an example, for any 1 ≤ m =
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2l + 1 < 2k+1, we already have defined Vm−1

2k+1
= V l

2k
⊂ U l+1

2k
= U m+1

2k+1
(after reducing the

fractions l
2k

and l
2k

as needed, and noting, V0 = A,U1 = B are the edge cases). Using
normality, we get open and closed sets satisfying Vm−1

2k+1
⊂ U m

2k+1
⊂ V m

2k+1
⊂ U m

2k+1
.

Since every dyadic rational appears like this, we can construct the collection {Ur, Vr}r∈D with the
desired properties.

Step 2: Let us now define a function f : X → [0, 1] as follows.

a) Set f(x) = 1 if x 6∈ Ur for all r ∈ D.

b) For any other x, define
f(x) = inf {r ∈ D | x ∈ Ur} .

In particular, since A ⊂ Ur for all r, we see that f(x) = 0 for x ∈ A. Similarly, as
Ur ⊂ Vr ⊂ X \B ⇒ B ⊂ X \ Ur for all r, we see that f(x) = 1 for x ∈ B. Thus, f satisfies the
desired properties. We need to show that f is continuous.

Step 3: Let us prove the continuity of the function defined in the previous step. We consider three
cases.

a) Suppose f(x) = 0. If possible, suppose x 6∈ Ur0 for some r0 ∈ D. Then, for any r ∈ D

with 0 < r < r0, we must have x 6∈ Ur, as we have Ur ⊂ Vr ⊂ Ur0 . But this means
f(x) = inf {r ∈ D | x ∈ Ur} ≥ r0 > 0, a contradiction. Thus, f(x) = 0 ⇒ x ∈ Ur for all
r ∈ D. Now, for any open set [0, ε) ⊂ [0, 1], we have some r ∈ D ∩ (0, ε). Then, for any
y ∈ Ur, we have f(x) ≤ r < ε. In other words, x ∈ Ur ⊂ f−1[0, ε). Thus, f is continuous
at x whenever f(x) = 0.

b) Suppose f(x) = 1. If possible, suppose x ∈ Vr0 for some r0 ∈ D. But then, x ∈ Ur
for any r ∈ D with r0 < r, and hence, f(x) ≤ r0 < 1, a contradiction. Thus, we have
f(x) = 1 ⇒ x 6∈ Vr for all r ∈ D. Now, for any open set (1− ε, 1] ⊂ [0, 1], we have some
s ∈ D with 1− ε < s < 1. Consider the open set W = X \ Vs. Clearly, x ∈ W . Then, for
any r < s in D, we have Ur ⊂ Vr ⊂ Us ⊂ Vs. Thus, it follows that for any y 6∈ Vs ⇒ y 6 Us
we have f(y) ≥ r > 1− ε. In other words, x ∈ W ⊂ f−1(1− ε, 1]. Thus, f is continuous
at x whenever f(x) = 1.

c) Finally, suppose 0 < f(x) < 1. Set δ := f(x), and get an open set (δ − ε, δ + ε) ⊂
(0, 1) ⊂ [0, 1]. Next, get r1, r2 ∈ D satisfying δ − ε < r1 < δ < r2 < δ + ε. Since D is
dense in (0, 1), this is always possible. Consider the open set W = Ur2 \ Vr1 . Note that
f(x) = δ < r2 ⇒ x ∈ Ur2 . Also, for any r ∈ D with r1 < r < δ, we have Vr1 ⊂ Ur. Thus,
x ∈ Vr1 ⇒ y ∈ Ur ⇒ f(y) ≤ r < δ, a contradiction. Thus, x ∈ W . Now, for any r < r1,
we have Ur ⊂ Vr1 , and thus, y ∈ W ⇒ f(y) ≥ r1. Also, y ∈ W ⊂ Ur2 ⇒ f(y) ≤ r2.
Thus, for any y ∈ W we have f(y) ∈ [r1, r2] ⊂ (δ − ε, δ + ε). In other words, x ∈ W ⊂
f−1(δ − ε, δ + ε). Thus, f is continuous at x whenever 0 < f(x) < 1.

Hence, we have proved that f : X → [0, 1] is a continuous map. This concludes the theorem. �
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Remark 22.6: (Onion Lemma!)

The construction in Uryshon’s lemma has a resemblance of peeling an onion layer by layer: the
space X is the onion, and any Ur \ Vs for s < r behaves like a layer. The function constructed in
the lemma is called the Urysohn’s function (for the sets A,B).

Day 23 : 30th October, 2025
T4-space -- completely normal space -- T5-space -- perfectly normal space --
T6-space

23.1 T4-space

Definition 23.1: (T4-space)
A space X is called a T4-space if it is normal and T1.

Remark 23.2: (Normal + T0 is not T4)

As normal spaces are regular, T4 ⇒ T3. The excluded point topology on the three point set is
normal, but not even T1 (and hence, not T2, T3, T4 either).

Proposition 23.3: (T4 ⇒ T3 1
2
)

Any T4 space X is also a T3 1
2
.

Proof
Let A ⊂ X be a closed set, and x ∈ X \A. Since X is T1, we have {x} is closed as well. Since X
is normal, by Urysohn’s lemma, there is a continuous function f : X → [0, 1] such that f(x) = 0

and f(A) = 1. But this means that X is completley regular. As X is T0, we have X is T3 1
2
. �

Proposition 23.4: (Compact + T2 ⇒ T4)

A compact T2 space X is T4.

Proof
Let A,B ⊂ X be disjoint closed sets. Fix some a ∈ A. Then, for each b ∈ B, there are open
sets Ua,b, Va,b such that a ∈ Ua,b, b ∈ Va,b and Ua,b ∩ Va,b. Since B is closed in a compact space,
B is compact. Thus, the cover B ⊂

⋃
b∈B Va,b has finite subcover B ⊂ Va :=

⋃k
i=1 Va,bi . Then,

Ua :=
⋂k
i=1 Ua,bi is an open set, with a ∈ Ua. Clearly, Ua ∩ Va = ∅. Now, we have a cover

A ⊂
⋃
a∈A Ua, which again admits a finite subcover A ⊂ U :=

⋃l
i=1 Uai . We have an open set

V :=
⋂l
i=1 Vai . Clearly, B ⊂ V and U ∩ V = ∅. Thus, we have that X is normal. Since X is T2,

we get X is T4. �

Proposition 23.5: (Metrizable ⇒ T4)

Metrizable spaces are T4.
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Proof
Fix a metric space (X, d). Let A,B ⊂ X be disjoint closed sets. For each a ∈ A, fix ra :=
1
3
d(a,B) > 0, and for each b ∈ B, fix sb := 1

3
d(b, A). Consider the open sets

U :=
⋃
a∈A

Bd (a, ra) , V :=
⋃
b∈B

Bd (b, sb) .

Clearly, A ⊂ U and B ⊂ V . If possible, suppose z ∈ U ∩ V . Then, for some a ∈ A and b ∈ B, we
have

d(a, z) < ra, d(b, z) < sb.

Without loss of generality, assume sb ≤ ra. Then,

3ra = d(a,B) ≤ d(a, b) ≤ d(a, z) + d(z, b) < ra + sb ≤ ra + ra = 2ra,

a contradiction. Thus, U ∩ V = ∅. Hence, X is normal. As X is T2, we have X is T4. �

Proposition 23.6: (T3 1
2
6⇒ T4 : Deleted Tychonoff plank)

The deleted Tychonoff plank X := [0,Ω]× [0, ω] \ {(Ω, ω)} is a T3 1
2

space, which is not T4.

Proof
Recall that the ordinal spaces [0,Ω] and [0, ω] are compact, T2, and hence, so is their product
T = [0,Ω]×[0, ω]. Thus, the Tychonoff plane T is T4 and in particular, T3 1

2
. Since being completely

regular is hereditary (Check!), the subspace X ⊂ T is T3 1
2
.

Let us show that X is not normal. Consider the sets A = [0,Ω) × {ω} and B = {Ω} × [0, ω),
which are closed in the subspace topology of X. If possible, suppose there are open sets U, V ⊂ X

such that A ⊂ U,B ⊂ V and U ∩ V = ∅. Then, for each 0 ≤ n < ω, there is some 0 ≤ αn < Ω

such that (αn,Ω]×{n} ⊂ B. Now {αn}n ⊂ [0,Ω) is a countable set, and hence, there is an upper
bound β ∈ [0,Ω). Then, we have the (open) set

(β,Ω]× [0, ω) =
⋃

0≤n<ω

(β,Ω]× {n} ⊂
⋃

0≤n<ω

(αn,Ω]× {n} ⊂ V.

Now, the basic open sets of (β+1, ω) ∈ A are of the form (γ, δ)× (n, ω), where β+1 ∈ (γ, δ) ⊂
[0,Ω) is an open interval. In particular, any open neighborhood of (β + 1, ω) will contain the
set {β + 1} × [n, ω) for some n large. Consequently, any open set containing (b + 1, ω) (and in
particular, the open set U) will intersect the set V . This is a contradiction to U ∩ V = ∅. Thus,
X is not normal, and hence, not T4. �

Remark 23.7: (Separation axioms implications)

Let us summarize all the observations about separation axioms so far.

81



Normal: Separating
two closed sets by

open neighborhoods

Regular: Separat-
ing a point and a
closed set by open

neighborhoods

T2: Separating two
points by open
neighborhoods

Separating
two closed

sets by closed
neighborhoods

Separating a
point and a closed

set by closed
neighborhoods

T2 1
2
: Separating two

points by closed
neighborhoods

Separating two
closed sets
by function

Completely
regular: Separating

a point and
a closed set
by function

Completely T2:
Separating two

points by function

D
ou

bl
e

or
ig

in
pl

an
e

Ar
en

s
sq

ua
re

Arens
square

+T0

+T0

Arens square

Ty
ch

on
off

co
rk

sc
re

w

+T0

Half-disc
topology

Half-disc topology
+T1

Tychonoff
corkscrew

Ur
ys

oh
n

lem
m

a Deleted Ty-

chonoff plank
+T1

+T1

23.2 Completely normal and T5-spaces

Definition 23.8: (Completely normal space)
A normal space is called a completely normal space (or hereditarily normal space) if every
subspace is again a normal space.

Proposition 23.9

Given a space X, the following are equivalent.

a) X is completely normal.

b) Every open subset of X is normal.

c) Given any two subsets A,B ⊂ X, with Ā ∩ B = ∅ = A ∩ B̄, there are open sets
U, V ⊂ X such that A ⊂ U,B ⊂ V and U ∩ V = ∅.

Proof
Suppose X is completely normal. Then, clearly any open set of X is again normal. Conversely,
suppose every open set of X is normal. Let Y ⊂ X be arbitrary subspace, and let A,B ⊂ Y be
closed sets with A∩B = ∅. Note that A = A

Y
= Y ∩ Ā and B = B

Y
= Y ∩ B̄. Consider the open
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set W = X \ Ā ∩ B̄, which is normal. Now, Y ∩
(
Ā ∩ B̄

)
=
(
Y ∩ Ā

)
∩ (Y ∩ B̄) = A ∩ B = ∅.

Thus, Y ⊂ W . Now, we have the closed sets C = Ā ∩ W and D = B̄ ∩ W in the subspace
W . Then, there are open sets U, V ⊂ W (which are also open in X as W is open), such that
C ⊂ U,D ⊂ V and U ∩ V = ∅. Then, we have

A = Ā ∩ Y ⊂ Ā ∩W ⊂ U,B = B̄ ∩ Y ⊂ B̄ ∩W ⊂ V.

Set U ′ = U ∩ Y, V ′ = V ∩ Y , which are open in Y , and clearly disjoint. Also, A ⊂ U ′, B ⊂ V ′.
Thus, Y is normal. Since Y was arbitrary, we have X is completely normal.

Next, let us assume X is completely normal. Let A,B ⊂ X be arbitrary, with Ā∩B = ∅ = A∩ B̄.
Consider W = X \ Ā ∩ B̄. Then, W is normal. Also, A ∩ B̄ = ∅ ⇒ A ⊂ X \ B̄ ⊂ W , and
similarly, B ⊂ W . Consider C = W ∩ Ā and D = W ∩ B̄, which are closed in W . Note that
C ∩ D = W ∩ Ā ∩ B̄ = ∅. Then, there are open sets U, V ⊂ W (which are open in X, as
W is open), such that C ⊂ U,D ⊂ V and U ∩ V = ∅. Clearly, A ⊂ C ⊂ U,B ⊂ D ⊂ V .
Conversely, suppose given any two sets A,B ⊂ X with Ā ∩ B = ∅ = A ∩ B̄, we have open sets
U, V ⊂ X such that A ⊂ U,B ⊂ V, U ∩ V = ∅. Let us show that X is completely normal. Fix
some subspace Y ⊂ X, and closed sets A,B ⊂ Y with A∩B = ∅. Then, A = Y ∩ Ā, B = Y ∩ B̄.
Now, Ā ∩ B = Ā ∩ (B ∩ Y ) = (Ā ∩ Y ) ∩ B = A ∩ B = ∅, and similarly, A ∩ B̄ = ∅. Then,
there are open sets U, V ⊂ X such that A ⊂ U,B ⊂ V and U ∩ V = ∅. But then, consider
U ′ = Y ∩ U, V ′ = Y ∩ V , which are open in Y . Clearly, A ⊂ Y ′, B ⊂ V ′ and U ′ ∩ V ′ = ∅. Thus,
Y is normal. Since Y was arbitrary, we have X is completely normal. �

Definition 23.10: (T5-space)
A completely normal, T1 space is called a T5-space.

