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Q1. (Furstenberg) Consider the integers Z. For a,b € Z with a # 0, denote the set
P(a,b) =aZ +b={an+b|neZ}={bbtabt2a,...} CZ.

a) Show that B = {P(a,b) | a,b € Z, a # 0} is a basis for a topology, say, 7 on Z.

Solution: Clearly P(1,0) = 1.Z + 0 = Z. Suppose = € P(a,b) N P(c,d) for some a,c # 0.
Then, we can write
r=ma+b=nc+d,

for some m,n € Z. Consider
[ =lem(a,c) #0.

Then, we have

[l =aia = cc,
for some a1, c; € Z. We claim that
x € P(l,xz) C P(a,b) N P(c,d).
Say, y =z + kl € P(l,z) for some k € Z. Then,
y=x+kl=ma+b+ kaja =b+ (m+ kay)a € P(a,b),

and
y=xz+kl=nc+d+kcic=d+ (n+key)c € P(e,d).

Hence, B is a basis for a topology on Z.

b) Prove that any basic open set P(a,b) € B is also closed in (Z,T).

Solution: Note that P(a,b) = P(—a,b), and so, we can assume a > 1. We claim that

a—1

Z\ P(a,b) = ] P(a,b+ j).

j=1

Note that for a = 1, the right-hand side is empty, and we clearly have P(1,b) = Z+b = Z, which
is closed. If possible, suppose for some 1 < j < a — 1, we have

r=na+b+j=ma+b=na+j=ma=j=(m-—n)a.



This is impossible. Thus,

P(a,b) N (DP(CL,b—l-j)) :@iDP(a,b—i-j) CZ\ P(a,b).

=1 =1

Next, suppose z ¢ P(a,b). By the Euclidean algorithm, we have © — b = na + r for some
0 <r < a. But then,
r=na+b+re Pla,b+r).

Thus, Z \ P(a,b) = JZ] P(a,b+ j).

=

Alternative solution: Without loss of generality, one can assume thata > 0and 0 < b < a—1.
Next, one can easily observe

Z=aZU(@aZ+1)U...U(aZ+a—1).
Then, we have
Z\ P(a,b) =aZ U (aZ+1)U...(aZ+b—1)U(aZ+b+1)U(aZ+a—1),

which is a union of (basic) open sets. Thus, P(a,b) is closed.
c) Justify that one can write : Z\ {1, =1} = U, s 4 prime (P, 0)-

Solution: For any n # =41, there exists some prime number p such that n = nip. Then,
n € P(p,0). Clearly, no prime number divides +1, and so, £1 ¢ P(p,0) for any prime p. Thus,

Z \ {:tl} - Up is a prime P<p7 O)
d) Prove that there are infinitely many prime numbers.

Solution: Suppose, there are finitely many prime numbers, say {p1,...,pr}. Now,

k
Z\ {1} = PO

is then a finite union of closed sets, and hence, {41} is open. But any basic open set is infinite.
Thus, {41} cannot be open, a contradiction. Hence, there are infinitely many prime numbers.

Q2. Suppose X is an infinite set, equipped with the cofinite topology. Prove the following.

a) X is compact.

Solution: Suppose X = (J,; Ua is an open cover. Fix some z € X, and then z € U,, for
some ap € I. Now, U = X \ {x1,...,2x}. Then, we have z; € U,, for some «; € I. Clearly,

X = Ufzo U.,, is a finite sub-cover.



b) If {z,} is a sequence in X such that no point is repeated infinitely many times, then x,, converges
to every point of X.

Solution: Let x € X be fixed. Say x € U C X is some open neighborhood. Then, X \ U =
{y1,...,yr}. Now, in the sequence {z,}, none of the values are repeated infinitely many times.
In particular, the set

By = {00 = 1)
is finite for all 1 < j < k. Hence, there exists some N > 1 such that x,, & {y1,...,yx} for all
n > N. But then z,, € U for all n > N. Thus, z,, — .

c) If {z,} is a sequence in X such that exactly one point, say y, is repeated infinitely many times,
then x,, converges to only y, and no other point of X.

Solution: Suppose, the point y is repeated infinitely many times in x,, and no other point is
repeated infinitely many times. Say, y € U is an open neighborhood. Then, X\U = {y1,...,yx}.
Clearly, v & {v1,...,yx}. Again from the hypothesis, there exists some N > 1 such that
Tn & {y1,...,yx} forall m > N. Thus, z,, € U for all n > N. As U is an arbitrary open
neighborhood, we have x,, — .

