

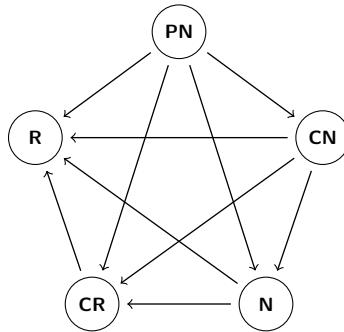
Quiz 2

13th November, 2025

Time: 2 hrs

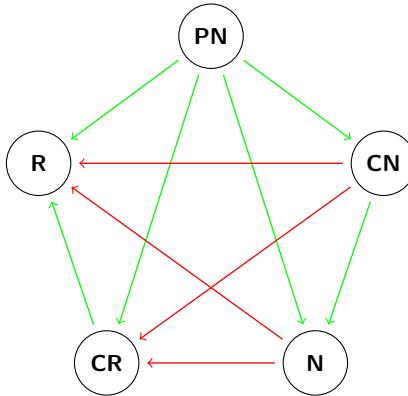
Total Marks: 30

Q1. Consider the following separation properties: **perfectly normal (PN)**, **completely normal (CN)**, **normal (N)**, **completely regular (CR)**, and **regular (R)**. Look at the following diagram.



For each of the 10 arrows, decide whether the implication it represents is always true. Justify your answer with either a proof (if it is always true) or a counterexample (if it is not). Please clearly mention $A \Rightarrow B$ or $A \not\Rightarrow B$ for all the cases that you are attempting! $[2 \times 10 = 20]$

Solution. Here are all the **true** and **false** implications.



PN \Rightarrow CN: Suppose X is perfectly normal. Then, for any subspace $Y \subset X$, consider some subset $A \subset Y$ (closed in the subspace topology). Then, $A = Y \cap \bar{A}$. Now, by the perfect normality of X , we have a continuous function $f : X \rightarrow [0, 1]$ such that $f^{-1}(0) = \bar{A}$. Consider the restriction $g := f|_Y : Y \rightarrow X$, which is again continuous. Clearly, $g^{-1}(0) = f^{-1}(0) \cap Y = \bar{A} \cap Y = A$. Thus, Y is again perfectly normal. In other words, perfect normality is a hereditary property. Since any perfectly normal space is normal, it follows that X is completely normal.

CN \Rightarrow N: As a space is a subspace of itself, completely normal spaces are normal by definition.

PN \Rightarrow N: Since **PN \Rightarrow CN** and **CN \Rightarrow N**, we have perfectly normal spaces are always normal.

PN \Rightarrow CR: Suppose X is a perfectly normal space. Let $A \subset X$ be closed, and $x \in X \setminus A$. Since X is perfectly normal, it is a G_δ -space. Thus, there are open sets $U_n \subset X$ such that $A = \bigcap_{n \geq 1} U_n$. Since $x \notin A$, we must have some n_0 such that $x \notin U_{n_0}$. Consider $B = X \setminus U_{n_0}$. Then, A, B are closed sets, and $A \cap B = \emptyset$. We have a continuous function $f : X \rightarrow [0, 1]$ such that $f^{-1}(0) = B$ and $f^{-1}(1) = A$. In particular, $f(x) = 0$ and $f(A) = 1$. Thus, X is completely regular.

PN \Rightarrow CR (Alt. proof): Suppose X is perfectly normal. Let $A \subset X$ be a closed set, and $x \in X \setminus A$. Then, there exists a continuous function $f : X \rightarrow [0, 1]$ such that $f^{-1}(0) = \emptyset$ and $f^{-1}(1) = A$ (as \emptyset is a closed set disjoint from A). Now, say $c = f(x)$. Clearly, $c \neq 1$, as $c \notin A = f^{-1}(A)$. Consider the map $g : [0, 1] \rightarrow [0, 1]$ given by

$$g(t) = \begin{cases} 0, & 0 \leq t \leq c, \\ \frac{t-c}{1-c}, & c \leq t \leq 1. \end{cases}$$

By pasting lemma, g is a continuous map. Consider $h = g \circ f : X \rightarrow [0, 1]$. Then, $h(x) = g(f(x)) = g(c) = 0$, and for any $a \in A$ we have $h(a) = g(f(a)) = g(1) = 1$. Thus, h separates x and A , proving that X is completely regular.

CR \Rightarrow R: Suppose X is completely regular. Let $A \subset X$ be closed, and $x \notin A$. Then, there is a continuous function $f : X \rightarrow [0, 1]$ such that $f(x) = 0$ and $f(A) = 1$. Then, $U := f^{-1}([0, \frac{1}{4}])$ and $V := f^{-1}([\frac{3}{4}, 1])$ are open sets. Clearly, $x \in U, A \subset V$ and $U \cap V = \emptyset$. Thus, X is regular.