Remark 23.11: (T4 6⇒ T5: Tychonoff plank)

Clearly T5 ⇒ T4. But the Tychonoff plank is a T4-space, which is not T5, since the (open) subspace
deleted Tychonoff plank is not normal.

Theorem 23.12: (Order topology ⇒ T5)

Any order topology is T5.

Proof
Let (X,≤) be a totally ordered space, equipped with the order topology. Clearly X is T2. Without
loss of generality, assume that |X| ≥ 2, so that even if X has end-points, they are distinct.

Let A,B ⊂ X be arbitrary sets, with Ā ∩B = ∅ = A ∩ B̄.

Step 1: Consider the set Y = X \ (A∪B). On Y , let us define an equivalence relation : x ∼ y if
and only if the closed interval

[min {x, y} ,max {x, y}] := {z ∈ X | min {x, y} ≤ z ≤ max {x, y}}

is contained in Y . Then, the equivalence classes represent the largest connected intervals in Y . By
axiom of choice, let us choose a representative, say, f(C) from each of the class C.
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Step 2: For each a ∈ A, which is not the right end-point of X (if it exists at all), let us define
a < qa as follows.

a) If a has an immediate successor in X, choose that to be qa.

b) If a has no immediate successor, then for any a < x, we have [a, x) contains a point of
X. That is, a is then a right accumulation point. We consider two possibilities.

i) Suppose a is a right accumulation point of A. Choose any qa ∈ A such that
a < qa and (a, qa) ∩B = ∅. This is possible since A ∩ B̄ = ∅.

ii) Suppose a is a right accumulation point of X, but not of A. In this case, consider
Z := {z ∈ A ∪B | z > x}. Since A∩ B̄ = ∅, we have some interval [x, a)∩Z =

∅. Consequently, it follows that x is least upper bound of a unique component,
say, C of Y . Let us take qa to be the chosen point f(C).

Observe that [a, qa) is always disjoint from B. Similarly, for each a ∈ A, which is not the left
end-point of X, we choose pa < a as follows.

a) If a has an immediate predecessor in X, choose that to be pa.

b) If a has no immediate predecessor in X, then a is a left accumulation point. We consider
two possibilities.

i) If a is an accumulation point of A, choose pa < a such that (pa, a) ∩B = ∅.

ii) If a is not an accumulation point of A, then as argued earlier, a is greatest lower
bound of a unique component, say, C of Y . Take pa to be the chosen point f(C).

Note that a point a ∈ A cannot be simultaneous both the end-points, since |X| ≥ 2. Reversing
the role of A and B, for each b ∈ B, we choose pb < b < qb accordingly as well. Finally, for any
x ∈ A ∪B, let us define the interval

Ix = (px, qx) or, (px, x], or, [x, qx),

as necessary. Clearly, for a ∈ A, we have Ia is an open neighborhood of a, disjoint from B.
Similarly, for b ∈ B, we have Ib is an open neighborhood of b, disjoint from A.

Step 3: Say, a ∈ A and b ∈ B are fixed. Without loss of generality, assume a < b. Let us show
that Ia ∩ Ib = ∅. Suppose not. Then, Ia ∩ Ib = (pb, qa) 6= ∅, and in particular, pb < qa. Clearly
b 6∈ Ia, as Ia ∩ B = ∅, and similarly, a 6∈ Ib. Thus, it follows that a ≤ pb and qa ≤ b. Now, if qa
was the immediate successor of a, then, Ia ∩ Ib = (pb, qa) = ∅. Thus, a must be defined by the
other two cases (in particular, a is a right accumulation point). By the same argument, pb is not
the immediate predecessor of b, and consequently b is a left accumulation point. Now pb 6∈ B, as
otherwise Ia ∩ B 6= ∅, and similarly, qa 6∈ A. Thus, by previous step, pb is not an accumulation
point of B and qa is not an accumulation point of A. Hence, there are components C1, C2 ⊂ Y

such that (a, qa) ⊂ C1 and (pb, b) ⊂ C2, where qa = f(C1) and pb = f(C2). Now,

∅ 6= Ia ∩ Ib = (a, qa) ∩ (pb, b) ⊂ C1 ∩ C2.
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Since C1, C2 are equivalence classes, the only possibility is C1 = C2, whence,
qa = f(C1) = f(C2) = pb. But then, Ia ∩ Ib = ∅, a contradiction.

Step 4: As a final step, consider the open sets

U :=
⋃
a∈A

Ia, V :=
⋃
b∈B

Ib.

Clearly, A ⊂ U,B ⊂ V . Moreover, U ∩ V = ∅ by the previous step. Thus, X is perfectly normal.
In particular, any linearly ordered space is T5. �

Corollary 23.13: (Ordinal spaces are T5)

Every ordinal space is T5. In particular, [0, ω], [0,Ω], [0,Ω) are all T5.

Remark 23.14: (LOTS)

A totally ordered space (X,≤) equipped with the order topology is also known as LOTS, i.e,
linearly ordered topological space. A subspace of a LOTS is known as a GO-space, i.e, generalized
order space. The above theorem essentially proves that a GO-space is T5.
Note that the subspace topology of a GO-space may be strictly finer than the induced order
topology from the restriction of the total order! As an example, consider A = {0} ∪ (1, 2] as a
subspace of R, which is a LOTS. In the subspace topology of A, {0} is open, but it is not open in
the induced order topology. On the other hand, A is homeomorphic to (1, 2]∪{3}, which is clearly
a LOTS. Thus, A is actually a LOTS, but under a different order.

23.3 Perfectly normal and T6-spaces

Definition 23.15: (Perfectly normal space)
A space X is called a perfectly normal space if given closed sets A,B ⊂ X with A ∩ B = ∅,
there is a continuous function f : X → [0, 1] such that f−1(0) = A and f−1(1) = B. That is,
a function precisely separates any two disjoint closed sets.

Theorem 23.16: (Vedenissoff’s theorems)

Given a space X, the following are equivalent.

a) X is perfectly normal.

b) X is normal, and every closed set of C can be written as a countable intersection of
open sets (i.e, X is a Gδ-space).

c) Every closed set A ⊂ X is the zero set of a continuous function, i.e, there is a continuous
function f : X → R such that A = f−1(0).

Proof
Suppose X is perfectly normal. Then clearly X is normal, as functional separation leads to
separation by open neighborhoods. Let C ⊂ X be an arbitrary closed set. We show that C is a
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Gδ-set, i.e, countable intersection of open sets of X. We have a continuous function f : X → [0, 1]

such that f−1(0) = C and f−1(1) = ∅. Then, we have open sets Un := f−1
[
0, 1

n

)
. Clearly,

C =
⋂
n≥1 Un. Thus, X is a normal, Gδ-space.

Next, suppose X is a normal, Gδ-space. Let A ⊂ X be a closed set. Then, A =
⋂
n≥1 Un for

some open sets Un ⊂ X. Without loss of generality, we can assume that Un+1 ⊂ Un for each
n ≥ 1. Now, for each n ≥ 1, we have disjoint closed sets A and Bn := X \ Un. Then, as X is
normal, by Urysohn’s lemma we have a continuous map fn : X → [0, 1] such that fn(A) = {0}
and fn(Bn) = {1}. Consider a function f : X → [0, 1] defined by

f(x) :=
∑
n≥1

fn(x)

2n+1
, x ∈ X.

It follows that f is continuous. Clearly, f(A) = 0. Suppose x 6∈ A. Then, x 6∈ Un0 for some n0.
So, x ∈ Bn0 ⊂ Bn for all n ≥ n0, and hence, fn(x) = 1 for n ≥ 1. We have

f(x) ≥
∑
n≥n0

fn(x)

2n+1
=
∑
n≥n0

1

2n+1
=

1

2n0+1

(
1 +

1

2
+

1

22
+ . . .

)
=

1

2n0
> 0.

Hence, f−1(0) = A. As A was arbitrary closed set, this proves c).

Finally, suppose every closed set is the 0-set of some continuous function. Let A,B ⊂ X be closed
set with A∩B = ∅. We have f, g : X → R such that f−1(0) = A and g−1(0) = B. As A∩B = ∅,
we have f + g is nonvanishing. Consider the continuous function h = f

f+g
. Clearly, h : X → [0, 1].

Also, h(x) = 0 ⇔ f(x) = 0 ⇔ x ∈ A, and h(x) = 1 ⇔ f(x) = f(x) + g(x) ⇔ g(x) = 0 ⇔ x ∈
B. Thus, h−1(0) = A and h−1(1) = B. Hence, X is perfectly normal. �

Proposition 23.17: (T6 ⇒ T5)

Any subspace of a perfectly normal space is again perfectly normal. Consequently, a perfectly
normal space is completely normal.

Proof
Let X be a perfectly normal space. Say, Y ⊂ X is arbitrary subset, and A ⊂ Y be closed. Then,
A = Y ∩ Ā. We have a continuous function such that Ā = f−1(0). Then, the restriction g := f |Y
is again continuous, and clearly, g−1(0) = f−1(0)∩ Y = Ā∩ Y = A. Thus, Y is perfectly normal,
and hence, normal. In particular, X is completely normal. �

Definition 23.18: (T6-space)
A space is called a T6-space if it is perfectly normal, and T1.

Proposition 23.19: (Metrizable ⇒ T6)

Any metrizable space is T6.
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Proof
Fix a metric d on X. Given any closed sets A,B ⊂ X with A ∩ B = ∅, we have the continuous
map

f(x) :=
d(x,A)

d(x,A) + d(x,B)
, x ∈ X.

Then, f−1(0) = A and f−1(B). Clearly X is T2 (and hence, T1). Thus, X is T6. �

Day 24 : 31st October, 2025
product of normal space

24.1 Separation axioms : More properties and counterexamples

Proposition 24.1: (T5 6⇒ T6 : The uncountable ordinal space SΩ = [0,Ω])

The uncountable ordinal space [0,Ω] is a T5-space, which is not T6.

Proof
Since [0,Ω] is a linearly ordered space, we have [0,Ω] is T5. Let us show that it is not Gδ.
Consider {Ω}, which is closed. If possible, suppose {Ω} =

⋂
n≥1On for some open neighborhoods

Ω ∈ On ⊂ [0,Ω]. Then, there is some αn ∈ [0,Ω) such that Ω ∈ (αn,Ω] ⊂ On. Since any
countable collection of [0,Ω) is bounded above, we have some β ∈ [0,Ω) such that β > αn for all
n ≥ 1. But then, {Ω} ( (β,Ω] ⊂

⋂
n≥1On. Thus, {Ω} fails to be a Gδ-set. Hence, [0,Ω] is not

T6. �

Remark 24.2

It is fact that the first uncountable ordinal SΩ = [0,Ω) is also not a Gδ-space, and hence, is not a
T6-space. Clearly, SΩ, being a linearly ordered space, is T5. Moreover, any ordinal space which is
also a Gδ-space, is necessarily countable. Thus, all uncountable ordinal spaces are T5 but not T6.

Proposition 24.3: (Product of T5 is not T5)

The product space X = [0,Ω) × [0,Ω] of two T5 spaces is not T5. In fact, the product is not
even normal. Thus, product of T4-spaces need not be T4 either.

Proof
Since linearly ordered spaces are T5, we have both [0,Ω) and [0,Ω] are T5. Let us show that it fails
to be normal. Consider

A := [0,Ω)× {Ω} , B := {(α, α) | α ∈ [0,Ω)} .

Note that A is the intersection of the closed set [0,Ω]× {Ω} ⊂ [0,Ω]× [0,Ω] with the subspace
[0,Ω) × [0,Ω]. Similarly, B is the intersection of the diagonal ∆ = {(α, α) | α ∈ [0,Ω]}, which
is closed in [0,Ω] × [0,Ω] as the space [0,Ω] is T2, with the subspace X. Clearly, A ∩ B = ∅. If
possible, suppose there are open sets U, V ⊂ X such that A ⊂ U,B ⊂ V and U ∩ V = ∅.
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αn αn+1

(αn, αn+1)

(αn+1, αn+2)

(θ, θ)

B

[0,Ω)

[0
,ω

]

V

U

A

For each 0 ≤ α < Ω, consider any α < β < Ω. If for all such β, we have (α, β) ∈ V , then
the limit (α,Ω) will be a limit point of V . But this contradicts (α,Ω) ∈ U and U ∩ V = ∅.
Thus, there is some α < β < Ω such that (α, β) 6∈ V . Let β(α) be the least such element,
which exists as [0,Ω) is well-ordered. Let us now construct a sequence {αn} ⊂ [0,Ω) as follows.
Start with α1 = 0. Then, set αn+1 = β (αn) for all n ≥ 1. By construction, α1 < α2 < . . . .
Let θ ∈ [0,Ω) be the least upper bound of the sequence, and we have θ = limn αn. Then,
limn (αn, β(αn)) = limn (αn, αn+1) = (θ, θ) ∈ B ⊂ V . But by construction, (αn, β(αn)) 6∈ V for
all n ≥ 1. This is a contradiction. Hence, A,B cannot be separated by open neighborhoods. Thus,
X is not normal, and hence, not T5. �

Proposition 24.4: (Image of T3 1
2

need not be T3 1
2

)

Continuous image of a T3 1
2
-space need not be T3 1

2
.