Now, if possible, suppose x, — z # y. Consider y € V = X \ {y}. Then, there exists some
N > 1 such that x,, € V for all n > N. But this contradicts that z,, = y for infinitely many
values of n. Hence, z,, A4 2z # y.

Now, suppose {x,,} is some arbitrary sequence in X which converges to some z. Show that the sequence
must be either of type b) or of type ¢).

Solution: Suppose z,, — z. If {z,,} is of type b) or of type c), we are done. If not, then there are
at least two distinct values, say, y; # ys is repeated infinitely many times in {z,}. Without loss of
generality, assume x # 5. Then, we have an open neighborhood = € U = X \ {y»}. Since z,, — z,
there exists some N > 1 such that z, € U for all n > N. But this contradicts that x,, = y, for
infinitely many values of n. Thus, x,, /4 x. This proves the claim.

Q3. Let X be a space.

a) Given a locally finite collection {F,}, ; of subsets of X, show that ,.; Fo = U,c; Fa-

Solution: For all «, we have

F,c|JF. c|JFu=TF.c|JF.

and hence, UaF_a C Ua F,. Conversely, suppose

acl



Now, since {F,} is a locally finite collection, there exists an open neighborhood x € U C X,
such that U intersects only finitely many of {F,}. Thus, there is a finite subset of indices J C [
(possibly empty!) such that

UNFE, =0, ael\J

Now,

is an open set. Also, z € V/, since x ¢ UaeIF But clearly, VN F, = () for all a € I, and thus,

VN (L&JFQ> =0

This contradicts = & | J,__, Fn. Hence, we have Uael = Uoer Fa-

acl

Suppose C = {Cy},c7 is a locally finite collection of closed subsets of X, so that X =] .7 Ca

For some space Y/, let f, : Cy, — Y be a collection of continuous functions such that f,(x) =
fs(x) for any x € C,NCps. Then, prove that there exists a unique continuous function o : X — Y
such that h(z) = f.(x) whenever z € C,,.

Solution: Define h: X — Z by
h(z) = fo(z), ifzeC,.

Since for any z € C, N Cs we have f,(x) = fz(z), it follows that h is well-defined. Since
X = Uaes Ca, clearly h is the unique map satisfying h|c, = fo. To show h is continuous, let
F C Y be an arbitrary closed set. Now,

= J f21(F)

Since f, : C,, — Y is continuous, we have f 1(F) is closed in C,. Since C, is closed, we have
f3H(F) is closed in X. Finally, since {C,} is a locally finite family, it follows that {f;'(F)},;
is also locally finite. Hence,

—UnE =ULn®E =UL'E =)

acl ael acl

Thus, f~1(F) is closed. Hence, f is continuous.

Give an example of an infinite collection of closed sets, where the above pasting argument fails.

Solution: Consider the functions,

fu: [—1,—%] —R fo:[0,1] =R

r 0, 1.



Q4. Let X be a compact, T, space. Consider the identification space Z = =

Then, [0,1] = U,»,[—1,—2] U[0,1]. Also, these functions pathc nicely to give the function
h:[-1,1] - R

0, <0
T >

1, x>1.

Clearly, h is not continuous.

X><{Oj}’ and the one-point

compactification ¥ of Y := X x (0,1). Prove the following. 243+5=10

(a)

Z is compact.

Solution: Since Z is a quotient space of a compact space X x [0, 1], we have Z is compact.

Y is locally compact, T5.

Solution: Clearly, Y is T, being the product of T5-spaces. Consider a basic openset U x V C Y,

and some point (z,t) € U x V. Since both X and (0, 1) are locally compact, we have compact
neighborhoods A, B suchthat z € AC ACUandye BC BC V. Then, (z,y) € Ax B C
Ax B CUxV. Clearly, A x B is compact, and (z,y) € A x B C int(A x B). Thus, Y is
locally compact.

~

Z is homeomorphic to Y.

Solution: Consider the map f : X x [0,1] — Y defined by

(x,t), fO0<t<l,

flx,t) =
(z:1) oo, ift=0ort=1.

Let us check that f is continuous. For any open set U C Y C Y, we have fYU)=U c
X x(0,1) C X x [0,1], as f|xx(o,1) is the identity map. As X x (0, 1) is open, we have f~(U)
is open. Next, consider some open neighborhood V' of co. Then V = {oco} U (Y \ C), where
C C Y is a compact set (which is also closed, as the space is T3). Now, f~}(C) = C' is again
compact in X x (0,1) and hence in X x [0,1]. Then,

FHV) = F o) U Y\ O) = X x {0,1} U (Y \ €)= X x [0,1]\ C.

