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Q1. (Furstenberg) Consider the integers Z. For a, b ∈ Z with a ̸= 0, denote the set

P (a, b) := aZ+ b = {an+ b | n ∈ Z} = {b, b± a, b± 2a, . . . } ⊂ Z.

a) Show that B := {P (a, b) | a, b ∈ Z, a ̸= 0} is a basis for a topology, say, T on Z.

Solution: Clearly P (1, 0) = 1.Z + 0 = Z. Suppose x ∈ P (a, b) ∩ P (c, d) for some a, c ̸= 0.

Then, we can write

x = ma+ b = nc+ d,

for some m,n ∈ Z. Consider
l = lcm(a, c) ̸= 0.

Then, we have

l = a1a = c1c,

for some a1, c1 ∈ Z. We claim that

x ∈ P (l, x) ⊂ P (a, b) ∩ P (c, d).

Say, y = x+ kl ∈ P (l, x) for some k ∈ Z. Then,

y = x+ kl = ma+ b+ ka1a = b+ (m+ ka1)a ∈ P (a, b),

and

y = x+ kl = nc+ d+ kc1c = d+ (n+ kc1)c ∈ P (c, d).

Hence, B is a basis for a topology on Z.

b) Prove that any basic open set P (a, b) ∈ B is also closed in (Z, T ).

Solution: Note that P (a, b) = P (−a, b), and so, we can assume a ≥ 1. We claim that

Z \ P (a, b) =
a−1⋃
j=1

P (a, b+ j).

Note that for a = 1, the right-hand side is empty, and we clearly have P (1, b) = Z+ b = Z, which
is closed. If possible, suppose for some 1 ≤ j ≤ a− 1, we have

x = na+ b+ j = ma+ b ⇒ na+ j = ma ⇒ j = (m− n)a.



This is impossible. Thus,

P (a, b) ∩

(
a−1⋃
j=1

P (a, b+ j)

)
= ∅ ⇒

a−1⋃
j=1

P (a, b+ j) ⊂ Z \ P (a, b).

Next, suppose x ̸∈ P (a, b). By the Euclidean algorithm, we have x − b = na + r for some

0 ≤ r < a. But then,

x = na+ b+ r ∈ P (a, b+ r).

Thus, Z \ P (a, b) =
⋃a−1

j=1 P (a, b+ j).

Alternative solution: Without loss of generality, one can assume that a > 0 and 0 ≤ b < a− 1.

Next, one can easily observe

Z = aZ ⊔ (aZ+ 1) ⊔ . . . ⊔ (aZ+ a− 1) .

Then, we have

Z \ P (a, b) = aZ ⊔ (aZ+ 1) ⊔ . . . (aZ+ b− 1) ⊔ (aZ+ b+ 1) ⊔ (aZ+ a− 1) ,

which is a union of (basic) open sets. Thus, P (a, b) is closed.

c) Justify that one can write : Z \ {1,−1} =
⋃

p is a prime P (p, 0).

Solution: For any n ̸= ±1, there exists some prime number p such that n = n1p. Then,

n ∈ P (p, 0). Clearly, no prime number divides ±1, and so, ±1 ̸∈ P (p, 0) for any prime p. Thus,

Z \ {±1} =
⋃

p is a prime P (p, 0).

d) Prove that there are infinitely many prime numbers.

Solution: Suppose, there are finitely many prime numbers, say {p1, . . . , pk}. Now,

Z \ {±1} =
k⋃

i=1

P (pi, 0)

is then a finite union of closed sets, and hence, {±1} is open. But any basic open set is infinite.

Thus, {±1} cannot be open, a contradiction. Hence, there are infinitely many prime numbers.

Q2. Suppose X is an infinite set, equipped with the cofinite topology. Prove the following.

a) X is compact.

Solution: Suppose X =
⋃

α∈I Uα is an open cover. Fix some x ∈ X, and then x ∈ Uα0 for

some α0 ∈ I. Now, U = X \ {x1, . . . , xk}. Then, we have xi ∈ Uαi
for some αi ∈ I. Clearly,

X =
⋃k

i=0 Uαi
is a finite sub-cover.



b) If {xn} is a sequence in X such that no point is repeated infinitely many times, then xn converges

to every point of X.

Solution: Let x ∈ X be fixed. Say x ∈ U ⊂ X is some open neighborhood. Then, X \ U =

{y1, . . . , yk}. Now, in the sequence {xn}, none of the values are repeated infinitely many times.

