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Attempt any 3 from Q1 - Q5, any 3 from Q6 - Q10, and Q11 is mandatory. You can get maximum
70 marks.

Q1.

Q2.

A topology T on X is said to be minimally Hausdorff if (X, T) is a Ty-space, and given any
strictly coarser topology 7' C 7 on X, we have (X,7T") is not T5. Show that a compact, 75
space is minimally Hausdorff.

Solution: Let (X,7) be a compact 75 space. If possible, suppose 7' C 7T is a strictly coarser
topology, which is again T,. Then, there is a (nonempty) set U € T\ 7'. Now, C = X \ U is
closed in (X, 7)), and hence, compact. But then C'is compact in (X,7T") as well, since 7" C T.
Now, (X,7") is T, and hence, C is closed in (X, 7). This means, U = X \ C is open in
(X,T’), a contradiction. Hence, (X, 7T) is minimally T5.

A space X is called hereditarily connected if every subspace of X is connected. Show that X is
hereditarily connected if and only if the topology on X is a totally ordered set with respect to
set inclusion (i.e., if and only if for any two open sets U,V C X we have U C V or V C U).

Solution: Suppose X is hereditarily connected. Let U,V C X be open. Consider the symmetric
difference
A=U\V)UV\D),

By hypothesis A is connected. But, DNU = U \V and ANV =V \ U are disjoint open
sets of A, whose union is all of A. Hence, one of them must be empty. In other words, either

U\V=0=UcCV,or V\U=0=V CU. Hence, the topology on X is totally ordered.

Conversely, suppose the topology on X is totally ordered. Let Y C X be any subset. If possible,
let Y be disconnected. Then, there are open sets U,V C X such that

YNnU)NYNV)=0, YCUUV, 0#YNUYNVCY.

Now, without loss of generality, we have U C V. But then, YNU CY NV =Y NU =0, a
contradiction. Hence, Y must be connected. In other words, X is hereditarily connected.



Q3. Let X be a locally connected, separable space. Show that any open set U C X can be written
as a countable union of disjoint, open, connected sets.

Solution: Let U C X be open. Since X is locally connected, connected components of U
are open. Let us write U = || ., Ua, where U, C U are the connected components of
U. Now, X is separable. Hence, there is a countable dense set, say, Q C X. Since each
U, C X is nonempty open, we can choose some ¢, € U, N Q for each o € A. Clearly,
a#08=U,NUs=0= qo # qs. Thus, we have an injective map A < @ given by a — ¢,.
Hence, A must be countable. Thus, any open set U can be written as a countable union of

disjoint, open, connected sets.

Q4. Let X be a locally compact, T, space.

a) Show that X is T .

Solution: Since X is locally compact 75, the one-point compactification X=XuU {0}
is compact, 75, and hence, T}. In particular, X is Tgé. As X — X isa subspace, we have

b) If X is second countable, show that X is paracompact.

Solution: Suppose X is additionally second countable. Now, X is T3% = Ts. Then, by
the Urysohn metrization theorem, X is metrizable. But then X is paracompact as every
metrizable space is paracompact.

Q5. Show that a perfectly normal, Ty-space is Tg.

Solution: Let X be a perfectly normal, Ty-space. We need to show that X is T7. Let x,y € X
be such that x # y. Since X is Ty, without loss of generality, there is an open set U C X such
thatz € U buty € U. So, y € C := X \ U, which is a closed set. Since X is perfectly normal,
we have X is a Gs-space. In particular, C' = (2, V; for some open sets V; C X. Since = ¢ C,
we have z € V;, for some ig. Thus, we have two open sets U and V;,, each containing exactly

one of x,y. Since x,y are arbitrary, we have X is T;. But then X is Ty by definition.

Q6. Let X be a T5 space.

a) Suppose f,g: Z — X are continuous maps. Show that theset E(f,g9) ={z € Z | f(z) = g(2)}

is closed in Z.



Q7.

Solution: Consider the map h : Z — X x X given by h(z) = (f(z),g(x)), which is
clearly continuous. Since X is T3, we have the diagonal A = {(z,z) |z € X} C X x X
is closed. Note that E(f,g) = h™'(A). Hence, E(f,g) is closed in Z.

b) Let 1 : A — X, and r : X — A be continuous maps satisfying r o . = Id4. Show that ¢
is injective, and ¢(A) is closed in X.

Solution: For any a,b € A we have i(a) = i(b) = r(t(a)) =7 (t(b)) = a=10b. Thus, ¢
is injective.

