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Q1. A topology T on X is said to be minimally Hausdorff if (X, T ) is a T2-space, and given any

strictly coarser topology T ′ ⊊ T on X, we have (X, T ′) is not T2. Show that a compact, T2

space is minimally Hausdorff.

Solution: Let (X, T ) be a compact T2 space. If possible, suppose T ′ ⊊ T is a strictly coarser

topology, which is again T2. Then, there is a (nonempty) set U ∈ T \ T ′. Now, C = X \ U is

closed in (X, T ), and hence, compact. But then C is compact in (X, T ′) as well, since T ′ ⊂ T .

Now, (X, T ′) is T2, and hence, C is closed in (X, T ′). This means, U = X \ C is open in

(X, T ′), a contradiction. Hence, (X, T ) is minimally T2.

Q2. A space X is called hereditarily connected if every subspace of X is connected. Show that X is

hereditarily connected if and only if the topology on X is a totally ordered set with respect to

set inclusion (i.e., if and only if for any two open sets U, V ⊂ X we have U ⊂ V or V ⊂ U).

Solution: Suppose X is hereditarily connected. Let U, V ⊂ X be open. Consider the symmetric

difference

∆ := (U \ V ) ∪ (V \ U),

By hypothesis ∆ is connected. But, D ∩ U = U \ V and ∆ ∩ V = V \ U are disjoint open

sets of ∆, whose union is all of ∆. Hence, one of them must be empty. In other words, either

U \ V = ∅ ⇒ U ⊂ V , or V \ U = ∅ ⇒ V ⊂ U . Hence, the topology on X is totally ordered.

Conversely, suppose the topology on X is totally ordered. Let Y ⊂ X be any subset. If possible,

let Y be disconnected. Then, there are open sets U, V ⊂ X such that

(Y ∩ U) ∩ (Y ∩ V ) = ∅, Y ⊂ U ∪ V, ∅ ̸= Y ∩ U, Y ∩ V ⊊ Y.

Now, without loss of generality, we have U ⊂ V . But then, Y ∩ U ⊂ Y ∩ V ⇒ Y ∩ U = ∅, a
contradiction. Hence, Y must be connected. In other words, X is hereditarily connected.



Q3. Let X be a locally connected, separable space. Show that any open set U ⊂ X can be written

as a countable union of disjoint, open, connected sets.

Solution: Let U ⊂ X be open. Since X is locally connected, connected components of U

are open. Let us write U =
⊔

α∈Λ Uα, where Uα ⊂ U are the connected components of

U . Now, X is separable. Hence, there is a countable dense set, say, Q ⊂ X. Since each

Uα ⊂ X is nonempty open, we can choose some qα ∈ Uα ∩ Q for each α ∈ Λ. Clearly,

α ̸= β ⇒ Uα ∩ Uβ = ∅ ⇒ qα ̸= qβ. Thus, we have an injective map Λ ↪→ Q given by α 7→ qα.

Hence, Λ must be countable. Thus, any open set U can be written as a countable union of

disjoint, open, connected sets.

Q4. Let X be a locally compact, T2 space.

a) Show that X is T3 1
2
.

Solution: Since X is locally compact T2, the one-point compactification X̂ = X ∪ {∞}
is compact, T2, and hence, T4. In particular, X̂ is T3 1

2
. As X ↪→ X̂ is a subspace, we have

X is T3 1
2
.

b) If X is second countable, show that X is paracompact.

Solution: Suppose X is additionally second countable. Now, X is T3 1
2
⇒ T3. Then, by

the Urysohn metrization theorem, X is metrizable. But then X is paracompact as every

metrizable space is paracompact.

Q5. Show that a perfectly normal, T0-space is T6.

Solution: Let X be a perfectly normal, T0-space. We need to show that X is T1. Let x, y ∈ X

be such that x ̸= y. Since X is T0, without loss of generality, there is an open set U ⊂ X such

that x ∈ U but y ̸∈ U . So, y ∈ C := X \U , which is a closed set. Since X is perfectly normal,

we have X is a Gδ-space. In particular, C =
⋂∞

i=1 Vi for some open sets Vi ⊂ X. Since x ̸∈ C,

we have x ∈ Vi0 for some i0. Thus, we have two open sets U and Vi0 , each containing exactly

one of x, y. Since x, y are arbitrary, we have X is T1. But then X is T6 by definition.

Q6. Let X be a T2 space.

a) Suppose f, g : Z → X are continuous maps. Show that the setE(f, g) := {z ∈ Z | f(z) = g(z)}
is closed in Z.