Proof
Recall the deleted Tychonoff plank X = [0,Ω]× [0, ω] \ {(Ω, ω)}. In X, we have seen two closed
sets A = [0,Ω)×{ω} and B = {Ω}× [0, ω), which are disjoint, but cannot be separated by open
sets. Consider the quotient map q : X → X/A. In X/A, observe that q(B) is a closed set, since
q−1(q(B)) = B is closed. Also, the point a0 = q(A) is not in q(B). If possible, suppose there are
open sets U, V ⊂ X/A such that a0 ∈ U,A ⊂ V and U ∩V = ∅. Then, A ⊂ q−1(U), B ⊂ q−1(V )

are open sets such that q−1(U)∩ q−1(V ) = q−1(U ∩ V ) = ∅. This is a contradiction. Hence, X/A
is not even regular, and in particular, not completely regular. �

24.2 Urysohn’s metrization theorem

Proposition 24.5

Let X be a completely regular space, and B be a fixed basis of X. Assume B is infinite. Then,
there exists a family F of continuous functions X → [0, 1], with |F| ≤ |B|, such that given any
closed A ⊂ X and x ∈ X \ A, there is a function f ∈ F such that f(x) = 0 and f(A) = 1.

Proof
Given any pair of sets (U, V ) ∈ B × B, call it good if there is a continuous map f : X → [0, 1]

such that f(U) = 0 and f(X \ V ) = 1. Denote by G the collection of good pairs. Clearly,

88



|G| ≤ |B × B| = |B|. For each good pair (U, V ) ∈ G, choose a function fU,V , and denote the
family F = {fU,V | (U, V ) ∈ B}. Again, |F| = |G| ≤ |B|. We claim that F separates any closed
set and a disjoint point.

Let A ⊂ X be a closed set, and x ∈ X \ A be a point. Get a basic open set V ∈ B such that
x ∈ V ⊂ X \ A. By complete regularity, there is a continuous map f : X → [0, 1] such that
f(x) = 0 and f(X \ V ) = 1. Now, x ∈ f−1

[
0, 1

2

)
is an open neighborhood, so there is a basic

open set U ∈ B such that x ∈ U ⊂ f−1
[
0, 1

2

)
. Construct the function g : X → [0, 1] by

g(y) =

0, f(y) ≤ 1
2
,

2
(
f(y)− 1

2

)
, f(y) ≥ 1

2
.

By pasting lemma, g is continuous. Moreover, g(U) = 0, g(X \ V ) = 1. Thus, (U, V ) ∈ G is
a good pair. But then we have a fU,V ∈ F . Clearly, fU,V separates x and A, since x ∈ U and
V ⊂ X \ A⇒ A ⊂ X \ V . �

Corollary 24.6

Let X be a second countable, completely regular space. Then there is a countable collection F
of functions such that any closed set A ⊂ X and any point x ∈ X \ A can be separated by
some function f ∈ F .

Theorem 24.7: (Tychonoff embedding theorem)

Let X be a Tychonoff space (i.e, T3 1
2
), and B be a fixed basis. Then, X is homeomorphic to a

subspace of the cube C = [0, 1]|B|

Proof
Get a family F of functions, with |F| ≤ |B|. We prove an embedding X ↪→ [0, 1]|F|, which is
sufficient. Indeed, we have a map F : X → [0, 1]|F| defined by

πf (F(x)) = f(x), f ∈ F , x ∈ X.

By the properties of the product topology, F is continuous. As the space X is T1, it follows that
F separates points, and consequently, F is injective. We show that F is open onto its image.

Let O ⊂ X be open, and y ∈ F(O). Pick x ∈ F−1(y) ∩ O. Since F separates points and closed
sets, there is some f ∈ F such that f(x) = 0 and f(X \ O) = 1. Consider W := π−1f ([0, 1)),
which is open in the cube. Moreover, W ∩ F(X) ⊂ F(O). Indeed, for any z ∈ Z, with F(z) ∈ W ,
we must have f(z) 6= 1 ⇒ z 6∈ X \ O ⇒ z ∈ O, and thus, F(z) ∈ F(O). In particular,
f(x) = 0 ⇒ y = F(x) ∈ W ⇒ y ∈ W ∩F(X) ⊂ F(O). As y was arbitrary, we have F(O) is open.
But then F is a homeomorphism onto its image. In particular, X can be identified as a subspace of
[0, 1]|F|. If |F| < B, then one can canonically see [0, 1]|F| as a subspace of [0, 1]|B|. This concludes
the proof. �
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Theorem 24.8: (Urysohn’s metrization theorem)

Any T3, second countable space is metrizable.

Proof
Since X is second countable, it is Lindelöf. A regular, Lindelöf space is normal. Thus, X is T4,
and hence, T3 1

2
. But then by the Tychonoff embedding theorem, X can be identified as a subspace

of [0, 1]ω, where ω = |N|. Now, [0, 1]ω is a metric space (being the countable product of metric
spaces). Hence, X is a metric space. �

Day 25 : 5th November, 2025
Lebesgue number property -- Tietze extension

25.1 Lebesgue number property

Definition 25.1: (Lebesgue number property)
A metric space (X, d) is said to have the Lebsgue number property if given any open cover
{Uα}, there is a number δ > 0 (known as the Lebesgue number of the covering) such that for
any set A ⊂ X with DiamA < δ, we have A ⊂ Uα for some α.

Theorem 25.2: (Lebesgue number property and uniform continuity)

Let (X, d) be a metric space. Suppose every continuous map f : X → R is uniformly continuous.
Then, X has the Lebesgue number property

Proof
Suppose not. Then there exists an open cover U = {Uα} without a Lebesgue number. Conse-
quently, for each n ≥ 1, there is a point xn such that the set An = Bd

(
xn,

1
n

)
is not contained in

any of the Uα, i.e, Uα \ An 6= ∅ for all α. Choose some yn ∈ An with yn 6= xn. Note that An is
not singleton, otherwise An ⊂ Uα for some α, and so, yn can always be chosen.

Let us observe that {xn} and {yn} has no convergent subsequence. If possible, suppose xnk
→ x.

Then, x ∈ Uα for some α. Now, there is some ε > 0 such that x ∈ Bd (x, 2ε) ⊂ Uα. Since
xnk

→ x, there exists some N ≥ 1 such that xnk
∈ Bd (x, ε) ⊂ Bd (x, 2ε) ⊂ Uα for all

nk ≥ N . But then for some nk sufficiently large, it follows from the triangle inequality that
Ank

⊂ Bd (X, 2ε) ⊂ Uα, a contradiction. On the other hand, if ynk
→ y, then it is clear that the

subsequence xnk
→ y, which is a contradiction. Thus, none of the sequences admit a convergent

subsequence.

Next, we construct two disjoint closed sets from the two sequences. Set xn1 = x1, yn1 = y1. Clearly
{xn1} ∩ {xn1} = ∅. Choose n2 > n1, such that xn2 6= xn1 , yn2 6= yn1 , and {xn1 , xn2} ∩ {yn1 , yn2}.
This is possible, since otherwise the sequence will have to be eventually constant. Inductively,
assume that we have constructed {xn1 , . . . , xnk

} and {yn1 , . . . , ynk
}, which are disjoint sets of
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distinct points, with n1 < n2 < · · · < nk. Now, each of the points {xn1 , . . . , xnk
, yn1 , . . . , ynk

}
can only repeat finitely many times in {xn} and in {yn} (since otherwise there will be a
convergent subsequence). Hence, we can choose xnk+1

, ynk+1
at the induction step, so that{

xn1 , . . . , xnk+1

}
,
{
yn1 , . . . , ynk+1

}
are disjoint set of distinct points, with nk+1 > nk. Set

A := {xni
} and B := {yni

}. By construction, A ∩ B = ∅. Also, A,B are closed, since there are
no (sub)sequential limits, and thus, A,B contains all of their limit points (which are none).

Now, (X, d) is a T4-space. Hence, there is a continuous function f : X → R with f(A) = 0 and
f(B) = 1. We claim that f is not uniformly continuous. Indeed, for ε = 1

2
fixed, consider any

δ > 0 small. We must have some nk with 1
nk
< δ. Now, d(xnk

, ynk
) < δ, but |f(xnk

)− f(ynk
)| =

|0− 1| = 1 > ε. This contradicts the hypothesis. Hence, X has the Lebesgue number property.�

Exercise 25.3

Show that a metric space X has the Lebesgue number property if and only for any metric space
Y any continuous map f : X → Y is uniformly continuous.

25.2 Tietze extension theorem
Theorem 25.4: (Tietze Extension Theorem)

A space X is normal if and only if given any closed set A ⊂ X and continuous map f : A→ R,
there is an extension f̃ : X → R, i.e, there is a continuous map f̃ : X → R such that
f̃(a) = f(a) for all a ∈ A.

Proof
Suppose X is normal. Firstly, let us consider a map f : A→ [−1, 1]. Define

A1 :=:=

{
x ∈ A

∣∣∣∣ f(x) ≥ 1

3

}
= f−1

[
1

3
, 1

]
, B1 :=

{
x ∈ A

∣∣∣∣ f(x) ≤ −1

3

}
= f−1

[
−1,−1

3

]
.

Clearly A1, B1 are disjoint closed sets of A, and hence, closed in X. As X is normal, by the
Urysohn’s lemma, we have continuous function f1 : X →

[
−1

3
, 1
3

]
such that

f1(A1) =
1

3
, f1(B1) = −1

3
.

Now, for any x ∈ A we have 3 cases.

a) x ∈ A1 ⇒ f1(x) =
1
3
, f(x) ∈

[
1
3
, 1
]
⇒ |f(x)− f1(x)| ≤ 2

3
.

b) x ∈ B1 ⇒ f1(x) = −1
3
, f(x) ∈

[
−1,−1

3

]
⇒ |f(x)− f1(x)| ≤ 2

3
.

c) x ∈ A \ A1 ∪B1 ⇒ f1(x), f(x) ∈
[
−1

3
, 1
3

]
⇒ |f(x)− f1(x)| ≤ 2

3
.

In other words, we have a continuous map g1 := f − f1 : A→
[
−2

3
, 2
3

]
. We repeat the process for

g1 instead of f . That is, we define A2 := g−11

[
−2

3
,−2

9

]
and B2 := g−11

[
2
9
, 2
3

]
. We get a function

f2 : X →
[
−2

9
, 2
9

]
, such that f2(A2) = 2

9
, f2(B2) = −2

9
. Clearly, |g1 − f2| ≤

(
2
3

)2 on points
of A. Define, g2 := g1 − f2 = f − f1 − f2, clearly, g2 : A →

[
−2

9
, 2
9

]
. Inductively, we define
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fn : X →
[
− 2

3n
, 2
3n

]
, such that∣∣∣∣∣f −

n∑
i=1

fi

∣∣∣∣∣ ≤
(
2

3

)n
, on points of A.

Let us define F (x) =
∑∞

i=1 fi(x). Observe that for any fixed x ∈ X, the series sum converges,
since the partial sums ∣∣∣∣∣

n∑
i=1

fi(x)

∣∣∣∣∣ ≤
n∑
i=1

2

3i

are dominated by the geometric series. Moreover, for a ∈ A we have,∣∣∣∣∣f(a)−
n∑
i=1

fi(a)

∣∣∣∣∣ ≤
(
2

3

)n
→ 0 ⇒ F (a) = f(a).

In other words, F extends f . Let us show that F is continuous.
Fix some x ∈ X and ε > 0. Then, pick N ≥ 1 such that

∑
n>N

(
2
3

)n
< ε

4
. For i = 1, . . . , N , using

the continuity of fi, pick open neighborhoods x ∈ Ui ⊂ X such that

y ∈ Ui ⇒ |fi(y)− fi(x)| <
ε

2N
.

Set U =
⋂N
i=1 Ui, which is an open neighborhood of x. Then, for any y ∈ U we have

|F (y)− F (x)| =

∣∣∣∣∣
∞∑
i=1

fi(y)− fi(x)

∣∣∣∣∣
≤

N∑
i=1

|fi(y)− fi(x)|+
∑
i>N

|fi(y)− fi(x)|

< N · ε

2N
+ 2

∑
i>N

(
2

3

)i
<
ε

2
+
ε

2
= ε.

Consequently, F is continuous at x ∈ X. Since x was arbitrary, we have the continuous extension
F : X → [−1, 1] of f : A→ [−1, 1].

Now, let us consider the general case. If f : A → [a, b] was given, we can use any home-
omorphism [a, b] → [−1, 1] and its inverse, to get an extension X → [a, b]. In case
f : A → R is given, we can use a homeomorphism R → (−1, 1) to assume that the map
is f : A → (−1, 1). Then, we end up with an extension F0 : X → [−1, 1]. Consider the set
A0 = {x ∈ X | F0(x) ∈ {±1}} = F−10 ({±1}), which is clearly a closed set, disjoint from A. Then,
by Urysohn’s lemma, we have continuous map φ : X → [0, 1] such that φ(A0) = 0 and φ(A) = 1.
Consider the function F = φF0. Then, F is continuous, and clearly, F (a) = F0(a) = f(a) for any
a ∈ A. Observe that F : X → (−1, 1). This concludes one direction of the proof.

Conversely, assume that given any closed A ⊂ X, and any continuous function f : A → R, there
is a continuous extension f̃ : X → R. Let A,B ⊂ X be closed sets with A ∩ B = ∅. Then, on
the closed set C = A ∪ B consider the function f0 : C → [0, 1] given by f0(a) = 0 for all a ∈ A,
and f0(b) = 1 for all b ∈ B. Clearly it is continuous. Then, we have an extension f : X → R such
that f(A) = 0 and f(B) = 1. By modifying the range of f , we can get the function X → [0, 1]

as well. Thus, X is a normal space. �
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Exercise 25.5

Assuming Tietze extension theorem, prove the Urysohn’s lemma!

Day 26 : 6th November, 2025
completely metrizable space -- completion -- Gδ-subspace of completely
metrizable space

26.1 Completely metrizable space

Definition 26.1: (Cauchy sequence)
A sequence xn in a metric space (X, d) is called a Cauchy sequence if given ε > 0, there exists
some N = Nε ≥ 1 such that d(xn, xm) < ε for all n,m ≥ N .