In particular, the set

Fj = {xn | xn = yj}

is finite for all 1 ≤ j ≤ k. Hence, there exists some N ≥ 1 such that xn ̸∈ {y1, . . . , yk} for all

n ≥ N . But then xn ∈ U for all n ≥ N . Thus, xn → x.

c) If {xn} is a sequence in X such that exactly one point, say y, is repeated infinitely many times,

then xn converges to only y, and no other point of X.

Solution: Suppose, the point y is repeated infinitely many times in xn, and no other point is

repeated infinitely many times. Say, y ∈ U is an open neighborhood. Then, X \U = {y1, . . . , yk}.
Clearly, y ̸∈ {y1, . . . , yk}. Again from the hypothesis, there exists some N ≥ 1 such that

xn ̸∈ {y1, . . . , yk} for all n ≥ N . Thus, xn ∈ U for all n ≥ N . As U is an arbitrary open

neighborhood, we have xn → y.

Now, if possible, suppose xn → z ̸= y. Consider y ∈ V := X \ {y}. Then, there exists some

N ≥ 1 such that xn ∈ V for all n ≥ N . But this contradicts that xn = y for infinitely many

values of n. Hence, xn ̸→ z ̸= y.

Now, suppose {xn} is some arbitrary sequence in X which converges to some x. Show that the sequence

must be either of type b) or of type c).

Solution: Suppose xn → x. If {xn} is of type b) or of type c), we are done. If not, then there are

at least two distinct values, say, y1 ̸= y2 is repeated infinitely many times in {xn}. Without loss of

generality, assume x ̸= y2. Then, we have an open neighborhood x ∈ U = X \ {y2}. Since xn → x,

there exists some N ≥ 1 such that xn ∈ U for all n ≥ N . But this contradicts that xn = y2 for

infinitely many values of n. Thus, xn ̸→ x. This proves the claim.

Q3. Let X be a space.

a) Given a locally finite collection {Fα}α∈I of subsets of X, show that
⋃

α∈I Fα =
⋃

α∈I Fα.

Solution: For all α, we have

Fα ⊂
⋃
α

Fα ⊂
⋃
α

Fα ⇒ Fα ⊂
⋃
α

Fα,

and hence,
⋃

α Fα ⊂
⋃

α Fα. Conversely, suppose

x ∈
⋃
α

Fα \
⋃
α∈I

Fα.



Now, since {Fα} is a locally finite collection, there exists an open neighborhood x ∈ U ⊂ X,

such that U intersects only finitely many of {Fα}. Thus, there is a finite subset of indices J ⊂ I

(possibly empty!) such that

U ∩ Fα = ∅, α ∈ I \ J.

Now,

V = U \
⋃
α∈J

Fα

is an open set. Also, x ∈ V , since x ̸∈
⋃

α∈I Fα. But clearly, V ∩ Fα = ∅ for all α ∈ I, and thus,

V ∩

(⋃
α

Fα

)
= ∅.

This contradicts x ̸∈
⋃

α∈I Fα. Hence, we have
⋃

α∈I Fα =
⋃

α∈I Fα.

b) Suppose C = {Cα}α∈I is a locally finite collection of closed subsets of X, so that X =
⋃

α∈I Cα.

For some space Y , let fα : Cα → Y be a collection of continuous functions such that fα(x) =

fβ(x) for any x ∈ Cα∩Cβ. Then, prove that there exists a unique continuous function h : X → Y

such that h(x) = fα(x) whenever x ∈ Cα.

Solution: Define h : X → Z by

h(x) = fα(x), if x ∈ Cα.

Since for any x ∈ Cα ∩ Cβ we have fα(x) = fβ(x), it follows that h is well-defined. Since

X =
⋃

α∈I Cα, clearly h is the unique map satisfying h|Cα = fα. To show h is continuous, let

F ⊂ Y be an arbitrary closed set. Now,

h−1(F ) =
⋃
α∈I

f−1
α (F ).

Since fα : Cα → Y is continuous, we have f−1
α (F ) is closed in Cα. Since Cα is closed, we have

f−1
α (F ) is closed in X. Finally, since {Cα} is a locally finite family, it follows that {f−1

α (F )}α∈I
is also locally finite. Hence,

f−1(F ) =
⋃
α∈I

f−1
α (F ) =

⋃
α∈I

f−1
α (F ) =

⋃
α∈I

f−1
α (F ) = f−1(F ).

