
Quiz 1

11th September, 2025

Time: 2 hrs Marks: /20

On the real line R, consider the collection of subsets

T→ := {∅,R}
⋃

{(a,∞) | a ∈ R} .

Attempt any question. You can get maximum 20.

Q1. Show that T→ is a topology on R.

Solution. Clearly ∅,R ∈ T→. Consider a collection {Uα ∈ T→}. If any Uα = ∅, we can ignore

them, and if any Uα = R, then clearly
⋃
Uα = R ∈ T→. Thus, assume that Uα = (aα,∞). Now,

for the set A = {aα} ⊂ R, there are two possibilities.

(a) A is lower bounded. Hence, there is some a0 = inf A. Now, clearly
⋃
(aα,∞) ⊂ (a0,∞),

as a0 ≤ aα for all α. Also, for any a0 < x, by the property of infimum (i.e., greatest lower

bound), we have a0 ≤ aα < x for some aα ∈ A. But then x ∈ (aα,∞). Consequently,

(a0,∞) ⊂
⋃
(aα,∞). Thus,

⋃
(aα,∞) = (a0,∞) ∈ T→.

(b) A is not lower bounded. Then,
⋃
(aα,∞) = R ∈ T→.

Finally, for a finite collection {Ui := (ai,∞)}ni=1, we have
⋂n

i=1(ai,∞) = (b0,∞), where b0 =

max1≤i≤n{ai}. Again, we can ignore any Ui = R, and if Ui = ∅ then the intersection is clearly

empty.

Thus, T→ is a topology on R.

Q2. Compare (i.e., strictly fine, strictly coarse or incomparable) T→ with the following.

i) The usual topology on R.
Solution. Clearly any (a,∞) is open in the usual topology, but a bounded open interval

(a, b) is not open in T→. Thus, T→ is strictly coarser than the usual topology.

ii) The lower limit topology Rl.

Solution. The lower limit topology is strictly finer than the usual topology, and hence, is

strictly finer than T→ as well.

Alternatively,

(a,∞) =
⋃
n≥1

[
a+

1

n
, a+ n

)
is clearly open in the lower limit topology. But [0, 1) is not open in T→.

iii) The upper limit topology Ru.

Solution. The upper limit topology is strictly finer than the usual topology, and hence, is

strictly finer than T→ as well.

Alternatively,

(a,∞) :=
⋃
n≥1

(a, a+ n]

is clearly open in the upper limit topology. But (0, 1] is not open in T→.



Q3. Determine (with justification) the closures of the following sets in (R, T→).

i) (0,∞).

Solution. For any x, an open set containing x will be of the form (y,∞) for some y < x,

and hence,

(y,∞) ∩ (0,∞) = (max {0, y} ,∞) ̸= ∅.

Thus, (0,∞) = R.

ii) (−∞, 0).

Solution. Any open set containing 0 will be of the form (−ϵ,∞) for some ϵ > 0, and

hence, (−ϵ, 0) ∩ (−∞, 0) = (−ϵ, 0) ̸= ∅. For any x > 0, we have (−∞, 0) ∩ (x
2
,∞) = ∅.

Thus, (−∞, 0) = (−∞, 0].

iii) {0}.
Solution. For any x ≤ 0, an open set containing x is of the form (y,∞) with y < x ≤ 0,

and hence, 0 ∈ (y,∞). Thus, x is a closure point. So, 0 ∈ (−∞, 0] ⊂ {0}. But by ii),

we have (−∞, 0] is closed. Hence, closure being the smallest closed set containing {0}, we
have {0} = (−∞, 0].

iv) A = {1, 2, . . . }.
Solution. By iii), it follows that {n} = (−∞, n]. Now, n ∈ A ⇒ {n} ⊂ Ā. So,

Ā ⊃
⋃
n≥1

{n} =
⋃
n≥1

(−∞, n] = R.