Definition 26.2: (Complete metric space)
A metric space (X, d) is called complete if every Cauchy sequence in (X, d) converges.

Exercise 26.3

Given a metric space (X, d), we have a new metric d̄(x, y) = min {d(x, y), 1}, which is clearly
bounded. Show that (X, d) is complete if and only if (X, d̄) is complete.

Example 26.4

R with the usual metric is complete, but X = (0,∞) is not complete. Indeed,
{

1
n

}
is a Cauchy

sequence (with the usual distance metric), which does not converge. On the other hand, consider

d(x, y) = |x− y|+
∣∣∣∣1x − 1

y

∣∣∣∣ , x, y ∈ X.

Check that d is a complete metric on X, inducing the same topology. Indeed, if {xn} is a Cauchy
sequence in this metric, then both {xn} and

{
1
xn

}
are Cauchy in R with the usual metric, which

implies xn → c 6= 0 (as we must have 1
xn

→ 1
c
). Thus, (0,∞) is completely metrizable.

Example 26.5: (Q is not complete)

In Q, consider the following sequence

x1 = 1, xn+1 =
xn +

2
xn

2
, n ≥ 1.

This sequence converges to
√
2 in R, and hence, is a Cauchy sequence. Clearly, {xn} ⊂ Q does

not converge. Thus, Q is not complete with the usual metric.
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Definition 26.6: (Completely metrizable space)
A space X is called a completely metrizable space if there exists a complete metric d on X

inducing the topology.

Exercise 26.7

Check that complete metrizability is a topological property. That is, check that if X is homeo-
morphic to Y , and if Y is completely metrizable, then so is X.

Theorem 26.8: (Q is not completely metrizable)

A completely metrizable space, without any isolated point, is uncountable. Consequently, Q is
not a completely metrizable space.

Proof
Suppose (X, d) is a complete metric space, without isolated points. Choose two distinct point
x0, x1 ∈ X. This is possible, as X has no isolated point. Get open balls U0, U1 of radius ≤ 1 such
that

x0 ∈ U0, x1 ∈ U1, U0 ∩ U1 = ∅.

This is possible as X is T3. Next, get more distinct points x00, x01 ∈ U0 \ {x0} and x10, x11 ∈
U1 \ {x1}. Again, this is possible since there are no isolated points. Get open neighborhoods of
radius ≤ 1

2

x00 ∈ U00 ⊂ U00 ⊂ U0, x01 ∈ U01 ⊂ U01 ⊂ U0, x10 ∈ U10 ∈ U10 ⊂ U1, x11 ∈ U11 ⊂ U11 ⊂ U1,

with
U00 ∩ U01 = ∅ = U10 ∩ U11.

Inductively contitue getting points and open sets with disjoint closures. Thus, for any finite length
word s formed by {0, 1} we have a unique point xs contained in an open set Us of radius ≤ 1

|s| ,
where |s| is the length of the word. Note that this is a countable infinite collection of points (and
open sets), since the collection of all finite words formed by {0, 1} is countable infinite. Moreover,
for two distinct words s, t, if they are not sub-word of the other, then Us ∩ Ut = ∅. If s ⊂ t, then
Ut ⊂ Us.

Let us now consider s to be an infinite word formed by {0, 1}. Denote sn to be the initial word
of s of length n, and set xn := xsn . Let us check that {xsn} is Cauchy. Let ε > 0 be given, and
fix N ≥ 1 such that 1

N
< ε

2
. Observe that for any n,m ≥ N , we have xn, xm ∈ UsN , and by

construction, UsN is a ball with radius ≤ 1
|sN |

= 1
N
< e

2
. Hence, d(xn, xm) < ε for all n,m ≥ N .

Thus, {xn} is Cacuhy, which converges to a point, which we denote by xs (where s is the infinite
word).

Now, suppose s, t are two distinct infinite words of {0, 1}. Then, they differ at, say, the nth

position. But then Usn+1 ∩ Utn+1 = ∅. This implies that xs 6= xs. Consequently, for each infinite
word, we have unique point in X. Since the number of infinite words are uncountable (in fact, the
cardinality is same as R), it follows that X must be uncountable.
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Since Q is a (metrizable) space without any isolated point, it cannot be completely metrizable. �

26.2 Completion of a metric space

Definition 26.9: (Isometry)
A function f : (X, dX) → (Y, dY ) between two metric spaces is said to be an isometry if

dY (f(x), f(y)) = dX(x, y), ∀x, y ∈ X.

Definition 26.10: (Completion of a metric space)
Given a metric space (X, dX), a complete metric space (Y, dY ) is said to be a completion of X,
if there exists an isometry ι : X ↪→ Y such that the image ι(X) is dense in Y .

Theorem 26.11: (Completion : Existence and uniqueness)

Every metric space admits a completion, which is unique up to an isometry.

Proof
Let us first prove the uniqueness. Suppose, we have two completions ι : X ↪→ Y and ι′ : X ↪→ Y ′.
We have a well-defined continuous map

g := i′ ◦ ι−1 : ι(X) → ι′(X),

from a dense subset of Y to a dense subset of Y ′. Note tha g is an isometry. Now, for any y ∈ Y ,
get a sequence yn ∈ ι(X) such that yn → y. Then, {yn} is a Cacuchy sequence, and hence, so
is {y′n := g(yn)}. Since Y ′ is complete, there is a point y′ ∈ Y ′ such that y′n → y′. Let us define
f(y) = y′. We need to check that f is well-defined. Suppose {zn} is another sequence converging
to y. Denote, z′n = g(zn), and suppose z′n → z′ ∈ Y ′. Now,

dY ′(y′, z′) = lim dY ′ (y′n, z
′
n) = lim dY ′ (g(yn), g(zn)) = lim dY (yn, zn) = dY (y, y) = 0.

Thus, y′ = z′, proving that f is well-defined.

ι(X) Y

X

ι′(X) Y ′

g f

ι

ι′

Clearly f is surjective. Let us show that f is an isometry. Let y, z ∈ Y be given. Suppose yn →
y, zn → z, with {yn} , {zn} ⊂ ι(X). Denote, y′n = g(yn), z

′
n = g(zn), and then, y′n → y′ =

f(y), z′n → z′ = f(z). We have,

dY ′ (f(y), f(z)) = dY ′ (y′, z′) = lim dY ′ (y′n, z
′
n) = lim dY (yn, zn) = dY (y, z).

Now, let us consider h : Y ′ → Y to be the isometry defined in the same way by using ι ◦
(ι′)−1 : ι′(X) → ι(X). Let us check that h = f−1. It is clear that on points of ι(X), we have
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h ◦ f = (i′ ◦ ι−1) ◦
(
ι ◦ (ι′)−1

)
= Id. Now, for any y ∈ Y we have y = lim yn for some yn ∈ ι(X).

Then,
(h ◦ f) (y) = h (f (lim yn)) = limh (f (yn)) = lim yn = y.

Thus, h ◦ f = IdY . Similarly, f ◦ h = IdY ′ . Thus, we have Y = Y ′ up to an isometry.

Let us now actually prove that a completion exists! The construction is similar to how one constructs
R from Q. Denote C(X) to be the collection of all Cauchy sequences in X. Note that given
two Cauchy sequences {xn} , {yn}, we have {d(xn, yn)} is a Cauchy sequence in R, and hence,
converges. Indeed, for any ε > 0, we have N1, N2 ≥ 1 such that d(xn, xm) < ε

2
for n,m ≥ N , and

d(yn, ym) <
ε
2

for n,m ≥ N2. Set N = max {N1, N2}. Then, for any n,m ≥ N we have

|d(xn, yn)− d(xm, ym)| ≤ d(xn, xm) + d(yn, ym) <
ε

2
+
ε

2
= ε.

The first inequality follows from the triangle inequality and the symmetry! Now, define an equiva-
lence relation ∼ on C(X) by

{xn} ∼ {yn} ⇔ lim d(xn, yn) = 0

Denote X? = C(X)/∼ to be the collection of equivalence classes. Define d? : X? ×X? → X? by

d? ([xn] , [yn]) = lim d(xn, yn).

Let us check that d? is well-defined. Let {x′n} and {y′n} be some other representative. Then, we
have

|d(xn, yn)− d(x′n, y
′
n)| ≤ d(xn, x

′
n) + d(yn, y

′
n) → 0, as n− >∞.

Hence, in the limit, we have lim d(xn, yn) = lim d(x′n, y
′
n). It is easy to see that d? is a metric on

X? (Check!). For any x ∈ X, define ι(x) to be the equivalence class of the constant sequence
{xn = x}. It follows that ι : X ↪→ X? is an isometry (Check!).

Let us verify that ι(X) is dense in X?. Let x? ∈ X? is represented by some Cauchy sequence
{xn} ⊂ X. Then, for any ε > 0, there is some N ≥ 1 such that d(xn, xm) < ε

2
for all n,m ≥ N .

Let z = xN , and consider the point ι(z) formed by the constant sequence. Then,

d?(x?, ι(z)) = lim
n
d(xn, xN) ≤

ε

2
< ε.

Since ε > 0 and x? is arbitrary, it follows that ι(X) is dense in X?.

Finally, we check that d? is a complete metric. Let {zn} be a Cauchy sequence in X?. For k ≥ 1,
there is an Nk ≥ 1 such that d(zn, zm) < 1

k
for all n,m ≥ N . For each Nk, we have some

wk ∈ ι(X) such that d(wk, zNk
) < 1

k
. Now, for any ε > 0, choose some N such that 1

N
< ε

3
. Then,

for k, l ≥ N we have

d? (wk, wl) ≤ d? (wk, zNk
) + d? (zNk

, zNl
)︸ ︷︷ ︸

<max
{

1
k
, 1
l

} +d? (zNl
, wl) <

ε

3
+
ε

3
+
ε

3
= ε.

In other words, {wk} is a Cauchy sequence in ι(X). Without loss of generality, assume that each wk
represented as a constant sequence wk ∈ X. Since ι is an isometry, it follows that {wk} is a Cauchy
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sequence in X, and hence, represents a point w? ∈ X?. We claim that the subsequence {zNk
}

converges to w?. It is easy to see that wk → w? (Check!). But then by construction, zNk
→ w?.

Since a subsequence of the Cacuchy sequence {zn} converges to w?, the Cauchy sequence {zn}
also converges to w?. Thus, X? is a completee metric space. In particular, completion of a metric
space exists, unique up to isometry. �

Exercise 26.12

Fill in the details of the proof of the previous theorem.

Exercise 26.13

If X is a completely metrizable space, show that the completion X? is homeomorphic to X.

26.3 Subspace of a completely metrizable space

Theorem 26.14: (Gδ-subspace of a completely metrizable space)

A Gδ subspace of a completely metrizable space is again completely metrizable.

Proof
Let (X, d) be a complete metric space. Fix an open set U ⊂ X. Then, we have a continuous
function

f : U −→ (0,∞)

x 7−→ 1

d(x,X \ U)
.

Since X \ U is closed, the distance never vanishes, and thus f is indeed continuous. Let us now
define ρ : U × U → (0,∞) by

ρ(x, y) = d(x, y) + |f(x)− f(y)| , x, y ∈ U

It is easy to see that ρ is a metric on U . Moreover, ρ induces the subspace topology on U .

Let us show that (U, ρ) is complete. Say, {xn} is a Cauchy sequence in (U, ρ). Then, {xn} is
Cauchy in (X, d) as well. Also, for any ε > 0, there is some N ≥ 1 such that for n ≥ N we have

|f(xN)− f(xn)| =
∣∣∣∣ 1

d(xN , X \ U)
− 1

d(xn, X \ U)

∣∣∣∣ < ε

Then, it follows that d(xn, X \ U) is bounded away from 0. In other words, there is some δ > 0

such that
{xn} ⊂ Xδ := {x ∈ X | d(x,X \ U) ≥ δ} ⊂ U.

Now, Xδ is a closed subset, and hence, complete. Thus, we have xn → x ∈ Xδ ⊂ U . Thus, (U, ρ)
is a complete metric space.

Next, consider a Gδ-set G =
⋂∞
n=1 Un, where Un ⊂ X is open. Now, Un is completely metrizable,

and hence, so is the product U =
∏∞

n=1 Un. Insider U we have the diagonal,

∆U = {x ∈ U | xi = xj ∀i, j} .

97



Note that ∆U = ∆ ∩ U , where ∆ is the diagonal in X =
∏

n≥1X. Since ∆ is closed in X , it
follows that ∆U is closed in U , and hence, completely metrizable. Now, the map

f : G −→ ∆U

x 7−→ (x, x, x, . . . )

is clearly a continuous, bijection from G to ∆, with continuous inverse (given by any projection
map). Indeed, it is the restriction of the usual diagonal map X ↪→ X . Thus, G is homeomorphic
to ∆, and hence, G is completely metrizable. �

Example 26.15: (Irrationals are completely metrizable)

Since R \ Q =
⋂
q∈Q (R \ {q}) is a Gδ-set in the complete metric space R, it follows that the

set of irrationals is a completely metrizable space.

Day 27 : 7th November, 2025
product of complete metric space -- Lavrentieff's theorem -- completely
metrizable and Gδ

27.1 Product of metric spaces

Proposition 27.1: (Metric on Product Topology)

Suppose (Xi, di) is a countable collection of metric spaces. Let X =
∏∞

i=1Xi be the product.
Define

ρn(a, b) := min {dn(a, b), 1} , a, b ∈ Xn, ρ(x, y) :=
∞∑
i=1

ρi(xi, yi)

2i
, x, y ∈ X.

Then, ρ is a metric on X, inducing the product topology.