Consider two maps f = tor : X — X and g = Idy : X — X, which are clearly
continuous. Note that for any x € X, we have f(z) = g(z) = x = ¢ (r(x)) € ¢(A). Also,
for any t(a) € t(A) we have f(i(a)) = tri(a) = t(a) = g(t(a)). Thus, L(A) = E(f,g) is
closed in X.

A subspace A C X is called a retract of X if there exists a continuous map 7 : X — A such
that r(a) = a for any a € A. Show that a retract of a T>-space is a closed subset.

Solution: Consider the inclusion map ¢ : A < X, which is continuous as A is a subspace.
Then, it follows that A = ((A) is closed in X.

On R, consider the particular point topology 7y with base 0, i.e,
To={0} U{ACR|0€ A}.
Denote X = (R, 7y).
a) Which of the following properties does X have? Justify.

i) Lindelof ii) Separable i) Locally compact iv) Path connected.

Solution:

i) X is not Lindelof.
The set A = R\ {0} is closed and discrete. As A is uncountable, A cannot be
Lindelof. Hence, X is not Lindelof.

i) X is separable.

Since any nonempty open set contains 0, it follows that the singleton {0} is dense
in X. Thus, X is separable.



i) X is locally compact.
Let U C X be open, and x € U be a point. We clearly have 0 € C'. Consider the
set C' = {0, x}, which is open. Also, C' being finite, is compact. Thus, x € C C U
is a compact neighborhood of x. Hence, X is locally compact.

iv) X is path connected.
Let z,y € X be two points. Consider the map f : [0,1] — X defined by

z, t=0,
ft)y=40, 0<t<l,
y, t=1

We claim that f is continuous. For t = 0, consider U = {0, x}, which is open, and
we have f~1(U) = [0,1) (or f~1(U) = [0,1] if y = 0). Thus, f is continuous at
t = 0. By similar argument, f is continuous at ¢ = 1. Now, suppose 0 < ¢t < 1.
Consider U = {0}. Then, f~1(U) = (0,1) (or, [0,1),(0,1],[0,1] depending on
=0,y =0o0rz=0=y). Thus, f is continuous.

b) Explicitly describe all the open sets in the Alexandroff compactification X=XuU {o0}.

Solution: By the construction, it follows that any open set in X is open in X. Thus, all
set A C X such that 0 € A is open in X. Now, the open sets containing co are of the
form {oo} U X \ C, where C is closed and compact in X. Thus, we need to classify all
closed compact sets of X.

Note that the closed sets of C are precisely those that do not contain 0. But any such
set is discrete. Hence, the only closed, compact sets are finite subsets of X that do not
contain 0.

Hence, the topology on X = X U {o0} is

{0. X} U{ACR|0€ A U{{oc}U R\ F) | F C Ris finite, 0 ¢ F} .

Q8. On R, consider the following topology
T={0,R}U{S|SCR, 0¢&£S}U{R\C|C CR\{0} is countable}.
The space X = (R, T) is called the fortissimo space on R.

a) Show that X is T5.

Solution: Let us show that X is completely normal. Suppose A, B C X are separated
subsets, ie, ANB=0=ANB. If0 & A, and 0 ¢ B, then clearly A, B are disjoint



open sets. Thus, we have a separation of A, B by opens. Now, without loss of generality,
suppose 0 € A. Then, 0 & B. As 0 € B, we have B is open. We claim that B is closed as
well. Indeed, for any # € B, we have x # 0. Then, for the open neighborhood O = {z}
of x to intersect B, we must have z € B. Thus, B = B. Then, U = X \ B is an open
set containing A, which is disjoint from the open set V = B. Thus, any two separated
sets of X is separated by disjoint open sets. Consequently, X is completely normal.
Clearly, {0} is a closed point, as X \ {0} = R\ {0} is open. Also, for any = # 0, we have
X\ {z} =R\ {z} is a cocountable set containing 0, which is open. Thus, X is 7. But
then X is T5.

Show that X is not T.

Solution: We show that the closed set A = {0} C X is not Gy. If possible, suppose
A = (U, for open sets U; C X. Since 0 € U;, we have U; = R\ C; for countable subsets
C; C R\ {0} Then,

A=U:=R\C) =R\ | JC.
Since the countable union of countable sets is countable, we have () C; is countable. But
then R\ |J C; is uncountable, which is a contradiction. Thus, A is not G5. Hence, X is

not perfectly normal, and in particular, not Tg.

Show that X is Lindelof, but not compact.

