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Q1. Consider the following separation properties: perfectly normal (PN), completely normal (CN), normal

(N), completely regular (CR), and regular (R). Look at the following diagram.

PN

CN

NCR

R

For each of the 10 arrows, decide whether the implication it represents is always true. Justify your

answer with either a proof (if it is always true) or a counterexample (if it is not). Please clearly mention

A ⇒ B or A ̸⇒ B for all the cases that you are attempting! [2× 10 = 20]

Solution. Here are all the true and false implications.

PN

CN

NCR

R

PN ⇒ CN: Suppose X is perfectly normal. Then, for any subspace Y ⊂ X, consider some subset

A ⊂ Y (closed in the subspace topology). Then, A = Y ∩ Ā. Now, by the perfect normality of

X, we have a continuous function f : X → [0, 1] such that f−1(0) = Ā. Consider the restriction

g := f |Y : Y → X, which is again continuous. Clearly, g−1(0) = f−1(0) ∩ Y = Ā ∩ Y = A. Thus,

Y is again perfectly normal. In other words, perfect normality is a hereditary property. Since any

perfectly normal space is normal, it follows that X is completely normal.

CN ⇒ N: As a space is a subspace of itself, completely normal spaces are normal by definition.

PN ⇒ N: Since PN ⇒ CN and CN ⇒ N, we have perfectly normal spaces are always normal.



PN ⇒ CR: Suppose X is a perfectly normal space. Let A ⊂ X be closed, and x ∈ X \ A. Since

X is perfectly normal, it is a Gδ-space. Thus, there are open sets Un ⊂ X such that A =
⋂

n≥1 Un.

Since x ̸∈ A, we must have some n0 such that x ̸∈ Un0 . Consider B = X \ Un0 . Then, A,B are

closed sets, and A ∩ B = ∅. We have a continuous function f : X → [0, 1] such that f−1(0) = B

and f−1(1) = A. In particular, f(x) = 0 and f(A) = 1. Thus, X is completely regular.

PN ⇒ CR (Alt. proof): Suppose X is perfectly normal. Let A ⊂ X be a closed set, and x ∈ X \A.
Then, there exists a continuous function f : X → [0, 1] such that f−1(0) = ∅ and f−1(1) = A (as ∅
is a closed set disjoint from A). Now, say c = f(x). Clearly, c ̸= 1, as c ̸∈ A = f−1(A). Consider the

map g : [0, 1] → [0, 1] given by

g(t) =

0, 0 ≤ t ≤ c,

t−c
1−c

, c ≤ t ≤ 1.

By pasting lemma, g is a continuous map. Consider h = g ◦ f : X → [0, 1]. Then, h(x) = g (f(x)) =

g(c) = 0, and for any a ∈ A we have h(a) = g (f(a)) = g(1) = 1. Thus, h separates x and A,

proving that X is completely regular.

CR ⇒ R: Suppose X is completely regular. Let A ⊂ X be closed, and x ̸∈ A. Then, there is a

continuous function f : X → [0, 1] such that f(x) = 0 and f(A) = 1. Then, U := f−1
[
0, 1

4

)
and

V := f−1
(
3
4
, 1
]
are open sets. Clearly, x ∈ U,A ⊂ V and U ∩ V = ∅. Thus, X is regular.

PN ⇒ R: Since PN ⇒ CR and CR ⇒ R, we have any perfectly normal space is regular.

Counterexample: Consider the space X = {−1, 0, 1} with the exlcuded-point topology with base

p = 0, given as

T = {∅, X, {−1} , {1} , {−1, 1}} .

The closed sets in this topology are

{∅, X, {0, 1}, {0,−1}, {0}} .

In this space, any two nonempty closed sets always intersect. Thus, the space is normal. In fact, any

(proper) open subset of this space is discrete, and hence again normal. Thus, (X, T ) is a completely

normal space.

CN ̸⇒ R: As noted, the spaceX is completely normal. Take A = {0}, which is closed, and x = 1 ̸∈ A.

Since the only open set containing 0 is X itself, we cannot separate x and A by open neighborhoods.

Thus, X is not regular.

CN ̸⇒ CR: Since CR ⇒ R, the same space X above cannot be completely regular either.

N ̸⇒ R: Again, the space X is normal. But X is not regular.

N ̸⇒ CR: As the space X is normal but not completely regular, we have the claim.



Q2. Given a space X, fix a subset ∅ ⊊ A ⊊ X. Let a ∈ A and b ∈ X \ A. If there is a path joining a to

b, show that the path must intersect the boundary ∂A. [5]

Solution. Let γ : [0, 1] → X be a path, with γ(0) = a, γ(1) = b. We have ∂A = Ā ∩ X \ A. If

possible, suppose γ does not intersect ∂A. Now, a ∈ A ⊂ Ā and b ∈ X \ A ⊂ X \ A, both of which

are closed sets. Consider P := γ−1
(
Ā
)
, Q := γ−1

(
X \ A

)
, which are closed sets of [0, 1]. Now,

∅ ̸= P,Q ⊊ [0, 1], as 0 ∈ P and 1 ∈ Q. Clearly, X = A ⊔ (X \A) ⊂ Ā ∪X \ A ⇒ X = Ā ∪X \ A,
and hence,

[0, 1] = γ−1(X) = γ−1
(
Ā ∪X \ A

)
= γ−1

(
Ā
)
∪ γ−1

(
X \ A

)
= P ∪Q.

As γ does not intersect ∂A = Ā ∩X \ A, we have

P ∩Q = γ−1
(
Ā
)
∩ γ−1

(
X \ A

)
= γ−1 (∂A) = ∅.

Thus, P,Q are nontrivial closed sets of [0, 1], with P ∩Q = ∅ and P ∪Q = [0, 1]. This contradicts the

connectivity of the interval. Hence, any path joining a ∈ A to b ∈ X \A must intersect the boundary

∂A at some point.

Q3. Let X be a second countable space. Suppose B is an arbitrary basis for X. Show that there exists a

countable basis B′ for X, such that B′ ⊂ B. [5]

Solution. Fix a countable basis U = {Un}n≥1. For each pair of numbers (m,n), if possible, choose

some Bm,n ∈ B such that

Um ⊂ Bm,n ⊂ Un.

Denote the collection B′ = {Bm,n} ⊂ B. Clearly this collection is countable, as it is indexed by a

subset of N× N. Let us show that this is a basis for the topology on X.

Let U be any open set, and x ∈ U is a point. Then, there is some Un such that x ∈ Un ⊂ U . Now,

B is a basis, and hence, there is some B ∈ B such that x ∈ B ⊂ Un. Again, using the basis property

of U , there is some Um such that x ∈ Um ⊂ B ⊂ Un. Now, this implies that there is Bm,n ∈ B′, such

that Um ⊂ Bm,n ⊂ Un. Observe that we have x ∈ Um ⊂ Bm,n ⊂ Un ⊂ U , i.e, x ∈ Bm,n ⊂ U . Since

U and x ∈ U was arbitrary, it follows that B′ is a basis for X, which is also countable.