PN \Rightarrow R: Since **PN \Rightarrow CR** and **CR \Rightarrow R**, we have any perfectly normal space is regular.

Counterexample: Consider the space $X = \{-1, 0, 1\}$ with the excluded-point topology with base $p = 0$, given as

$$\mathcal{T} = \{\emptyset, X, \{-1\}, \{1\}, \{-1, 1\}\}.$$

The closed sets in this topology are

$$\{\emptyset, X, \{0, 1\}, \{0, -1\}, \{0\}\}.$$

In this space, any two nonempty closed sets always intersect. Thus, the space is normal. In fact, any (proper) open subset of this space is discrete, and hence again normal. Thus, (X, \mathcal{T}) is a completely normal space.

CN $\not\Rightarrow$ R: As noted, the space X is completely normal. Take $A = \{0\}$, which is closed, and $x = 1 \notin A$. Since the only open set containing 0 is X itself, we cannot separate x and A by open neighborhoods. Thus, X is not regular.

CN $\not\Rightarrow$ CR: Since **CR \Rightarrow R**, the same space X above cannot be completely regular either.

N $\not\Rightarrow$ R: Again, the space X is normal. But X is not regular.

N $\not\Rightarrow$ CR: As the space X is normal but not completely regular, we have the claim.

Q2. Given a space X , fix a subset $\emptyset \subsetneq A \subsetneq X$. Let $a \in A$ and $b \in X \setminus A$. If there is a path joining a to b , show that the path must intersect the boundary ∂A . [5]

Solution. Let $\gamma : [0, 1] \rightarrow X$ be a path, with $\gamma(0) = a, \gamma(1) = b$. We have $\partial A = \bar{A} \cap \overline{X \setminus A}$. If possible, suppose γ does not intersect ∂A . Now, $a \in A \subset \bar{A}$ and $b \in X \setminus A \subset \overline{X \setminus A}$, both of which are closed sets. Consider $P := \gamma^{-1}(\bar{A}), Q := \gamma^{-1}(\overline{X \setminus A})$, which are closed sets of $[0, 1]$. Now, $\emptyset \neq P, Q \subsetneq [0, 1]$, as $0 \in P$ and $1 \in Q$. Clearly, $X = A \sqcup (X \setminus A) \subset \bar{A} \cup \overline{X \setminus A} \Rightarrow X = \bar{A} \cup \overline{X \setminus A}$, and hence,

$$[0, 1] = \gamma^{-1}(X) = \gamma^{-1}(\bar{A} \cup \overline{X \setminus A}) = \gamma^{-1}(\bar{A}) \cup \gamma^{-1}(\overline{X \setminus A}) = P \cup Q.$$

As γ does not intersect $\partial A = \bar{A} \cap \overline{X \setminus A}$, we have

$$P \cap Q = \gamma^{-1}(\bar{A}) \cap \gamma^{-1}(\overline{X \setminus A}) = \gamma^{-1}(\partial A) = \emptyset.$$

Thus, P, Q are nontrivial closed sets of $[0, 1]$, with $P \cap Q = \emptyset$ and $P \cup Q = [0, 1]$. This contradicts the connectivity of the interval. Hence, any path joining $a \in A$ to $b \in X \setminus A$ must intersect the boundary ∂A at some point.

Q3. Let X be a second countable space. Suppose \mathcal{B} is an arbitrary basis for X . Show that there exists a countable basis \mathcal{B}' for X , such that $\mathcal{B}' \subset \mathcal{B}$. [5]

Solution. Fix a countable basis $\mathcal{U} = \{U_n\}_{n \geq 1}$. For each pair of numbers (m, n) , if possible, choose some $B_{m,n} \in \mathcal{B}$ such that

$$U_m \subset B_{m,n} \subset U_n.$$

Denote the collection $\mathcal{B}' = \{B_{m,n}\} \subset \mathcal{B}$. Clearly this collection is countable, as it is indexed by a subset of $\mathbb{N} \times \mathbb{N}$. Let us show that this is a basis for the topology on X .

Let U be any open set, and $x \in U$ is a point. Then, there is some U_n such that $x \in U_n \subset U$. Now, \mathcal{B} is a basis, and hence, there is some $B \in \mathcal{B}$ such that $x \in B \subset U_n$. Again, using the basis property of \mathcal{U} , there is some U_m such that $x \in U_m \subset B \subset U_n$. Now, this implies that there is $B_{m,n} \in \mathcal{B}'$, such that $U_m \subset B_{m,n} \subset U_n$. Observe that we have $x \in U_m \subset B_{m,n} \subset U_n \subset U$, i.e., $x \in B_{m,n} \subset U$. Since U and $x \in U$ was arbitrary, it follows that \mathcal{B}' is a basis for X , which is also countable.