Solution: Let &/ = {U,} be an open cover X. Then, for some ay we have 0 € U,,.
As U,, is an open neighborhood of 0, we have U,, = R\ C for some countable set
C = {z;},»;, C R\ {0}. For each i > 1, we have some «; such that z; € U,,. Then,
U }iso is a countable sub-cover of X. As U/ was arbitrary, we have X is Lindelf.

On the other hand, consider the open sets
Vo=R\{1,2,3,...}, Vo={n}, n>1

Clearly, V = {%}Zio is an open cover of X, which does not admit any finite sub-cover.

Is X metrizable?

Solution: No, X is not metrizable. In fact, X is not first countable at 0. If we have a

countable neighborhood basis {V;} at 0, then we have [ V; = R\ C, for some countable
set C' C R\ {0}. Choose any 0 # x € R\ C. Then, V. =R\ (CU{z}) is an open
neighborhood of 0. Clearly, none of N; is contained in V. Thus, X is not a first countable
space, and hence, not metrizable.



Q9. On R, for each irrational z, fix a sequence x; € Q such that x; — x (in the usual sense). Denote
the set

Up(z) ={z}U{z;|i>n}, zeR\Q, n>0.

Consider the collection of subsets

Bi={{q} ¢ Qi U{Un(z) [z €cR\Q, n>0}.

Prove the following.

a)

B is a basis for a topology, say, 7 on R (called the rational sequence topology).

Solution: Clearly, for each x € R, there is an element of B that contains x. Let By, By €

B, and suppose x € By N By. If x is a rational, then we can take B3 = {x} so that
x € B3 C By N By. If xis an irrational, then we must have By = U, (x) and By = U,,,(7)
for some m,n > 0. Let k = max {m, n}, and set By = Uy(x). Clearly, z € By C B1NBs.
Thus, B is a basis for a topology on R.

Each basic open set of B is also closed in T .

Solution: Consider a rational ¢ € Q, and let x # ¢q. If x € Q, then {z} C R\ {q} is
an open neighborhood. Say, z € R\ R. Since z; — x # ¢, there is some n > 1 such
that |z — ;| < €= @. Then, consider U, (z). Clearly, U,(z) C R\ {¢}. Thus, {q} is
closed.

Next, consider an open set U,,(x) for some z € R\ Q and n > 0. Again, for each rational
point ¢ € QN (R \ U,(x)), we can take {q} as an open neighborhood disjoint from U, ().

Say, y # x is an irrational point. Set ¢j := \y;x\_ Since x; — x, there is an integer p > 1
such that

|z — ;| < €.
Set

o1
€1 :=m1n§{|y—x|,|y—x1|,...,|y—xp|},
which is positive as each x; is rational. Since y; — vy, there is an integer ¢ > 1 such that

for all i > ¢ we have
ly — yi| < e

Then, U, (z) NU,(y) = 0. Thus, Uy,(x) is closed.

The space X = (R, 7) is T, but not Tj.

Hint: Use Jones' lemma.

Solution: It follows that B is basis of clopen sets in X. Hence, X is completely regular.
We show that X is Ty. Let = # y € R. If, without loss of generality, € Q, then {z}



is an open neighborhood, that does not contain y. Suppose, =,y € R\ Q. Then, for any
n > 0 we have U,(z) is an open neighborhood, which does not contain y. Thus, X is Tj,
and hence, Tgé.

Let us show that X is not normal (and hence, not 7). Consider Q. For any z € R,
any basic open set contains some rational. Thus, Q is dense in X. Also, Q being union
of basic open sets, is open, and hence, Z = R\ Q is closed. For each = € I, we have
INUy(z) = {x}. Thus, T is a closed, discrete set. Since Q is countable, and I is
uncountable, it follows by Jones lemma that X is not normal. Thus, X is not T}.

Q10. Show that the product of a compact space and a paracompact space is again paracompact.

Hint: Use the tube lemma.

Solution: Let X be a paracompact space, and Y be a compact space. Consider an arbitrary
open cover O = {O;},.; of X x Y. For each x € X, we have {} x Y is a compact subspace
of X x Y. Hence, there is a finite set I, C I such that
{z} xY c|JO
i€l,
By the tube lemma, there is some open neighborhood x € U, € X such that
U, xY c O
icly
Now, U = {U,},cx is an open cover of X, which is paracompact. Hence, there is a locally
finite refinement, say, V = {V,}, .y such that V, C U, for all z € X. Consider the collection
of open sets
W={(V,xY)NO;|iel,, v X}.
Let us show that it is a cover of X x Y. Say, (z,y) € X. Then, there is some 2’ € X (possibly
different from z), such that z € Vs. Then, (z,y) € Vuy xY C J,;, O;s. Clearly, there is
some i € I so that (z,y) € (Vi X Y) N O;. Thus, W is a cover, which is a refinement of O
by construction. Next, we show that W is locally finite. Since U is a locally finite cover of X,
there is some open neighborhood z € N C X, and a finite set F' C X such that

NNV,=0, ze X\F.