As C'is closed, we have f~1(V) is open. Thus, f is continuous.

X x[0,1]
X x{0,1}

continuous by the property of quotient topology. Clearly, f is a bijection. Finally, Z is compact,

Now, f|XX{0,1} is constant, and hence, we have an induced map f: 7 = — Y which is

and Y is T} as it is the one-point compactification of a locally compact, T, space. Hence, f is an
open map. But then f: Z — Y is a homeomorphism.



Q5. Prove (or disprove) the following.

a) For any subspace A C X, we have X \ X \ A =int(A).

Solution: Since X \ A is a closed set, we have X \ X \ A is open. Hence,
X\VACX\A=X\X\ACX\(X\A)=A=X\X\ACint(A).

Also, for any = € int(A) C A, we have an open neighborhood U = int(A) such that UN(X\ A) =
0. Thus, € X\ A= 2 € X\ X\ A Hence, we have X \ X \ A = int(U).

b) For any subspace A C X, we have int(A) = int <int(A)>.

Solution: Consider A = [0,1) U (1,2] C R. Then, int(A) = (0,1) U (1,2). On the other hand,

int (M) — int (m) — int ([0,2]) = (0,2).

Thus, the statement is not always true.

c) For any subspace A C X, we have int(A) = int (int(A)).

Solution: We have

int(A) C int(A) = int(A) C int (int(A)) :
as the interior is the largest open set contained in a set. Taking closure, we have
int(A) C int (int(A)).

On the other hand,

int (int(A)> € mt(A) = int <int(A)> C mt(A).

Hence, we have the equality int(A) = int <int(A)).
d) A compact space is first countable at least at one point.

Solution: Consider the cofinite topology on R. It is compact since any cofinite topology is
compact. For a point z € R, if possible, let {U,} be a countable neighborhood basis. We have
F, = R\ U, is finite, and hence, F' = Uflo:l F,, is at most countably infinite. We have some
y € R\ (FU{z}). Then, V =R\ {y} is an open neighborhood of x. Clearly, for any n, we have

U, CV=R\F,CR\{y} =yekl,

a contradiction. Thus, {U,} is not a neighborhood basis at z. As = € R is arbitrary, we see that
R with cofinite topology is not first countable at any point.



Q6.

Q7.

Q8.

Show that a function f : X — Y is continuous if and only if for any subset A C X, we have

f(A) C f(A).

Solution: Suppose f is continuous. Now, for any A C Y, we have f(A) C Y is closed. Then,

f (M) is closed in X. We have,

FA) CFA) = A fH(f(A) € 7 (FA) = A 17 (FA)) = f(A) ¢ F(A).

Conversely, suppose f(A) C f(A) for any A C X. For any C' C Y closed, we then have
F(F@) cr =0=C=FTC)c f(0),

Thus, f~1(C) = f~1(C), i.e, f71(C) is closed. Hence, f is continuous.

Suppose X is a topological space. Show that the topology on X is indiscrete if and only if given any
space Y, any function f : Y — X is continuous.

Solution: Suppose X is indiscrete. Then the only open sets are () and X. Now, for any function
f:Y = X, we have f71(0)) =0 and f~!(X) =Y are open in Y. Thus, f is continuous.

Conversely, suppose for any space Y and function f : Y — X we have f is continuous. Consider Y
to be X equipped with the indiscrete topology. Then, Id : Y — X is a continuous map. Now, for
any open set ) # U C X, we have Id"(U) = U is open in Y, which contradicts that Y is indiscrete.
Thus, there are no nontrivial open sets in X. In other words, X is indiscrete.

Show that the product of a Lindelof space X and a compact space Y is again Lindelof.

Solution: Suppose X is Lindelof and Y is compact. Consider an open cover {U,} of X x Y. For each
x € X, we have {z} x Y is a compact set in X x Y. Hence, there is a finite sub-cover

{z} xY c | U,
aEy

where J, is a finite indexing set. By the tube lemma, there exists x € O, C X, such that

open
{z}xY CO, xY C | Vs
We now have a cover X = UxeX O,. Since X is Lindelof, there is a countable sub-cover, say,

X =2, O,,. Hence, we have

XxY = onlecU U Ve

1=1 a€Jy,

Since a countable union of finite sets is again countable, we have a countable sub-cover of X x Y.
Thus, X x Y is Lindelof.