Proof
Since each ρn is a bounded metric, it follows that ρ is well-defined. The metric properties can be
checked easily. Let us show that the induced metric is the product topology. For some open U ⊂ Xi,
consider the sub-basic open set U = π−1i (U). Without loss of generality, assume U = Bρi(xi, ri).
Fix some y ∈ U . Set ε := ri−ρi(xi,yi)

2i
. Consider the metric ball Bρ(y, ε). Then, for any z ∈ Bρ(y, ε),

we have

ρi(xi, zi) ≤ ρi(xi, yi) + ρi(yi, zi)

≤ ρi(xi, yi) + 2iρ(y, z)

< ρi(xi, yi) + (ri − ρi(xi, yi)) = ri

⇒ zi ∈ U ⇒ z ∈ U .

Thus, Bρ(y, ε) ⊂ U . This proves that the metric topology is finer than the product topology.
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Conversely, consider a metric ball B := Bρ(x, ε). Get some N ≥ 1 with
∑

i>N
1
2i
< ε

2
. Consider

the set

V =
N∏
i=1

Bρi

(
xi,

2iε

2N

)
×
∏
i>N

Xi,

which is open in the product topology. Now, for any y ∈ V we have

ρ(x, y) =
∞∑
i=1

ρi(xi, yi)

2i
≤

N∑
i=1

2iε
2N

2i
+
∑
i>N

1

2i
<
ε

2
+
ε

2
= ε.

Thus, V ⊂ B. This proves that the product topology is finer than the metric topology. Hence, the
two topologies coincide. �

Remark 27.2: (Arbitrary product of metric spaces)

Any uncountable product of (nonempty) metric space fails to be metrizable. In fact, the product
topology fails to be first countable. There is a notion of uniform metric on an uncountable product,
but the induced topology is strictly finer than the product topology, and strictly coarser than the
box topology.

Theorem 27.3: (Countable product of completely metrizable spaces)

Let {Xn} be a countable collection of nonempty spaces, and denote X =
∏∞

n=1Xn be the
product space. Then the following are equivalent.

a) X is completely metrizable.

b) Xn is completely metrizable for each n ≥ 1.

Proof
Suppose X is completely metrizable. Fix some ai ∈ Xi. Then, for each n, we have the subspace

X?
n = {x | xi = ai if i 6= n} =

⋂
i 6=n

π−1i (ai),

which is closed being the intersection of closed sets, and hence, completely metrizable. But Xn is
homeomorphic to X?

n, and thus, Xn is completely metrizable as well.

Conversely, suppose each Xn is completely metrizable. Fix some complete metric dn on Xn, and
set

ρn(x, y) = min {dn(x, y), 1} , x, y ∈ Xn.

Then, ρn is a bounded, complete metric, inducing the same topology. On X =
∏
Xn, define

ρ(x, y) :=
∞∑
i=1

ρi(xi, yi)

2i
, x, y ∈ X.

Then, ρ induces the product topology on X. Let us check that ρ is complete. Say, {xn} ⊂ X is a
Cauchy sequence. Then, for a fixed i, consider the sequence {xni }n≥1 ⊂ Xn. For ε > 0, get N ≥ 1

such that ρ(xn, xm) < ε
2i

for all n,m ≥ N . Then, for n,m ≥ N we have

ρn(x
n
i , x

m
i ) = 2i

ρn (x
n
i , x

m
i )

2i
≤ 2iρ (xn, xm) < ε.
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Thus, {xni } ⊂ Xi is a Cauchy sequence, and hence, converges to some yi ∈ Xi. Consider the point
y = (yi) ∈ X. Fix some ε > 0. Then, get some K ≥ 1 such that

∑
n>N

1
2n
< ε

2
. Also, for each

1 ≤ i ≤ K, get some Ni such that

ρi (x
n
i , yi) <

2i · ε
2N

, n ≥ Ni.

Set N = max {K,N1, . . . , Nk}. Then, for n ≥ N we have

ρ (xn, y) =
∞∑
i=1

ρi (x
n
i , yi)

2i
=≤

N∑
i=1

ρi (x
n
i , yi)

2i
+
∑
i>N

1

2i
< N · ε

2N
+
ε

2
= ε.

Thus, xn → y. Hence, (X, ρ) is a completely metric space. �

27.2 Lavrenthieff’s Theorem
Proposition 27.4

Let X be a metrizable space, and Y be a completely metrizable space. Suppose, for some
A ⊂ X, we have a continuous map f : A → Y . Then, there exists a Gδ-set, say, A? ⊂ X with
A ⊂ A? ⊂ Ā, and a continuous map f ? : A? → Y , which extends f .

Proof
Fix a complete metric dY on Y . For any x ∈ Ā, denote the oscillation

osc(f, x) := inf {Diamf (U ∩ A) | U ⊂ X is open, x ∈ U} .

As x ∈ Ā, for any open neighborhood x ∈ U , we have A ∩ U 6= ∅. Let us consider

An :=

{
x ∈ Ā

∣∣∣∣ osc(f, x) < 1

n

}
, A∗ :=

{
x ∈ Ā

∣∣ osc(f, x) = 0
}

Clearly A? =
⋂
n≥1An. Moreover, for any a ∈ A, by continuity of f , we have some open U ⊂ X

such that x ∈ U and Diamf(U ∩A) < 1
n
. Thus, a ∈ An for any n ≥ 1. In particular, A ⊂ A? ⊂ Ā

is clear.

Let us check that An is open in Ā. For any x ∈ An, we have some open U ⊂ X such that x ∈ U ,
and Diamf(U ∩ A) < 1

n
. But then for any w ∈ U ∩ Ā, it follows that osc(f, w) < 1

n
. Thus,

x ∈ U ∩ Ā ⊂ An. Since x ∈ An is arbitrary, we have An is open in Ā. Then, An = Ā ∩ Bn for
some open Bn ⊂ X. We have,

A? =
⋂
n≥1

An =
⋂
n≥1

Ā ∩Bn = Ā ∩
⋂
n≥1

Bn.

Since Ā is a closed set in a metric space, it is itself Gδ. Hence, we have A? is a Gδ set in X.

Let us get a function f ? : A? → Y . For x ∈ A?, let xn ∈ A be a sequence with limxn = x.
Fix ε > 0. Since osc(f, x) = 0, we have some open set U ⊂ X such that x ∈ U and
Diamf(U ∩ A) < ε. As xn → x, we have some N ≥ 1, such that for all n,m ≥ N we have
xn, xm ∈ U . Then, it follows that dY (f(xn), f(xm)) < ε for all n,m ≥ N . In other words,
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{f(xn)} is a Cauchy sequence in (Y, dY ). Since dY is complete, we have f(xn) → y ∈ Y . Set,
f ?(x) = y.

Let us check that f ? is well-defined. Suppose zn ∈ A is another sequence, with zn → x ∈ A?.
Then, {f(zn)} is again Cauchy, and converges to some w ∈ Y . Fix some ε > 0. Then, there is
some U ⊂ X open such that x ∈ U , and Diamf(U ∩ A) < ε

3
. As lim yn = x = lim zn, we have

some N ≥ 1, such that yn, zn ∈ U for all n ≥ N . Taking N larger, we may assume d(f(yn), y) < ε
3

and d(f(zn), w) < ε
3

for all n ≥ N . Then, we have

dY (y, w) ≤ dY (y, f(yN)) + dY (f(yN), f(zN)) + dY (f(zN), w) <
ε

3
+
ε

3
+
ε

3
= ε.

Since ε is arbitrary, it follows that dY (y, w) = 0 ⇒ y = w. Thus, f ? is well-defined.

Finally, let us check that f ? is a continuous extension. For any a ∈ A, we can consider the constant
sequence {an = a} that converges to a. Then, f ?(a) = lim f(an) = lim f(a) = f(a). Thus, f ?

extends f . Let us check continuity. Let x ∈ A?, and fix ε > 0. Then, there is some open set
U ⊂ X such that Diamf(U ∩ A) < ε

3
. Fix a sequence yn ∈ U ∩ A such that yn → y. Now, for

any z ∈ U ∩ A?, consider a sequence zn ∈ U ∩ A such that zn → z. There exists some N ≥ 1

such that dY (f(yn), f
?(y)) < ε

3
and dY (f(zn), f

?(z)) < ε
3

for all n ≥ N . We have,

dY (f
?(y), f ?(z)) ≤ dY (f

?(y), f(yN)) + dY (f(yN), f(zN)) + dY (f(zN), f
?(z)) <

ε

3
+
ε

3
+
ε

3
= ε.

This proves f ? is continuous at y. Since y ∈ A? is arbitrary, we have f ? : A? → Y is a continuous
extension. �

Theorem 27.5: (Lavrentieff’s Theorem)

Suppose X,Y are completely metrizable spaces, and f : A → B is a homeomorphism, where
A ⊂ X,B ⊂ Y . Then, f extends to a homeomorphism f ? : A? → B?, where A? ⊂ X,B? ⊂ Y

are Gδ-sets, with A ⊂ A? ⊂ Ā and B ⊂ B? ⊂ B̄.

Proof
Let us denote g = f−1. Since f, g are both continuous, we have Gδ-sets A1 ⊂ X,A2 ⊂ Y , with
A ⊂ A1 ⊂ Ā, B ⊂ B1 ⊂ B̄, and extensions f1 : A1 → Y, g1 : B1 → X of f and g respectively.
Let us consider

A? := {x ∈ A1 | f1(x) ∈ B1} = (f1)
−1 (B1), B? := {x ∈ B1 | g1(x) ∈ A1} = (g1)

−1 (A1).

Since these are inverse images of Gδ-sets, they are again Gδ. Clearly, A ⊂ A? ⊂ Ā and B ⊂ B? ⊂
B̄. Let us denote f ? = f1|A? and g? = g1|B? . Clearly, f ? and g? are continuous maps, extending f
and g respectively. For any x ∈ A?, we have f1(x) ∈ B1, and so, g1f1(x) ∈ A1 is defined. Thus,
g1 ◦ f ? : A? → A1 is continuous. Say, xn ∈ A is a sequence, such that xn → x ∈ A?. Then,

g1f
? (x) = lim g1f

?(xn) = lim g1f(xn) = lim gf(xn) = lim xn = x.

Thus, g1 ◦ f ? : A? → A? is the identity map. In particular, we have g? ◦ f ? = IdA? . Similarly, we
have f ? ◦ g? = IdB? . Thus, f ? : A? → B? is a homeomorphism, with inverse g? : B? → A?. �
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Theorem 27.6

Suppose X is a metrizable space, and A ⊂ X is a completely metrizable space. Then, A is a
Gδ-set in X.

Proof
Fix metric d on X. Consider ι : (X, d) ↪→ (X?, d?) be the completion. Then, the restriction
f = ι|A : A ↪→ X? is also an embedding, i.e, homeomorphism onto the image. Thus, we have a
homeomorphism A ⊃ A → f(A) ⊂ X?, where A,X? are completely metrizable. By Lavrenteiff’s
theorem, f has an extension to a homeomorphism of Gδ sets of A and X?, containing A and ι(A)
respectively. But then the extension must be ι itself, as on the left-hand side, the extended domain
can only possibly be A. Thus, f ?(A?) = f(A) = ι(A) is the extended set on the right-hand side.
But then ι(A) is a Gδ set in X?. Taking inverse, it follows that A is then a Gδ set of X. �

Corollary 27.7: (Characterization of Completely Metrizable Space)

Given a metric space (X, d), the following are equivalent.

a) X is completely metrizable.

b) X is Gδ in the completion X?.

Corollary 27.8: (Q is not Gδ in R)

Q is not Gδ in R.

Day 28 : 14th November, 2025
game of Choquet -- strongly Choquet space -- Baire space

28.1 A digression: Game of Choquet
Given a space X, let us assume that two players are playing a game.

Round 0: Player I goes first by choosing an open set U0 ⊂ X and a point x0 ∈ U0. Then, player II
chooses another open set V0 satisfying x0 ∈ V0 ⊂ U0.

Round 1: Player I now chooses an open set U1 ⊂ V0, and a point x1 ∈ U1. Then, player II chooses
another open set V1 satisfying x1 ∈ V1 ⊂ U1.

Round n: At this stage, player I chooses an open set Un ⊂ Vn−1 and a point xn ∈ Un. Player II then
chooses an open set Vn satisfying xn ∈ Vn ⊂ Un.

Thus, we have an infinite game that goes like this:

Player I : (U0, x0) (U1, x1) . . . (Un, xn) . . .

Player II : V0 V1 . . . Vn . . .
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This game is known as the strong game of Choquet. The usual game of Choquet is played the same
way, but player I does not choose any points xn ∈ Un at any stage, and thus, player II does not care
about the points either. Observe that ⋂

n≥0

Un =
⋂
n≥0

Vn.

We say player II wins the game if
⋂
Vn 6= ∅ at the end of the game. Conversely, player I wins the game

if
⋂
Un = ∅ at the end of the game.

Remark 28.1: (Winning strategy)

To formalize the concept of winning strategy (for player II), let us consider the following. Given a
space, (X, T ), let us consider the sets

T∗ := {U ∈ T | U 6= ∅} , S := {(U, x) | U ∈ T∗, x ∈ U} .

Then, a winning strategy for player II is a map

f : S → T∗

such that the following holds.

i) For any (U, x) ∈ S, we have
x ∈ f(U, x) ⊂ U.

ii) For any sequence (Un, xn) ∈ S defined inductively, such that,

U0 ⊃ V0 := f(U0, x0) ⊃ U1 ⊃ V1 := f(U1, x1) ⊃ · · · ⊃ Un ⊃ Vn := f(Un, xn) ⊃ . . . ,

we always have
⋂
Vn 6= ∅.