Suppose (u,v) € (N xY)N (Ve xY)NO;) forsomei € I, and z € X. Then,u € NNV, =
x € F. Thus, it follows that N X Y can only intersect the collection

{(VexY)YNO; |iel,, xe€F},

which is clearly finite. Hence, W is a locally finite open cover, which refines O. Thus, X x Y

is a paracompact space.



Q11. A function f : R — R is called a smooth function if f is (continuously) differentiable infinitely

many times. Polynomials are smooth, and so are the trigonometric functions sin(z), cos(z) etc.
1

ez, x>0
The function p(x) = . is also smooth; note that p is a (constant) polynomial on
0, 2<0

(—00,0) but not on all of R.

Denote the nt"-derivative of a smooth function f as f(”) : R — R: for convenience, set
f© = f. Recall that if for some n > 1 we have £ is identically 0 on an interval (a,b)
(possibly unbounded), then f is a polynomial of degree < n — 1 on (a,b). And conversely, if f
is a (nonzero) polynomial of degree d on (a,b), then (@] ;) is a nonzero constant.

Let f : R — R be a smooth function. Suppose, for each x € R, there is some n = n, > 0 such
that f(")(x) = 0. The goal is to prove that f must be a polynomial. If you wish, you can try to
give some direct proof! Otherwise, for the sake of contradiction, let us assume that f is not a

polynomial.

a) Denote
Q= U{U C R | U is open, and f|y is a polynomial} .

By our assumption, ) # R.

i) If Q # ), then justify that one can write Q = [JI;, for countably many open
intervals (possibly unbounded), which are pairwise disjoint.

Solution: As R is a separable and locally connected space, any open set can be
written as countable union of disjoint open connected components. Since the open

connected sets are necessarily intervals, the claim follows.

ii) For any bounded interval [u,v] C Q with u < v, show that f](,.) is a polynomial.

Solution: Suppose [u,v] C Q for some u < v. For each x € [u,v] there is some
(az,bz) C R such that f|(,.s,) is a polynomial. Since [a,b] is compact, there are
finitely many such intervals, say, {(ax,,b.,)}1_, that covers [a,b]. Suppose fl(az, bs)

is a polynomial of degree d;. Set d = max;<;<; {d;}. Then,

f(dz‘)

(au, ba;=0) = f(d)’(azi,bzi) =0, 1<i<k

Thus, @ = 0 on the union JY_,(as,, bs;) D (a,b). Hence, f|(as) is a polynomial
of degree < d — 1.

iii) Show that f|;, is a polynomial for any open interval I; appearing in the expression
of 2.
Hint: Note that any open interval (bounded or unbounded) can be written as an
increasing union of countably many bounded closed intervals.



Solution: For any a,b with a < b we have (a,b) = U,»,,, [a + =,b — +] for some

no large, and also (a,00) = Ula + +,a + n], (—o0,b) = J[b — n,b — 1]. Thus,
any open interval can be written as a countable collection of increasing closed
intervals. Without loss of generality, let us write I = | J,[a;, b;], where a; < b; and
[a;, b;] C (ait1,biy1) for all 4.

Now, suppose f|(a, ) is a polynomial of degree, say, d. In particular, f(d)|(a1,b1) is
a nonzero constant. We show that f(@*1|; = 0 identically. If not, then for some
x € I we have f@+1)(x) # 0. By continuity of £ we have some = € (a,b) C I
such that f(d+1)|(a7b) is nonvanishing. Now, from the above increasing union, we
can assume that [a,b] C (ay,by) for some N > 1. By previous part, we have
flianby) is @ polynomial of degree, say, m. As 1|, ;. = 0, we must have
m+1gd+1l=d+1<m+1=d<m Ao, fO",,) =0as
(a1,b1) C (an,bn). Thus, f[@, s, is a polynomial of degree < m, which forces,
m < d. Hence, we have f](4, sy) is @ polynomial of degree d. This contradicts
fUH(2) # 0. We conclude that f(@+1)|; is zero, and hence, f is a polynomial of

degree < d. In fact, f is a polynomial of degree exactly d, as f(d)](al,bl) iS nonzero.

b) Consider the closed sets S, .= {z | f")(z) =0} = (™ ) (0).

i)

For any [a,b] with a < b, prove that [a,b] N S, has nonempty interior (in the
subspace topology of [a, b]) for some ny.