Q9. Let X be a second countable space. Show that there exists a countable subset A C X, such that
X = A.

Solution: Let B = {B;} be a countable basis of X. For each i, choose some z; € B;. Then, A = {z;}
is clearly a countable set. We claim that X = A. For any z € X, consider an open neighborhood
x € U. Then, there exists some i so that z € B;, C U. Now, z;, € B;, CU = UNA# (. Thus,
x € A. Since x € X is arbitrary, we have X = A.

Q10. Let X,Y be given spaces. For any K C X, and U C Y, consider the collection of continuous maps
W(K,U) ={f:X —= Y| fis continuous, f(K)C U}.
Next, consider the collection
S ={W(K,U)| K C X is compact, U CY is open}.

The topology on
Y* :=Map(X,Y) ={f: X =Y continuous}

generated by S as a sub-basis, is called the compact-open topology.

a) Suppose X is locally compact. Show that the evaluation map

ev:Y¥x X —Y

(f,x) — f(x)

is continuous, where Y% has the compact-open topology.

Solution: Say U C Y is an open set. Let (f,z) € ev™'(U). Then, we have
ev(f,z) = f(z) €U =z € f1(U).
Since X is locally compact, we have some compact set K C X such that
re€int(K)C K C f1(U).

Consider the (sub-basic) open set W(K,U) C YX. By construction, f € W(K,U). Observe
that for any (g,y) € W(K,U) x K, since g(K) C U, we have

ev(g,y) = gly) € U = (g,y) € ev™ ' (U).
Thus, we have an open set,
(z,f) € W(K,U) x int(K) C ev ' (U).

This proves that ev is a continuous map.



b) For any map f: X x Y — Z, define the adjoint map as

X =z
z e (y = f(z.y)).

Assume ZY has the compact-open topology.

1)

Show that if f is continuous, then f” is continuous.

Solution: Consider a sub-basic open set W(K,U) C ZY, where K C Y is compact, and
U C Z is open. Consider some

v e (") (W(K,U)).
Then, for any y € K, we have

fr@)y) = flz,y) € U.

In other words, we have {z} x K C f~!(U). Since f is continuous, we have f~1(U) is
open. Then, by the tube lemma, there exists some open neighborhood x € V' C X, such
that V x K C f~1(U). Now, for any v € V and y € K, we have

(") ()(y) = f(v,y) €U.
Hence, z € V C (f*)' (W(K,U)). Thus, f" is continuous.

Suppose Y is locally compact. Show that if f” is continuous then f is continuous

Solution: Observe that we have a commutative diagram

A xIdy

X xY 7Y xy —< 7

Indeed, for any (z,y) € X x Y, we have

ev ((f* xIdy) (z,y)) = ev (¥ = flz,y),y) = f(z,y).

Thus, we have the equation
evo (fA xIdy) = f.

Since Y is locally compact, we see that ev : ZY¥ x Y — Z is continuous. Also, f" x Idy is
continuous, being the product of two continuous maps. Hence, f, being their composition,
is also continuous.

c) (J.H.C. Whitehead) Suppose ¢ : X — Y is a quotient map, and Z is locally compact. Show that
the product

p=gqxldyz: X xXZ —Y xZ

(x,2) — (q(x), 2)



is a quotient map.

Solution: Suppose f : Y x Z — W is some arbitrary set map, such that, fop: X x Z — W is

continuous.
Xxz—2U2 vz
lf
fo(gxIdyz) W

Then, (fop)" : X — W7 is continuous. Now, we have the map f" : Y — WZ. Observe that
forany x € X, and z € Z, we have

((fop) () (2) = (fop) (z,2) = [ (a(x), 2) = (/" (a(2))) (2).

Thus, we have
(fop)" = froq.
Now, f o ¢ is continuous, and ¢ is given to be a quotient map. Hence, f" : Y — WZ% is

continuous. Since Z is locally compact, this implies that f is continuous. But then by the
universal property of the quotient map, we have p = ¢ x Idz is a quotient map.

Let f: X - Y and g : A — B be quotient maps, and Y, A be locally compact. Show that the
product

g=fxg: XxXxA—YXxB
(z,a) — (f(z),9(a))

Solution: It is easy to see that the diagram

fxIda Idy xg

X x A Y x A

\_/

fxg

Y xB

commutes. Since A is locally compact, it follows that f x Id 4 is a quotient map. Similarly, since
Y is locally compact, we have Idy x ¢ is a quotient map. Then, f X g, being a composition of
two quotient maps, is again a quotient map.