Definition 28.2: (Strong) Choquet space
A space X is called a Choquet space (resp. strongly Choquet space) if in a game of Choquet
(resp. strong game of Choquet), player II always has a winning strategy.

Remark 28.3

Winning a strong game of Choquet is more difficult for player II, as at the nth-stage they have to
choose an open set Vn ⊂ Un satisfying the extra condition xn ∈ Vn. Thus, a strongly Choquet
space is always a Choquet space. Also, since player I’s goal is to make the intersection empty,
player I is also denoted as player E (Empty). In this convention, player II is denoted as player N

(Nonempty).

Proposition 28.4: (Completely metrizable space is strongly Choquet)

Let X be a completely metrizable space. Then X is strongly Choquet.
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Proof
Let us fix a complete metric d on X, inducing the underlying topology. At the nth-stage, after player
E has chosen xn ∈ Un ⊂ Vn−1, player N chooses xn ∈ Vn ⊂ Vn ⊂ Un, such that DiamVn <

1
2n

.
This is always possible in the metric space (X, d). Now, observe that⋂

Un =
⋂

Vn =
⋂

Vn.

But
{
Vn
}

is a decreasing sequence of closed sets in a complete metric space with diameter going
to zero. Hence,

⋂
Vn 6= ∅ (Check!). Thus, player N always wins. Hence, X is a strongly Choquet

space. �

Theorem 28.5: (Strongly Choquet implies Complete Metrizability)

Suppose X is a metrizable space. If X is strongly Choquet, then X is completely metrizable.

Proof
Fix an arbitrary metric d on (X, T ), and consider the completion (X, d) ↪→ (X?, d?). We shall
show that X is Gδ in X?.

Let us fix a winning strategy player N, and denote it by

f : {(U, x) | x ∈ U ∈ T } −→ {U ∈ T | U 6= ∅} .

For each n ≥ 1, let us consider Wn to be the collection of open sets W ⊂ X?, such that for some
x ∈ U ⊂ X we have

i) U = X ∩ Ũ , for some Ũ ⊂ X? open, with Ũ ⊂ Bd?
(
x, 1

n

)
,

ii) W ∩X = f (U, x), and

iii) W ⊂ Bd?
(
x, 1

n

)
.

Denote,
Gn =

⋃
{W | W ∈ Wn} .

Clearly Gn ⊂ X? is open (possibly empty). Let us check that X ⊂ Gn. For any x ∈ X, let player
E choose U0 = Bd?

(
x, 1

n

)
∩ X and x0 = x. At the nth-stage, say player E chooses an open set

Un = X ∩ Ũn, where xn = x ∈ Un, and Ũn ⊂ Bd?
(
x, 1

n

)
. Then, player N chooses Vn = f (Un, x),

such that x ∈ Vn ⊂ Un. But then, Vn = X∩W ′ for some W ′ ⊂ X? open. Consider W = W ′∩ Ũn.
Clearly,

X ∩W = X ∩
(
W ′ ∩ Ũn

)
= (X ∩W ′) ∩

(
X ∩ Ũn

)
= Vn ∩ Un = Vn = f(Un, x).

Also, x ∈ W ⊂ Bd?
(
x, 1

n

)
. Thus, x ∈ Gn. Note that this argument requires strong game of

Choquet. Consequently, we have X ⊂
⋂
Gn.

Let us show that
⋂
Gn ⊂ X. Let x ∈

⋂
Un. For n1 = 1, as x ∈ Gn1 , we have some Ṽ1 ∈ Wn1

such that x ∈ Ṽ1. Then, for some y1 ∈ U1 ⊂ X, we have V1 := Ṽ1 ∩X = f(U1, y1), and moreover,
Ṽ1 ⊂ Bd?

(
y1,

1
n1

)
. As x ∈ Ṽ1, we have ε1 := d?(x,X? \ Ṽ1) > 0. Choose some n2 > n1 such that
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1
n2
< ε1

2
. As x ∈ Gn2 , we have some Ṽ2 ∈ Wn2 such that x ∈ Ṽ2. Then, for some y2 ∈ U2 ⊂ X,

we have V2 := Ṽ2 ∩X = f(U2, y2), and moreover, Ṽ2 ⊂ Bd?

(
y2,

1
n2

)
. Note that U2 ⊂ Ṽ1. Indeed,

U2 = X ∩ Ũ2 for some Ũ ⊂ X? open with Ũ2 ⊂ Bd?

(
y2,

1
n2

)
. Then, for any z ∈ U2 we have

d?(y2, z) <
1
n2

. Also, we have x ∈ Ṽ2 ⊂ Bd?

(
y2,

1
n2

)
. Thus,

d(x, z) ≤ d(x, y2) + d(y2, z) <
1

n2

+
1

n2

< ε1 = d?
(
x,X? \ Ṽ1

)
⇒ z ∈ Ṽ1.

Thus, U2 ⊂ Ṽ1 holds, which implies U2 ⊂ V1 = X ∩ V1. Inductively, we continue this (strong)
game of Choquet in a similar way. Since player N is playing by a winning strategy, it follows that⋂
Un =

⋂
Vn 6= ∅. Now, by construction, x ∈

⋂
Ṽn. Since (X?, d?) is a complete metric space,

and since the diameters of Ṽn are going to 0, it follows that
⋂
Ṽn = {x}, a singleton. But then,

∅ 6=
⋂

Vn = X ∩
⋂

Ṽn = X ∩ {x} ⇒ x ∈ X.

Thus, we have X =
⋂
Gn, i.e, X is a Gδ-set in X?. Hence, X is completely metrizable. �

Example 28.6: (Wheel with its Hub)

Let X = {(x, y) ∈ R2 | 0 < x2 + y2 ≤ 1} be the closed unit disc with the center removed.
Consider the collection of usual open sets in D as a subspace of R2, and additionally, consider
every open intervals (in the usual sense) on every open radial line. It is easy to see, this collection
is a basis for a topology on X. The space X is called the wheel without its hub.

Open interval
on radial lineUsual open set

Observe that X is not second countable, since the set A =
{
(x, y)

∣∣ x2 + y2 = 1
2

}
is a closed

discrete subspace of X. Nevertheless, X is metrizable. Let us explicitly define a metric.

Consider the function h : X → [0,∞) defined by h(x) = 1
‖x‖ − 1, and the function r : X →

[0,∞) defined by r(x) = x
‖x‖ . Here, for any x = (x, y), we have ‖x‖ =

√
x2 + y2. It is easy to

see that h, r are continuous maps. Define d : X ×X → [0,∞) via

d(x,y) =

|h(x)− h(y)| , if r(x) = r(y),

h(x) + h(y) + ‖r(x)− r(y)‖ otherwise.

One can easily check that d is a metric on X, inducing the same topology (Check!). Moreover,
one can show that d is a complete metric as well.

Let us instead play a strong game of Choquet on X! If at any stage, player E plays an open set
U , and a point x ∈ U on some open radial line `, then player N plays an open set V which is an
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open interval containing x on the radial line `, such that the closed interval has length half that
of the component of `∩U containing x (which is going to be interval), and is contained in said
component. Then, we get a decreasing sequence closed intervals of ` with diameters going to 0.
The intersection is nonempty by the completeness of R, and so, player N wins. Suppose player
E plays an open set U and a point x ∈ U with x on the boundary circle. Then, player N plays
a usual open neighborhood V ⊂ U of x, such that V̄ ⊂ U . If player E never plays a point on
any radial line (so the points are always on the circle), then we get a decreasing sequence closed
sets in the boundary circle, which is a compact set. Thus, player N again wins. This proves X is
strongly Choquet, and hence, completely metrizable.

Example 28.7: (Discrete rational extension of R)

Consider X to be the discrete rational extension of R, i.e, X = R, with the topology T generated
by the basis

B = {(a, b) | a, b ∈ Q, a < b} ∪ {{q} | q ∈ Q} .

It is easy to see that B is a basis of clopen sets, and hence, X is a completely regular, second
countable space, which is clearly T1. By Urysohn’s metrization theorem, X is then metrizable.
Let us show that X is strongly Choquet.

If at any stage player E plays an open set U and a rational q ∈ U , player N can play V = {q},
and thereby winning the game. Suppose player E plays an open set U ∈ T and an irrational
x ∈ U . Then, there is a finite length interval x ∈ (a, b) ⊂ [a, b] ⊂ U , such that b−a < 1

2
DiamU .

Player N chooses (a, b). Then, in a game, where player E never plays a rational point, we have
Vn = (an, bn) for finite intervals, which are nested, with strictly decreasing diameter. In particular,⋂
Vn 6= ∅, as R is complete. Thus, X is strongly Choquet. Consequently, the discrete rational

extension of R is a completely metrizable space.

28.2 Baire Space

Definition 28.8: (Baire space)
A space X is called a Baire space if a countable intersection of dense, open sets of X is again
dense.

Definition 28.9: (First and second category)
A subset A ⊂ X is called of first category (or meager) if A =

⋃
n≥1An for some nowhere dense

set An ⊂ X (i.e., intAn = ∅). If A cannot be written as the countable union of nowhere dense
sets, then A is called of second category (or non-meager).

Exercise 28.10: (Subset of meager set)

Verify that a subset of a meager set is again meager.
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Proposition 28.11

X is Baire if and only if countable union of closed nowhere dense sets have empty interior. In
particular, a (nonempty) Baire space is non-meager (in itself).

Proof
Suppose X is a Baire space. Let An be a collection of closed nowhere dense sets. Then,
Un = X \ An is a collection of open dense sets. We have

⋂
Un is dense. Now, for any nonempty

open set O ⊂ X, we have O∩
⋂
Un 6= ∅ ⇒ O 6∈ X\

⋂
Un =

⋃
An. Thus,

⋃
An has empty interior.

Now, suppose countable union of closed nowhere dense sets in X has empty interior. Let
Un be a collection of open dense sets. Then, An = X \ Un is closed, nowhere dense.
We have

⋃
An has empty interior. So, for any nonempty open set O ⊂ X, we have

O 6⊂
⋃
An ⇒ O ∩ (X \

⋃
An) 6= ∅ ⇒ O ∩

⋂
Un 6= ∅. Thus,

⋂
Un is dense. Hence, X is a Baire

space.

Now, for a Baire space X, suppose X =
⋃
An for some nowhere dense sets. Then, X =

⋃
An,

where An is closed, nowhere dense. But this contradicts that
⋃
An has empty interior. �

Remark 28.12: (Non-meager spaces need not be Baire)

There are non-meager spaces, which fail to be Baire. Consider X = R × {0} ∪ Q × {1} ⊂ R2.
Then, for each q ∈ U , we have Uq := X \ {(q, 1)}, an open dense set. Clearly,

⋃
Un = R×{0} is

not dense in X. Thus, X is not Baire. On the other hand, if possible, let us write X =
⋃
An for

some nowhere dense sets An. Then, R× {0} =
⋃

(An ∩ R× {0}). Note that Bn := A×R× {0}
is nowhere dense in R× {0}. But this implies R ∼= R× {0} is a meager (in itself) space. This is
a contradiction, as R, being a completely metrizable space, is Baire, and hence, non-meager.

Day 29 : 18th November, 2025
Baire category theorem -- paracompactness

29.1 Baire Category Theorems

Theorem 29.1: (Baire Category Theorem)

A Gδ-set in a compact T2 space is a Baire space.

Proof
Let X be compact, T2-space. Note that X is a T4-space. Let us first show that X itself is Baire.
Let Gn ⊂ X be a countable collection of open dense sets, and U ⊂ X be a fixed nonempty
open set. Denote V0 = U . Now, U ∩ G1 6= ∅. Then, by regularity, there is a nonempty open
set V1, with V1 ⊂ U ∩ G1. Inductively, assume that there is a nonempty open set Vn such that
Vn ⊂ Vn−1 ∩ Gn. Since Vn ∩ Gn+1 6= ∅, again by regularity, we have a nonempty open set Vn+1

with Vn+1 ⊂ Vn ∩ Gn+1. Now, by construction,
{
Vn
}
n≥1 are closed sets, with V1 ⊃ V2 ⊃ . . . .

Consequently,
{
Vn
}

is a collection of (nonempty) closed sets with finite intersection property.
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Hence,
⋂
Vn 6= ∅. But,

⋂
Vn ⊂ U ∩

⋂
Gn by construction. Thus, U ∩

⋂
Gn 6= ∅. As U is arbitrary

nonempty open set, we have
⋂
Gn is dense in X. Thus, X is a Baire space.

Now, let us consider a Gδ-set K =
⋂
Un, where Un ⊂ X is open. Consider K̄, which is closed,

hence compact, and also T2. Now, Vn = Un∩K̄ is an open set in K̄. Note that
⋂
Vn =

⋂
Un∩K̄ =

K ∩ K̄ = K. Also, K ⊂ Vn ⊂ K̄ ⇒ K̄ = Vn. Thus, Vn is an open dense set in the compact, T2
space K̄. Now, suppose Wi ⊂ K are open, dense subsets. Then, Wi = K ∩Gi for some Gi ⊂ K̄

open. Clearly, Gi is also dense in K̄, since for any nonempty open set V ⊂ K̄ we have,

V ∩K 6= ∅ ⇒ (V ∩K) ∩Wi 6= ∅
as Wi is dense in K

⇒ V ∩Gi 6= ∅.

Thus, we have a countable collection {Gi} ∪ {Vn} of open dense subsets in K̄. Hence, the inter-
section

⋂
i

Gi ∩ Vi =

(⋂
i

Gi

)
∩

(⋂
i

Vi

)
=
(⋂

Gi

)
∩K =

⋂
Gi ∩K =

⋂
Wi

is dense in K̄. But then
⋂
Wi is dense in K as well. Hence, K is a Baire space. �

Corollary 29.2: (BCT 1)

A locally compact T2 space is a Baire space.