Solution: We are given that for every = € R, there is some n such that f(")(z) =
0=2¢€S8, Thus, R=JS, Then, [a,b] = J([a,b]NS,). Now, [a,b] is a
compact 75 space, and hence, a Baire space. As [a,b] NS, is closed, all of them
cannot be nowhere dense. Consequently, for some ng, we must have [a, b] N S,,, has

nonempty interior (in the subspace topology of [a, ]).

Conclude that @ = R, i.e, Q is dense in R.

Solution: Fix some [a,b] with a < b. Then, for some ngy, we have [a,b] N S,
has nonempty intersection. In particular, we can have some ¢ < d such that
(¢;d) C [a,b] N Sy But then f0)| .4 = 0 which implies, f|(.q) is a polynomial
of degree < ng — 1. Thus, (c,d) C Q. Hence, (a,b) N Q # 0. Thus, Q = R.

c) Denote X =R\ Q. Note that X # (), and the (finite) endpoints of each I; appearing in
Q) belongs to X.

)

Show that any = € X is not an isolated point of X, and hence, there are z; € X
with x; # x, such that z; — x.



ii)

Solution: If possible, suppose © € X is an isolated point. Then, therearea < x < b
such that (a,b) N X = {z}. Consequently, (a,z)U (x,b) C Q. Then, there are two
open intervals, say, I; and I, such that (a,x) C I; and (z,b) C I;. Now, f|;, and
flz, are both polynomials, of degree, say, n; and nsy. Fix some n > max {n;,ns}.
Then,

Famy =0=f .

Continuity of f(" forces that f™(z) = 0. But then f™]; = 0, which implies,
fliap) is a polynomial of degree < n — 1. Then, z € (a,b) C ©, a contradiction.
Thus, for any x € X we have z; € X, with x; # z, such that x; — x.

Show that X NS, has nonempty interior (in the subspace topology of X) for some
ng. Suppose, X N (ag,by) C X NS, for some ag < by.

Solution: As X = R\ Q is closed in the complete space R, we have X is complete,
and hence, a Baire space. As S, is a cover, again we have some ng so that X N S,
has nonempty interior (in the subspace topology of X). That is, we have some
ag < by so that X N (ag,by) C X NS,,.

Show that f(™)(x) = 0 for all m > ng and for all x € (ag, by) N X.

f (@ 4h)— f) (x)
h

x; — x with x; # x, one can then consider h; := x; — x — 0 in the limit.

Hint: By assumption, the limit f"*Y(z) = limy_, exists. For

Solution: Let x € X N (ag,by). Then, there are x; € X N(ag, by) with z; # x such
that 2; — x. Now, f(")(x;) = 0 = f")(x), as X N (ag,by) C X N S,,. Since
f(”O) is differentiable, we have

frot(z) = lim S0 (i) = f) ()

? Ti— X

=0.

Thus, for all z € X N(ag, by) we have £+ (z) = 0. In other words, X N(ag, by) C
XNSpy+1- Inductively, it follows that for any m > ng we have XN(ag, by) C XNS,,
i.e, f(™(x) =0 forall z € X N (ag,by) and m > ng.

Show that for any I; appearing in Q, with I; N (ag,by) # 0, we have f[, is a
polynomial of degree < ny.

Hint: (ag, by) must contain some end-point of [;.

Solution: As ) = R, we must have (ag, by) N Q # 0. Now, suppose for some I,
we have I; N (ag,by) # 0. Clearly, (ag,by) C I; is not possible, as (ag,by) also
intersects X = R\ Q. Then, we must have that some endpoint (left or right) of I,

belongs to (ag,b;). Suppose, the endpoint is some z. Then, z € X as the interval



I; is maximal (being connected components of (2). Suppose f|;, is a polynomial of
degree d. Then, ¥ is a nonzero constant, say, ¢ on I;. By continuity, we must
have f@(x) = c. But we have seen f(™(z) = 0 for all m > ng. Hence, we must
have d < ng. Thus, whenever (ag, by) intersects some I; C €2, we have f|;, is a

polynomial of degree < ng — 1.

Conclude that f is a polynomial.

Solution: For # € X N (ag,by) we have proved f(")(z) = 0. Also, for any
z € QN (ag,by), we have z € I; N (ag, by) for some j, and hence, (") (x) = 0.
Thus, £,y = 0. This means f is a polynomial of degree < ny — 1, and
so, (ag,bp) C €. This contradicts z € X N (ag,by). Hence, we must have f is a

polynomial.



