

Quiz 1

11th September, 2025

Time: 2 hrs

Marks: _____/20

On the real line \mathbb{R} , consider the collection of subsets

$$\mathcal{T}_\rightarrow := \{\emptyset, \mathbb{R}\} \bigcup \{(a, \infty) \mid a \in \mathbb{R}\}.$$

Attempt any question. You can get **maximum 20**.

Q1. Show that \mathcal{T}_\rightarrow is a topology on \mathbb{R} . [2]

Q2. Compare (i.e., strictly fine, strictly coarse or incomparable) \mathcal{T}_\rightarrow with the following. [1 \times 3 = 3]

- i) The usual topology on \mathbb{R} .
- ii) The lower limit topology \mathbb{R}_l .
- iii) The upper limit topology \mathbb{R}_u .

Q3. Determine (with justification) the closures of the following sets in $(\mathbb{R}, \mathcal{T}_\rightarrow)$. [1 \times 5 = 5]

- i) $(0, \infty)$.
- ii) $(-\infty, 0)$.
- iii) $\{0\}$.
- iv) $A = \{1, 2, \dots\}$.
- v) $B = \{-1, -2, \dots\}$.

Q4. Determine (with justification) whether $(\mathbb{R}, \mathcal{T}_\rightarrow)$ is T_0 , T_1 , or T_2 . [1 \times 3 = 3]

Q5. Prove or give counter-example to the following statements. [1 \times 2 = 2]

- i) If a sequence (x_n) converges to x in the usual topology, then $x_n \rightarrow x$ in $(\mathbb{R}, \mathcal{T}_\rightarrow)$ as well.
- ii) If a sequence (x_n) converges to x in $(\mathbb{R}, \mathcal{T}_\rightarrow)$, then $x_n \rightarrow x$ in the usual topology as well.

Q6. Given a T_1 -space (X, \mathcal{T}) (with at least two points), prove that any continuous map $f : (\mathbb{R}, \mathcal{T}_\rightarrow) \rightarrow (X, \mathcal{T})$ is constant. Give an example of a space (Y, \mathcal{S}) with $Y = \{0, 1\}$, and a nonconstant continuous map $f : (\mathbb{R}, \mathcal{T}_\rightarrow) \rightarrow (Y, \mathcal{S})$. [2 + 1 = 3]

Q7. Consider the equivalence relation : $a \sim b$ if and only if $a - b \in \mathbb{Z}$. Show that the induced quotient space is an indiscrete space. [4]

Q8. Consider the equivalence relation : $a \sim b$ if and only if either

$$a, b \in \mathbb{R} \setminus \mathbb{Z}, \text{ and } a = b, \quad \text{or,} \quad a, b \in \mathbb{Z}.$$

Show that the induced quotient space is an indiscrete space. [4]

Definitions

1. The *lower limit topology* on \mathbb{R} is generated by the basis $\{[a, b) \mid a, b \in \mathbb{R}\}$.
2. The *upper limit topology* on \mathbb{R} is generated by the basis $\{(a, b] \mid a, b \in \mathbb{R}\}$.
3. Let \mathcal{T}_1 and \mathcal{T}_2 be two topologies on X . If $\mathcal{T}_1 \subset \mathcal{T}_2$, then we say \mathcal{T}_1 is *coarser* than \mathcal{T}_2 (and \mathcal{T}_2 is *finer* than \mathcal{T}_1). If $\mathcal{T}_1 \not\subset \mathcal{T}_2$ and $\mathcal{T}_2 \not\subset \mathcal{T}_1$, then they are *incomparable*.
4. Given a space X , we say
 - (a) X is T_0 if given any two points $x \neq y \in X$, there exists some open set $U \subset X$ such that either $x \in U, y \notin U$ or $x \notin U, y \in U$ (i.e., U contains exactly one of $\{x, y\}$).
 - (b) X is T_1 if any singleton subset of X is closed.
 - (c) X is T_2 if given any two $x \neq y \in X$, there are open neighborhoods $x \in U, y \in V$ such that $U \cap V = \emptyset$.
5. A sequence $\{x_n\}$ in a topological space X converges to some point $x \in X$ if for any open neighborhood $x \in U \subset X$, we have some number $N = N_U \geq 1$, such that $x_n \in U$ for all $n \geq N$.
6. Given any equivalence relation \sim on a space (X, \mathcal{T}) , the induced quotient space is

$$X/\sim := \{[x] := \{y \in X \mid x \sim y\} \mid x \in X\},$$

with the quotient topology

$$\mathcal{T}_q := \{U \subset X/\sim \mid q^{-1}(U) \in \mathcal{T}\},$$

where $q : X \rightarrow X/\sim$, given by $q(x) = [x]$, is the quotient map.