Thus, f−1(F ) is closed. Hence, f is continuous.

c) Give an example of an infinite collection of closed sets, where the above pasting argument fails.

Solution: Consider the functions,

fn :

[
−1,− 1

n

]
→ R

x 7→ 0,

f0 : [0, 1] → R
x 7→ 1.



Then, [0, 1] =
⋃

n≥1[−1,− 1
n
] ∪ [0, 1]. Also, these functions pathc nicely to give the function

h : [−1, 1] → R

x 7→

0, x < 0

1, x ≥ 1.

Clearly, h is not continuous.

Q4. Let X be a compact, T2 space. Consider the identification space Z := X×[0,1]
X×{0,1} , and the one-point

compactification Ŷ of Y := X × (0, 1). Prove the following. 2 + 3 + 5 = 10

(a) Z is compact.

Solution: Since Z is a quotient space of a compact space X × [0, 1], we have Z is compact.

(b) Y is locally compact, T2.

Solution: Clearly, Y is T2, being the product of T2-spaces. Consider a basic open set U ×V ⊂ Y ,

and some point (x, t) ∈ U × V . Since both X and (0, 1) are locally compact, we have compact

neighborhoods A,B such that x ∈ Å ⊂ A ⊂ U and y ∈ B̊ ⊂ B ⊂ V . Then, (x, y) ∈ Å × B̊ ⊂
A × B ⊂ U × V . Clearly, A × B is compact, and (x, y) ∈ Å × B̊ ⊂ int(A × B). Thus, Y is

locally compact.

(c) Z is homeomorphic to Ŷ .

Solution: Consider the map f : X × [0, 1] → Ŷ defined by

f(x, t) =

(x, t), if 0 < t < 1,

∞, if t = 0, or t = 1.

Let us check that f is continuous. For any open set U ⊂ Y ⊂ Ŷ , we have f−1(U) = U ⊂
X × (0, 1) ⊂ X × [0, 1], as f |X×(0,1) is the identity map. As X × (0, 1) is open, we have f−1(U)

is open. Next, consider some open neighborhood V of ∞. Then V = {∞} ∪ (Y \ C), where

C ⊂ Y is a compact set (which is also closed, as the space is T2). Now, f−1(C) = C is again

compact in X × (0, 1) and hence in X × [0, 1]. Then,

f−1(V ) = f−1(∞) ∪ f−1(Y \ C) = X × {0, 1} ∪ (Y \ C) = X × [0, 1] \ C.

As C is closed, we have f−1(V ) is open. Thus, f is continuous.

Now, f |X×{0,1} is constant, and hence, we have an induced map f̃ : Z = X×[0,1]
X×{0,1} → Ŷ , which is

continuous by the property of quotient topology. Clearly, f̂ is a bijection. Finally, Z is compact,

and Ŷ is T2 as it is the one-point compactification of a locally compact, T2 space. Hence, f̃ is an

open map. But then f̃ : Z → Ŷ is a homeomorphism.



Q5. Prove (or disprove) the following.

a) For any subspace A ⊂ X, we have X \X \ A = int(A).

Solution: Since X \ A is a closed set, we have X \X \ A is open. Hence,

X \ A ⊂ X \ A ⇒ X \X \ A ⊂ X \ (X \ A) = A ⇒ X \X \ A ⊂ int(A).

Also, for any x ∈ int(A) ⊂ A, we have an open neighborhood U = int(A) such that U∩(X\A) =
∅. Thus, x ̸∈ X \ A ⇒ x ∈ X \X \ A. Hence, we have X \X \ A = int(U).

b) For any subspace A ⊂ X, we have int(A) = int
(
int(A)

)
.

Solution: Consider A = [0, 1) ∪ (1, 2] ⊂ R. Then, int(A) = (0, 1) ∪ (1, 2). On the other hand,

int
(
int(A)

)
= int

(
(0, 1) ∪ (1, 2)

)
= int ([0, 2]) = (0, 2).

Thus, the statement is not always true.

c) For any subspace A ⊂ X, we have int(A) = int
(
int(A)

)
.

Solution: We have

int(A) ⊂ int(A) ⇒ int(A) ⊂ int
(
int(A)

)
,

as the interior is the largest open set contained in a set. Taking closure, we have

int(A) ⊂ int
(
int(A)

)
.

On the other hand,

int
(
int(A)

)
⊂ int(A) ⇒ int

(
int(A)

)
⊂ int(A).