Proof
Suppose X is locally compact, T2. A locally compact, T2 noncompact space embeds as an open
subset in its one point compactification X̂, which is compact, T2. Thus, X is a Gδ-set in X̂, and
hence, a Baire space. �

Theorem 29.3: (BCT 2)

A completely metrizable space is a Baire space

Proof
Let (X, d) be a complete metric space. Suppose Gi ⊂ X is a countable collection of open
dense set, and U ⊂ X is a fixed nonempty open set. Proceeding as in the proof of Baire
category theorem, consider V0 = U , and get open balls Vn = Bd (xn, rn) of radius rn < 1

n
,

such that Vn+1 ⊂ Vn ∩ Gn+1 holds. In particular, we have a decreasing sequence of closed balls
V0 ⊃ V1 ⊃ V2 ⊃ . . . , and moreover,

⋂
Vn ⊂ U ∩

⋂
Gn holds.

We claim that the sequence {xn} is Cauchy. Indeed, for any ε > 0, get N ≥ 1 such that 1
N
< ε

2
.

Then, for any n,m ≥ N we have xn, xm ∈ VN . Hence,

d(xn, xm) ≤ d(xn, xN) + d(xN , xm) < rN + rN <
2

N
< ε.

As X is complete, we have xn → x. Clearly, x ∈ Vn for all n. Hence, x ∈ U ∩ Gn for all n ≥ 1.
Thus, U ∩

⋂
n Un 6= ∅. As U is arbitrary nonempty open set, we have

⋂
Gn is dense. Thus, X is a

Baire space. �
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Corollary 29.4: (Q is not Gδ)

The set of rationals Q ⊂ R is not a Gδ-set.

Proof
If possible, suppose Q is Gδ. Then, Q =

⋂
n Un for some open sets Un ⊂ R. Clearly, Un is

dense in R, since Q ⊂ Un is already dense. Now, foreach q ∈ Q, consider Vq = R \ {q}, which
are also open and dense. Note that

⋂
q∈Q Vq = R \ Q. Now, {Un}n≥1 ∪ {Vq}q∈Q is a countable

collection of open dense sets. Since R is a Baire space, there intersection must be dense. But,⋂
n≥1 Un ∩

⋂
q∈Q Vq = Q ∩ (R \Q) = ∅, a contradiction. Hence, Q is not a Gδ-set. �

Remark 29.5

Since for a function f : R → R the set of continuities must be a Gδ-set, it follows that there does
not exist a function which is continuous only at the rationals.

Theorem 29.6: (Choquet spaces are Baire space)

Let X be a nonempty space. Then, X is a Choquet space if and only if X is a Baire space.

Proof
Let X be a Choquet space. Suppose Gn is a countable collection of open dense sets. Fix some
nonempty open set O ⊂ X. Let player E choose the open set U0 := G1 ∩ O, which is nonempty
as G1 is dense. Suppose at the nth-stage, player N chooses Vn ⊂ Un according to their winning
strategy. Then, player E chooses Un+1 := Vn ∩ Gn+1, which is again nonempty as Gn+1 is dense.
At the end of the game, since N must win, we have

∅ 6=
⋂
n≥0

Un = (O ∩G1) ∩
⋂
n≥1

Vn ∩Gn+1 ⊂ O ∩
⋂
n≥1

Gn.

As O is an arbitrary nonempty open set, we have
⋂
Gn is dense in X.

Conversely, let X be a Baire space. If possible, suppose player E has a winning strategy,

f : T? → T∗,

where T? denotes the set of nonempty open sets of X. Say, according to this strategy, player E

chooses the open set U0 ⊂ X. We shall show that U0 is not a Baire space.

Fix some open U ⊂ U0. Given any collection O of nonempty open subsets of U , call O is good if

O? = {f(O) | O ∈ O}

is a pairwise disjoint collection of (necessarily nonempty) open subsets of U . Let OU be the
collection of all good sub-collections of U , partially ordered by inclusion. For a chain {Oα} in OU ,
consider the union O =

⋃
Oα. If possible, suppose there are Oα ∈ Oα and O ∈ Oβ such that

f(Oα)∩ f(Oβ). Without loss of generality, Oα ⊂ Oβ. But as Oβ is good, we have a contradiction.
Thus, O is a good sub-collection of nonempty open sets of U . Hence, by Zorn’s lemma, we can
then get a maximal good collection, say, Omax

U . Let us denote

U? :=
⋃

O∈OU

f(O).
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Clearly, U? is a nonempty open set of U?. We claim that U? is dense in U . If not, then there is
some nonempty open set O ⊂ U such that O ∩U? = ∅. Then, f(O) ⊂ O is a nonempty open set,
and clearly, f(O) ∩ U? = ∅. But then, Omax

U ∪ {O} is also good, violating the maximality of OU .
Hence, for any U ⊂ U0, we have constructed U?, which is open and dense in U0, and given as the
union of pairwise disjoint open sets of the form F(O) for open subsets O ⊂ U .

Let us now inductively construct the following open dense sets. Set G1 = U?
0 . Assuming Gn is

defined, set Gn+1 =
⋃
W∈Gn

W ?. Observe that each Gn is a disjoint union of open sets of the form
f(U) for some open U ⊂ U0. Moreover, Gn+1 is dense in Gn, and hence, by a simple induction,
each Gn is dense in U0 as well. If possible, let x ∈

⋂
Gn. Since x ∈ G1, we have a unique open

V0 ⊂ U0, such that x ∈ f(V0) (as G1 is a disjoint union). Set U1 = f(V0). Inductively, suppose
we have constructed (U0, V0, U1, V1, . . . , Un). Now, x ∈ Gn+1. Hence, there is a unique open set
Vn ⊂ Un, such that x ∈ f(Vn) (as Gn+1 is a disjoint union). Set Un = f(Vn). This is a game of
Choquet! Now, by construction, x ∈

⋂
Un =

⋂
Vn. Thus, player N wins in this game. This is a

contradiction, since player E is playing by a winning strategy by assumption. Hence, we must have⋂
Gn = ∅. But then, U0 is an open set of X, which is not Baire. Consequently, X itself cannot be

a Baire space. �

Corollary 29.7: (BCT 1 and 2 by game of Choquet)

X is a Choquet space (and hence, a Baire space) if either a) X is completely metrizable, or b)
X locally compact T2.

Proof
Suppose X completely metrizable. At the nth-stage of any Choquet game, let player N choose
Vn ⊂ Un satisfying Vn ⊂ Vn ⊂ Un, and DiamVn <

1
2
DiamUn. Then, a usual argument using

Cauchy sequence shows that
⋂
Vn =

⋂
Vn 6= ∅. Thus, X is a Choquet space.

Next, suppose X is a locally compact T2 space. This time, at the nth-stage, let player N choose
Vn ⊂ Un satisfying Vn ⊂ Vn ⊂ Un, and Vn compact (this is possible, as the space is locally
compact, T2). It follows that

⋂
Vi =

⋂
Vi 6= ∅, as the intersection of decreasing nonempty closed

sets in a compact space (here, the compact space is V1) is always nonempty. �

29.2 Paracompactness

Definition 29.8: (Refinement)
Given an open cover U = {Ui}i∈I of X, a refinement of U is an open cover V = {Vj}j∈J , such
that there exists a function φ : I → J for which

Vj ⊂ Uφ(i), j ∈ J

holds. In words, each Vj ∈ V is contained in some Ui ∈ U .

Definition 29.9: (Paracompact space)
A space X is called paracompact if any open cover of X admits a locally finite refinement.

110



Example 29.10: (Rn is Paracompact)

Suppose U = {Ui}i∈I be an arbitrary open cover. Denote, Bn = Bd(0, n) be the open ball of
radius n, centered at orgin, and B̄n be the closed ball. Note that each B̄n is compact. Hence,
for each n, there is a finte subset In ⊂ I such that B̄n ⊂

⋃
i∈In Ui. Denote,

V1 := {Ui | i ∈ I1} , Vn :=
{
Ui \ B̄n−1

∣∣ i ∈ In
}
, n ≥ 2.

Set, V =
⋃

Vn. By construction, each element of V is a subset of some Ui ∈ U . For any x ∈ Rn,
consider n ≥ 1 to be the least integer such that x ∈ B̄n. Then, x 6∈ B̄n−1. Clearly, we have
x ∈ Ui \ B̄n−1 for some i ∈ In. Thus, V is a refinement of U . More over, for any x ∈ Rn, we
have some n ≥ 1 such that x ∈ Bn. It is clear that Bn can intersect only the open sets from
V1 ∪ · · · ∪ Vn, which is a finite collection. Thus, V is a locally finite refinement. Consequently,
Rn is paracompact.

Exercise 29.11: (Exhaustion by Compacts)

A space X is said to be exhaustible by compacts if there are compact sets Kn ⊂ X such that
X =

⋃
n≥1Kn, and Kn ⊂ K̊n+1. Show that a T2-space, which is exhaustible by compacts, is

paracompact.

Remark 29.12: (Metric space is Paracompact)

Note that R with discrete topology is a metrizable space, which is not exhaustible by compacts,
and hence, we cannot use the previous exercise! It is a deep theorem that any metric space is
paracompact. The original proof was by Stone, which was simplified significantly by Mary Ellen
Rudin.

Theorem 29.13: (M.E. Rudin’s Proof : Metric Spaces are Paracompact)

A metrizable space is paracompact.

Proof
Let (X, d) be a metric space. Suppose U = {Uα}α∈Λ is an open cover. By the well-ordering
principle, we assume that the indexing set Λ is well-ordered! Note that for any x ∈ X, there exists
a least α ∈ Λ such that x ∈ Uα, since Λ is a well-order and U is a cover.

By induction over n, we construct a locally finite refinement as follows. Firstly, for each α ∈ Λ,
define Aα,n to be the set of points x ∈ X, satisfying the following.

i) α ∈ Λ is the least index such that x ∈ Uα.

ii) For any j < n, we have d(x, y) ≥ 1
2j

whenever y ∈
⋃
β∈ΛAβ,j

iii) Bd

(
x, 3

2n

)
⊂ Uα.

Note that for n = 1, the second condition is vacuous, and thus Aα,1 consists of x ∈ X satisfying
only the first and third condition. Moreover, at the nth-step, the second condition does not involve
any Aα,n. Thus, one can inductively construct all Aα,n. We allow the possibility that Aα,n = ∅ for
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some α ∈ Λ and n ≥ 1. Once these sets are constructed, whenever Aα,n 6= ∅, denote

Dα,n :=
⋃{

Bd

(
x,

1

2n

) ∣∣∣∣ x ∈ Aα,n

}
, α ∈ Λ, n ≥ 1.

If Aα,n = ∅, set Dα,n = ∅ as well. We claim that D, the collection of all Dα,n as defined, is a
locally finite refinement of U .

Let us check D covers X. For any x ∈ X, there is a least α ∈ Λ such that x ∈ Uα, and x 6∈ Uβ for
all β < α. Now, Uα is open, and hence, there is some n ≥ 1 such that Bd

(
x, 3

2n

)
⊂ Uα. We claim

that x ∈ Dβ,j for some β ∈ Λ and some j ≤ n. We have two possibilities. Suppose x ∈ Aα,n.
Then, clearly x ∈ Dα,n and we are done. Suppose x 6∈ Aα,n. Since the first and third condition is
satisfied, we must have that the second condition is violated. Thus, for some j < n, we have some
y ∈ Aβ,j such that d(x, y) < 1

2j
. But then, x ∈ Bd

(
y, 1

2j

)
⊂ Dβ,j. Thus, we see that D covers X.

By construction, each Dα,n ⊂ Uα, and hence, D is indeed a refinement of U .

Finally, let us show that D is locally finite. Let x ∈ X. Get the least α ∈ Λ such that x ∈ Dα,n for
some n ≥ 1. Then, choose some j ≥ 1 such that Bd

(
x, 1

2j

)
⊂ Dα,n. Fix the ball U := Bd

(
x, 1

2n+j

)
.

We show the following.

a) For any i ≥ n+ j, we have U ∩Dβ,i = ∅ for all b ∈ Λ.

b) For any i < n+ j, we have U ∩Dβ,i 6= ∅ for at most a single β ∈ Λ.

Let i ≥ n + j. In particular, i > n. Fix some y ∈ Aβ,i. We then have d(y, z) ≥ 1
2n

whenever
z ∈ Aα,n, and hence, y 6∈ Dα,n. As Bd

(
x, 1

2j

)
⊂ Dα,n, we then get d(x, y) ≥ 1

2j
as well. Now,

i ≥ j + 1 and n+ j ≥ j + 1. Hence, it follows from triangle inequality that

Bd

(
x,

1

2n+j

)
∩Bd

(
y,

1

2i

)
= ∅.

Indeed, if z ∈ Bd

(
x, 1

2n+j

)
∩Bd

(
y, 1

2i

)
, then we have

d(x, y) ≤ d(x, z) + d(z, y) <
1

2n+j
+

1

2j
≤ 1

2j+1
+

1

2j+1
=

1

2j
,

a contradiction. Thus, for any y ∈ Aβ,i, we have U ∩Bd

(
y, 1

2i

)
= ∅. But then clearly, U ∩Dβ,i = ∅

holds for any i ≥ n+ j and any β ∈ Λ.

Now, let i < n + j. Suppose β 6= γ ∈ Λ, without loss of generality, assume β < γ. Fix some
p ∈ Dβ,i and q ∈ Dγ,i. Then, there are y ∈ Aβ,i, z ∈ Aγ,i such that d(y, p) < 1

2i
and d(z, q) < 1

2i
.

