

Quiz 2

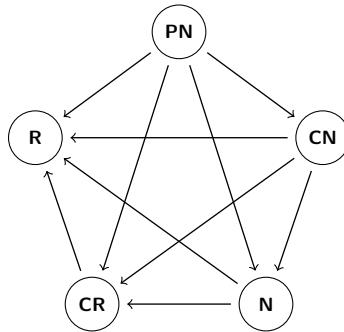
13th November, 2025

Time: 2 hrs

Total Marks: 30

Question 1 is mandatory. Attempt **one** more from the rest. You can score a maximum of **25**.

Q1. Consider the following separation properties: perfectly normal (**PN**), completely normal (**CN**), normal (**N**), completely regular (**CR**), and regular (**R**). Look at the following diagram.



For each of the 10 arrows, decide whether the implication it represents is always true. Justify your answer with either a proof (if it is always true) or a counterexample (if it is not). Please clearly mention $A \Rightarrow B$ or $A \not\Rightarrow B$ for all the cases that you are attempting! $[2 \times 10 = 20]$

Hint: There are exactly **six** true implications, and **four** false ones. There is a single counterexample which demonstrates that all four of those false implications fail! You might find it easier to prove the true statements first.

Q2. Given a space X , fix a subset $\emptyset \subsetneq A \subsetneq X$. Let $a \in A$ and $b \in X \setminus A$. If there is a path joining a to b , show that the path must intersect the boundary ∂A . $[5]$

OR

Q3. Let X be a second countable space. Suppose \mathcal{B} is an arbitrary basis for X . Show that there exists a countable basis \mathcal{B}' for X , such that $\mathcal{B}' \subset \mathcal{B}$. $[5]$

Definitions

- X is *perfectly normal* if given any two disjoint closed sets $A, B \subset X$, there is a continuous function $f : X \rightarrow [0, 1]$ such that $A = f^{-1}(0)$ and $B = f^{-1}(1)$.
- X is *completely normal* if every subspace of X is normal.
- X is *normal* if given any two disjoint closed sets $A, B \subset X$, there are open sets $U, V \subset X$ such that $A \subset U, B \subset V$ and $U \cap V = \emptyset$.
- X is *completely regular* if given a closed set $A \subset X$ and a point $x \in X \setminus A$, there is a continuous function $f : X \rightarrow [0, 1]$ such that $f(x) = 0$ and $f(A) = 1$.
- X is *regular* if given a closed set $A \subset X$ and a point $x \in X \setminus A$, there are open sets $U, V \subset X$ such that $x \in U, A \subset V$ and $U \cap V = \emptyset$.
- Given $A \subset X$, the *boundary* is defined as $\partial A = \bar{A} \cap \overline{X \setminus A}$.
- X is called *second countable* if there exists a basis for the topology, which is countable.