Hence, we have the equality int(A) = int
(
int(A)

)
.

d) A compact space is first countable at least at one point.

Solution: Consider the cofinite topology on R. It is compact since any cofinite topology is

compact. For a point x ∈ R, if possible, let {Un} be a countable neighborhood basis. We have

Fn = R \ Un is finite, and hence, F =
⋃∞

n=1 Fn is at most countably infinite. We have some

y ∈ R \ (F ∪{x}). Then, V = R \ {y} is an open neighborhood of x. Clearly, for any n, we have

Un ⊂ V ⇒ R \ Fn ⊂ R \ {y} ⇒ y ∈ Fn,

a contradiction. Thus, {Un} is not a neighborhood basis at x. As x ∈ R is arbitrary, we see that

R with cofinite topology is not first countable at any point.



Q6. Show that a function f : X → Y is continuous if and only if for any subset A ⊂ X, we have

f
(
Ā
)
⊂ f(A).

Solution: Suppose f is continuous. Now, for any A ⊂ Y , we have f(A) ⊂ Y is closed. Then,

f−1
(
f(A)

)
is closed in X. We have,

f(A) ⊂ f(A) ⇒ A ⊂ f−1 (f(A)) ⊂ f−1
(
f(A)

)
⇒ A ⊂ f−1

(
f(A)

)
⇒ f(A) ⊂ f(A).

Conversely, suppose f(A) ⊂ f(A) for any A ⊂ X. For any C ⊂ Y closed, we then have

f
(
f−1(C)

)
⊂ f (f−1(C)) = C = C ⇒ f−1(C) ⊂ f−1(C).

Thus, f−1(C) = f−1(C), i.e, f−1(C) is closed. Hence, f is continuous.

Q7. Suppose X is a topological space. Show that the topology on X is indiscrete if and only if given any

space Y , any function f : Y → X is continuous.

Solution: Suppose X is indiscrete. Then the only open sets are ∅ and X. Now, for any function

f : Y → X, we have f−1(∅) = ∅ and f−1(X) = Y are open in Y . Thus, f is continuous.

Conversely, suppose for any space Y and function f : Y → X we have f is continuous. Consider Y

to be X equipped with the indiscrete topology. Then, Id : Y → X is a continuous map. Now, for

any open set ∅ ̸= U ⊊ X, we have Id−1(U) = U is open in Y , which contradicts that Y is indiscrete.

Thus, there are no nontrivial open sets in X. In other words, X is indiscrete.

Q8. Show that the product of a Lindelöf space X and a compact space Y is again Lindelöf.

Solution: Suppose X is Lindelöf and Y is compact. Consider an open cover {Uα} of X ×Y . For each

x ∈ X, we have {x} × Y is a compact set in X × Y . Hence, there is a finite sub-cover

{x} × Y ⊂
⋃
α∈Jx

Uα,

where Jx is a finite indexing set. By the tube lemma, there exists x ∈ Ox ⊂
open

X, such that

{x} × Y ⊂ Ox × Y ⊂
⋃
α∈Jx

Uα.

We now have a cover X =
⋃

x∈X Ox. Since X is Lindelöf, there is a countable sub-cover, say,

X =
⋃∞

i=1Oxi
. Hence, we have

X × Y =
∞⋃
i=1

Oxi
× Y ⊂

∞⋃
i=1

⋃
α∈Jxi

Uα.

Since a countable union of finite sets is again countable, we have a countable sub-cover of X × Y .

Thus, X × Y is Lindelöf.



Q9. Let X be a second countable space. Show that there exists a countable subset A ⊂ X, such that

X = Ā.

Solution: Let B = {Bi} be a countable basis of X. For each i, choose some xi ∈ Bi. Then, A = {xi}
is clearly a countable set. We claim that X = Ā. For any x ∈ X, consider an open neighborhood

x ∈ U . Then, there exists some i0 so that x ∈ Bi0 ⊂ U . Now, xi0 ∈ Bi0 ⊂ U ⇒ U ∩ A ̸= ∅. Thus,

x ∈ Ā. Since x ∈ X is arbitrary, we have X = Ā.

Q10. Let X, Y be given spaces. For any K ⊂ X, and U ⊂ Y , consider the collection of continuous maps

W (K,U) := {f : X → Y | f is continuous, f(K) ⊂ U} .

Next, consider the collection

S := {W (K,U) | K ⊂ X is compact, U ⊂ Y is open} .