By construction, Bd

(
y, 3

2i

)
⊂ Uβ, and also, z 6∈ Uβ (as γ is the least one so that z ∈ Uγ). So, we

must have d(y, z) ≥ 3
2i

. But then,

3

2i
≤ d(y, z) ≤ d(y, p) + d(p, q) + d(q, z) <

1

2i
+ d(p, q) +

1

2i
⇒ d(p, q) >

1

2i
≥ 1

2n+j−1
.

Now, if U intersects both Dβ,i and Dγ,i (with β < γ), then we can choose p ∈ U ∩ Dβ,i and
q ∈ Dγ,i. As argued above, we have d(p, q) > 1

2n+j−1 . But, p, q ∈ U = Bd

(
x, 1

2n+j

)
. We have,

d(p, q) ≤ d(p, z) + d(z, q) <
1

2n+j
+

1

2n+j
=

1

2n+j−1
,
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a contradiction. Thus, U can intersect at most one Dβ,i whenever i < n+ j.

But then it is clear U can intersect at most finitely many elements of D, proving that D is a
locally finite collection.

Thus, starting with the open cover D, we have obtained a locally finite refinement D of U . Con-
sequently, any metric space is a paracompact space. �

Day 30 : 20th November, 2025
paracompactness -- partition of unity

30.1 Paracompactness (Cont.)

Proposition 30.1

uppose U = {Ui}i∈I is an open cover of X, which admits a locally finite refinement V = {Vj}j∈J .
Then, there exists a locally finite refinement W = {Wi}i∈I such that Wi ⊂ Ui for all i ∈ I.

Proof
Suppose φ : J → I is the function such that Vj ⊂ Uφ(j) for each j ∈ J . For each i ∈ I, consider
the set

Wi :=
⋃

{Vj | φ(j) = i} =
⋃

j∈φ−1(i)

Vj.

Clearly, Wi ⊂ Vi for all i ∈ I, and W = {Wi}i∈I still covers X. Thus, W is a refinement of U (but
now with same indexing). We need to show that W is locally finite. Let x ∈ X be fixed. Then,
there is an open neighborhood x ∈ N ⊂ X, such that N ∩ Vj = ∅ for all j ∈ J \A, where A ⊂ J

is a finite set. Then, B = φ(A) ⊂ I is also a finite set. If possible, for some i ∈ I \ B, suppose
N ∩Wi 6= ∅. Then, N ∩

(⋃
φ(j)=i Vj

)
6= ∅. So, for some j ∈ J with φ(j) = i, we must have

N ∩ Vj 6= ∅. But then we must have j ∈ B ⇒ i = φ(j) ∈ φ(B) = A, a contradiction. Hence,
N ∩Wi = ∅ for all i ∈ I \B. Thus, W is a locally finite refinement of U . �

Example 30.2: (Compact and Lindelöf space)

Since for a compact space, you can get a finite sub-cover of any open cover, it will clearly be
a locally finite refinement. Thus, any compact space is paracompact. A Lindelöf space may not
be paracompact! As an example, consider the double-origin plane. We have seen that it is T2 1

2

but not T3. Also, it is second countable, and hence, Lindelöf. On the other hand, it cannot be
paracompact, as a paracompact T2 space is T4.

Proposition 30.3: (Closed subset of Paracompact)

Let X be a paracompact space, and C ⊂ X be closed. Then, C is paracompact.
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Proof
Let U = {Ui}i∈I be an open cover of C. Suppose Ui = C ∩ Ũi, where Ũi ⊂ X is open. Then,
Ũ = {X \ C} ∪

{
Ũi

}
i∈I

is an open cover of X. By paracompactness, we have a locally finite
refinement, say, V = {V0} ∪ {Vi}i∈I , so that V0 ⊂ X \ C and Vi ⊂ Ũi for all i ∈ I. Now, for
any x ∈ C, there is some open set x ∈ N ⊂ X such that N ∩ Vi = ∅ for all i ∈ I0 \ F , where
F ⊂ I0 := I t {0} is a finite subset. Then, clearly N ∩ X ∩ Vi = ∅ for any i ∈ I \ F . Thus,
{Vi ∩ C}i∈I is a locally finite refinement of U . Consequently, C is paracompact. �

Theorem 30.4: (Paracompact T2 is T4)

A paracompact T2 space is T4.

Proof
Let X be a paracompact T2 space. Let us first proof regularity of X. Say, A ⊂ X is closed, and
x ∈ X\A is a point. As X is T2, for each a ∈ A there are open sets Ua, Va such that x ∈ Ua, a ∈ Va
and Ua ∩ Va = ∅. Now, V = {X \ A} ∪ {Va}a∈A is an open cover of X, and hence, there is a
locally finite refinement, say, W . Define

V :=
⋃

{W ∈ W | W ∩ A 6= ∅} .

Note that A ⊂ V . Since W is a locally finite collection (and hence, so is any subcollection of W),
we also have

V̄ =
⋃{

W̄
∣∣ W ∈ W , W ∩ A 6= ∅

}
.

Now, any W ∈ W with W ∩A 6= ∅ is contained in some Va for some a ∈ A, and hence, W̄ ⊂ V̄a.
Thus,

V̄ ⊂
⋃
a∈A

V̄a.

As a ∈ Ua and Ua∩Va = ∅, we have a 6∈ V̄a, and hence, a 6 V̄ . Then, consider U = X \ V̄ . Clearly,
x ∈ U,A ⊂ V and U ∩ V = ∅. Thus, X is a regular space.

Now, consider A,B ⊂ X be closed sets, with A ∩ B = ∅. For each a ∈ A, there are open sets
Ua, Va ⊂ X such that a ∈ Ua, B ⊂ Va and Ua ∩ Va = ∅. In particular, B ∩ Ūa = ∅. Again,
consider the open cover {X \ A} ∪ {Ua}a∈A of X, and get a locally finite refinement, say, G.
Define U =

⋃
{G ∈ G | G ∩ A 6= ∅}. Then, Ū =

⋃{
Ḡ
∣∣ G ∈ G, G ∩ A 6= ∅

}
follows from local

finiteness. Observe that B∩ Ū = ∅. Then, set V = X \ Ū . Clearly, A ⊂ U,B ⊂ V and U ∩V = ∅.
Thus, X is normal. As X is T2, we have X is T4. �

Example 30.5: (T4 6⇒ Paracompact)

Consider [0,Ω), the first uncountable ordinal with the order topology. We have seen that X is
T4 (in fact, T5). Now, the product space [0,Ω) × [0,Ω] was shown to be not T4. If [0,Ω) was
paracompact, then the product with the compact space must be paracompact again. But then
the product being paracompact and T2 has to be normal, a contradiction. Hence, [0,Ω) is not
paracompact. On the other hand, a Lindelöf, regular space is paracompact.
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Exercise 30.6: (Product of Compact and Paracompact)

Show that the product of a compact and a paracompact space is again paracompact.

Hint
Use the tube lemma.

30.2 Partition of Unity

Definition 30.7: (Support)
Given a continuous map f : X → R, the support of f is defined as

supp(f) := f−1(R \ {0}).

In words, support is the smalles closed set containing the non-zero set of f .

Definition 30.8: (Partition of Unity)
Let U = {Ui}i∈I be an open cover of X. A partition of unity subordinate to U is a collection of
continuous maps {fi : X → [0, 1]}i∈I such that the following holds.

i) For each i ∈ I, we have supp(fi) ⊂ Ui.

ii) The collection {supp(fi)}i∈I is a locally finite cover of X.

iii) For each x ∈ X, we have
∑

i∈I fi(x) = 1.

The arbitrary sum in the third condition is actually a finite sum by local finiteness.

Theorem 30.9: (Shrinking Lemma)

Let X be a paracompact T2 space. Then, for any open cover U = {Ui}i∈I , there exist a locally
finite open cover V = {Vi}i∈I such that Vi ⊂ Vi ⊂ Ui for all i ∈ I.

Proof
Note that X is T4 and in particular regular. Consider W to be the collection of open sets W ⊂ X

such that W ⊂ W̄ ⊂ Ui for some i ∈ I. As U is a cover, by regularity, it follows that W is also a
cover. Let us index it as W = {Wj}j∈J . We have function (by axiom of choice)

θ : J → I

such that Wj ⊂ Wj ⊂ Uθ(j) for all j ∈ J . For each i ∈ I, denote

Vi =
⋃

{Wj | θ(j) = i} .

Note that if θ−1(i) is empty, then Vi = ∅. Consider the collection V = {Vi}i∈I , which is still a
cover, and by construction, Vi ⊂ Ui for all i ∈ I. Now, by local finiteness of W , it follows that
Vi =

⋃
θ(j)=iWj ⊂ Ui as well. Finally, let us check local finiteness of V . For x ∈ X, there is an

open set N ⊂ X such that N ∩Wj = ∅ for all j ∈ J \ F , where F ⊂ J is a finite set. Then,
θ(F ) ⊂ I is a finite set. Suppose, for some i ∈ I \ θ(F ), we have N ∩ Vi 6= ∅. Then, N ∩Wj 6= ∅
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for some j ∈ J such that θ(j) = i. But then j ∈ F ⇒ i = θ(j) ∈ θ(F ), a contradiction. Thus,
W is a locally finite collection. �

Theorem 30.10: (Existence of Partition of Unity)

In a paracompact T2 space, any open cover admits a partition of unity subordinate to the cover.

Proof
Let X be a paracompact T2 space, and U = {Ui}i∈I be an open cover. Applying the shrinking
lemma twice, we get two open covers V = {Vi}i∈I and W = {Wi}i∈I such that

Vi ⊂ Vi ⊂ Wi ⊂ Wi ⊂ Ui, i ∈ I.

Note that Vi and X \Wi are disjoint closed sets. Then, by the Urysohn lemma, there are continuous
functions hi : X → [0, 1] such that

hi(V i) = 1, hi (X \Wi) = 0.

Observe that
h−1i (0, 1] ⊂ Wi ⇒ supp(hi) = h−1i (0, 1] ⊂ Wi ⊂ Ui.

As V = {Vi}i∈I is locally finite, it follows that
{
Vi
}
i∈I is again a locally finite collection (Check!).

Hence, {supp(hi)} is a locally finite collection. For any x ∈ X, we have x ∈ Vi for some i ∈ I, and
then, hi(x) = 1. Thus, {supp(hi)}i∈I is a locally finte cover of X. Now, local finiteness implies
that h(x) =

∑
i∈I hi(x) is always a finite sum. Let us show that it is in fact a continuous map.

Indeed, for any x ∈ X, there is a neighborhood N ⊂ X, such that h|N is a finite sum of continuous
functions, which is then continuous. Since h is continuous on neighborhoods, it follows that h is
continuous. Moreover, h is nowhere vanishing (Check!). In fact, we have h : X → [0,∞) Define
fi =

hi
h

, which is again continuous. Note that fi : X → [0, 1], as h ≥ 1. Moreover, for each x ∈ X

we have
f(x) =

∑
fi(x) =

∑ hi(x)

h(x)
=

∑
hi(x)

h(x)
=
h(x)

h(x)
= 1.

Clearly, supp(fi) ⊂ supp(fi). Thus, {fi : X → [0, 1]}i∈I is partition of unity subordinate to the
family U . �

116


	12th August, 2025
	Power set
	Arbitrary union and intersection
	Cartesian product
	Equivalence relation
	Order relation

	13th August, 2025
	Metric Spaces
	Topological Spaces
	Basis of a topology
	Subbasis of a topology
	Fine and coarse topology

	14th August, 2025
	Limit points and closure
	Interior
	Boundary
	Subspaces
	Continuous function

	20th August, 2025
	Product space

	21th August, 2025
	Hausdorff Axiom
	Convergence of sequence
	Sequential Continuity
	Quotient space

	27th August, 2025
	Connectedness

	29th August, 2025
	Connectedness (cont.)

	9th September, 2025
	Path connectedness

	10th September, 2025
	Path connectedness (cont.)
	Locally connected and locally path connected spaces
	Compactness

	11th September, 2025
	Compactness (cont.)
	Product of compacts

	16th September, 2025
	Sequential and limit point compactness

	17th September, 2025
	Sequential Compactness (Cont.)

	18th September, 2025
	Order topology and compactness
	Well-ordering

	19th September, 2025
	Properties of S
	(Ultra)Filters
	Tychonoff's Theorem

	25th September, 2025
	A digression : Zorn's Lemma and applications

	26th September, 2025
	Local compactness
	Compactification

	16th October, 2025
	Properties of Lindelöf spaces
	Separable space

	17th October, 2025
	Countability axioms in metric spaces

	21st October, 2025
	T212-space and completely Hausdorff space

	23rd October, 2025
	Regular space and T3-space

	24th October, 2025
	Regular space and T3 space (cont.)
	Completely regular space

	29th October, 2025
	Normal space

	30th October, 2025
	T4-space
	Completely normal and T5-spaces
	Perfectly normal and T6-spaces

	31st October, 2025
	Separation axioms : More properties and counterexamples
	Urysohn's metrization theorem

	5th November, 2025
	Lebesgue number property
	Tietze extension theorem

	6th November, 2025
	Completely metrizable space
	Completion of a metric space
	Subspace of a completely metrizable space

	7th November, 2025
	Product of metric spaces
	Lavrenthieff's Theorem

	14th November, 2025
	A digression: Game of Choquet
	Baire Space

	18th November, 2025
	Baire Category Theorems
	Paracompactness

	20th November, 2025
	Paracompactness (Cont.)
	Partition of Unity