Thus, Ā = R.

v) B = {−1,−2, . . . }.
Solution. Again by iii), we have

B̄ ⊃ {−1} = (−∞,−1]

Also, B ⊂ (−∞,−1], which is closed by ii). Thus, B̄ = (−∞,−1].

Q4. Determine (with justification) whether (R, T→) is T0, T1, or T2.

Solution. We have {0} = (−∞, 0], and hence the topology is not T1 (and hence, not T2). For

any x ̸= y ∈ R, without loss of generality, assume x < y. Then, x ̸∈ (x,∞) but y ∈ (x,∞).

Thus, the topology is T0.

Q5. Prove or give counter-example to the following statements.

i) If a sequence (xn) converges to x in the usual topology, then xn → x in (R, T→) as well.

Solution. Since T→ is coarser than the usual topology, convergence in the usual topology

implies convergence in (R, T→).

ii) If a sequence (xn) converges to x in (R, T→), then xn → x in the usual topology as well.

Solution. Consider the sequence xn = n. Then, {xn} does not converge in the usual

topology. But for any x ∈ R, we have (x − ϵ,∞) contains all but finitely many natural

numbers. It follows that xn converges to any point in R in the topology T→.



Q6. Given a T1-space (X, T ) (with at least two points), prove that any continuous map f : (R, T→) →
(X, T ) is constant. Give an example of a space (Y,S) with Y = {0, 1}, and a nonconstant

continuous map f : (R, T→) → (Y,S).

Solution. Consider a continuous map f : (R, T→) → (X, T ), where X is T1. If possible, suppose

f is nonconstant. Then, we have some a ̸= b ∈ R such that x = f(a) ̸= f(b) = y ∈ X. Now, X

is T1 and hence, {x} and {y} are closed. Then, we have a ∈ f−1(x) and b ∈ f−1(y), two closed

sets. Since these closed sets are not R (as f is nonconstant), we must have

f−1(x) = (−∞, a′], f−1(y) = (−∞, b′],

for some a ≤ a′, b ≤ b′. But then the closed set intersects, contradicting x ̸= y. Hence, f must

be constant.

Consider the space Y = {0, 1} with the topology

S = {∅, {1} , {0, 1}} .

Define the map

f : R → Y

x 7→

1, x > 0

0, x ≤ 0.

Alternatively, consider the indiscrete topology on Y . Then, any map into Y (from any space) is

always continuous. In particular, we can take any nonconstant map R → Y .

Q7. Consider the equivalence relation : a ∼ b if and only if a− b ∈ Z. Show that the induced quotient

space is an indiscrete space.

Solution. Observe that Z = R in the topology (R, T→). Now, consider the quotient map

q : R → R/∼. A set C ⊂ R/∼ is closed if and only if q−1(C) is closed in (R, T→). If possible,

suppose ∅ ⊊ C ⊊ R/∼ is a closed set. Then q−1(C) is closed, and ∅ ̸= q−1(C) ̸= R. Hence, we

must have

q−1(C) = (−∞, a]

for some a. But then, there is some integer n0 ∈ q−1(C). This implies,

n0 ∈ q−1(C) ⇒ q(n0) ∈ C ⇒ Z = q−1 (q(n0)) ⊂ q−1(C)

⇒R = Z ⊂ q−1(C) = q−1(C) ⇒ q−1(C) = R,

which is a contradiction. Since C was arbitrary closed set, we have R/∼ is indiscrete.

Q8. Consider the equivalence relation : a ∼ b if and only if either

a, b ∈ R \ Z, and a = b, or, a, b ∈ Z.

Show that the induced quotient space is an indiscrete space.

Solution. Again, consider some closed set ∅ ⊊ C ⊊ R/∼. Then, we have q−1(C) = (−∞, a] for

some a. But then again, there is some integer n0 ∈ q−1(C). We get Z = q−1(q(n0)) ⊂ q−1(C) ⇒
R = Z ⊂ q−1(C) = q−1(C) ⇒ q−1(C) = R, a contradiction. Thus, the quotient topology R/∼ is

an indiscrete space.