The topology on

Y X := Map(X, Y ) = {f : X → Y continuous}

generated by S as a sub-basis, is called the compact-open topology.

a) Suppose X is locally compact. Show that the evaluation map

ev : Y X ×X −→ Y

(f, x) 7−→ f(x)

is continuous, where Y X has the compact-open topology.

Solution: Say U ⊂ Y is an open set. Let (f, x) ∈ ev−1(U). Then, we have

ev(f, x) = f(x) ∈ U ⇒ x ∈ f−1(U).

Since X is locally compact, we have some compact set K ⊂ X such that

x ∈ int(K) ⊂ K ⊂ f−1(U).

Consider the (sub-basic) open set W (K,U) ⊂ Y X . By construction, f ∈ W (K,U). Observe

that for any (g, y) ∈ W (K,U)×K, since g(K) ⊂ U , we have

ev(g, y) = g(y) ∈ U ⇒ (g, y) ∈ ev−1(U).

Thus, we have an open set,

(x, f) ∈ W (K,U)× int(K) ⊂ ev−1(U).

This proves that ev is a continuous map.



b) For any map f : X × Y → Z, define the adjoint map as

f∧ : X −→ ZY

x 7−→ (y 7→ f(x, y)) .

Assume ZY has the compact-open topology.

i) Show that if f is continuous, then f∧ is continuous.

Solution: Consider a sub-basic open set W (K,U) ⊂ ZY , where K ⊂ Y is compact, and

U ⊂ Z is open. Consider some

x ∈ (f∧)
−1

(W (K,U)) .

Then, for any y ∈ K, we have

f∧(x)(y) = f(x, y) ∈ U.

In other words, we have {x} × K ⊂ f−1(U). Since f is continuous, we have f−1(U) is

open. Then, by the tube lemma, there exists some open neighborhood x ∈ V ⊂ X, such

that V ×K ⊂ f−1(U). Now, for any v ∈ V and y ∈ K, we have

(f∧) (v)(y) = f(v, y) ∈ U.

Hence, x ∈ V ⊂ (f∧)−1 (W (K,U)). Thus, f∧ is continuous.

ii) Suppose Y is locally compact. Show that if f∧ is continuous then f is continuous

Solution: Observe that we have a commutative diagram

X × Y ZY × Y Z

f

f∧×IdY ev

Indeed, for any (x, y) ∈ X × Y , we have

ev ((f∧ × IdY ) (x, y)) = ev (y′ 7→ f(x, y′), y) = f(x, y).

Thus, we have the equation

ev ◦ (f∧ × IdY ) = f.

Since Y is locally compact, we see that ev : ZY ×Y → Z is continuous. Also, f∧× IdZ is

continuous, being the product of two continuous maps. Hence, f , being their composition,

is also continuous.

c) (J.H.C. Whitehead) Suppose q : X → Y is a quotient map, and Z is locally compact. Show that

the product

p := q × IdZ : X × Z −→ Y × Z

(x, z) 7−→ (q(x), z)



is a quotient map.

Solution: Suppose f : Y ×Z → W is some arbitrary set map, such that, f ◦ p : X ×Z → W is

continuous.

X × Z Y × Z

W

q×IdZ

f◦(q×IdZ)

f

Then, (f ◦ p)∧ : X → WZ is continuous. Now, we have the map f∧ : Y → WZ . Observe that

for any x ∈ X, and z ∈ Z, we have

((f ◦ p)∧ (x)) (z) = (f ◦ p) (x, z) = f (q(x), z) = (f∧ (q(x))) (z).

Thus, we have

(f ◦ p)∧ = f∧ ◦ q.

Now, f∧ ◦ q is continuous, and q is given to be a quotient map. Hence, f∧ : Y → WZ is

continuous. Since Z is locally compact, this implies that f is continuous. But then by the

universal property of the quotient map, we have p = q × IdZ is a quotient map.

d) Let f : X → Y and g : A → B be quotient maps, and Y,A be locally compact. Show that the

product

q := f × g : X × A −→ Y ×B

(x, a) 7−→ (f(x), g(a))

Solution: It is easy to see that the diagram

X × A Y × A Y ×B

f×g

f×IdA IdY ×g

commutes. Since A is locally compact, it follows that f × IdA is a quotient map. Similarly, since

Y is locally compact, we have IdY × g is a quotient map. Then, f × g, being a composition of

two quotient maps, is again a quotient map.