Solution: Consider the map h : Z → X × X given by h(x) = (f(x), g(x)), which is

clearly continuous. Since X is T2, we have the diagonal ∆ = {(x, x) | x ∈ X} ⊂ X ×X

is closed. Note that E(f, g) = h−1(∆). Hence, E(f, g) is closed in Z.

b) Let ι : A → X, and r : X → A be continuous maps satisfying r ◦ ι = IdA. Show that ι

is injective, and ι(A) is closed in X.

Solution: For any a, b ∈ A we have i(a) = i(b) ⇒ r (ι(a)) = r (ι(b)) ⇒ a = b. Thus, ι

is injective.

Consider two maps f = ι ◦ r : X → X and g = IdX : X → X, which are clearly

continuous. Note that for any x ∈ X, we have f(x) = g(x) ⇒ x = ι (r(x)) ∈ ι(A). Also,

for any ι(a) ∈ ι(A) we have f(ι(a)) = ιrι(a) = ι(a) = g(ι(a)). Thus, ι(A) = E(f, g) is

closed in X.

A subspace A ⊂ X is called a retract of X if there exists a continuous map r : X → A such

that r(a) = a for any a ∈ A. Show that a retract of a T2-space is a closed subset.

Solution: Consider the inclusion map ι : A ↪→ X, which is continuous as A is a subspace.

Then, it follows that A = ι(A) is closed in X.

Q7. On R, consider the particular point topology T0 with base 0, i.e,

T0 := {∅} ∪ {A ⊂ R | 0 ∈ A} .

Denote X = (R, T0).

a) Which of the following properties does X have? Justify.

i) Lindelöf ii) Separable iii) Locally compact iv) Path connected.

Solution:

i) X is not Lindelöf.

The set A = R \ {0} is closed and discrete. As A is uncountable, A cannot be

Lindelöf. Hence, X is not Lindelöf.

ii) X is separable.

Since any nonempty open set contains 0, it follows that the singleton {0} is dense

in X. Thus, X is separable.



iii) X is locally compact.

Let U ⊂ X be open, and x ∈ U be a point. We clearly have 0 ∈ C. Consider the

set C = {0, x}, which is open. Also, C being finite, is compact. Thus, x ∈ C ⊂ U

is a compact neighborhood of x. Hence, X is locally compact.

iv) X is path connected.

Let x, y ∈ X be two points. Consider the map f : [0, 1] → X defined by

f(t) =


x, t = 0,

0, 0 < t < 1,

y, t = 1.

We claim that f is continuous. For t = 0, consider U = {0, x}, which is open, and

we have f−1(U) = [0, 1) (or f−1(U) = [0, 1] if y = 0). Thus, f is continuous at

t = 0. By similar argument, f is continuous at t = 1. Now, suppose 0 < t < 1.

Consider U = {0}. Then, f−1(U) = (0, 1) (or, [0, 1), (0, 1], [0, 1] depending on

x = 0, y = 0 or x = 0 = y). Thus, f is continuous.

b) Explicitly describe all the open sets in the Alexandroff compactification X̂ = X ∪ {∞}.

Solution: By the construction, it follows that any open set in X is open in X̂. Thus, all

set A ⊂ X such that 0 ∈ A is open in X̂. Now, the open sets containing ∞ are of the

form {∞} ∪ X \ C, where C is closed and compact in X. Thus, we need to classify all

closed compact sets of X.

Note that the closed sets of C are precisely those that do not contain 0. But any such

set is discrete. Hence, the only closed, compact sets are finite subsets of X that do not

contain 0.

Hence, the topology on X̂ = X ∪ {∞} is{
∅, X̂

}
∪ {A ⊂ R | 0 ∈ A} ∪ {{∞} ∪ (R \ F ) | F ⊂ R is finite, 0 ̸∈ F} .

Q8. On R, consider the following topology

T := {∅,R} ∪ {S | S ⊂ R, 0 ̸∈ S} ∪ {R \ C | C ⊂ R \ {0} is countable} .

The space X = (R, T ) is called the fortissimo space on R.

a) Show that X is T5.

Solution: Let us show that X is completely normal. Suppose A,B ⊂ X are separated

subsets, i.e, A ∩ B̄ = ∅ = Ā ∩ B. If 0 ̸∈ A, and 0 ̸∈ B, then clearly A,B are disjoint



open sets. Thus, we have a separation of A,B by opens. Now, without loss of generality,

suppose 0 ∈ A. Then, 0 ̸∈ B̄. As 0 ̸∈ B, we have B is open. We claim that B is closed as

well. Indeed, for any x ∈ B̄, we have x ̸= 0. Then, for the open neighborhood O = {x}
of x to intersect B, we must have x ∈ B. Thus, B̄ = B. Then, U = X \ B is an open

set containing A, which is disjoint from the open set V = B. Thus, any two separated

sets of X is separated by disjoint open sets. Consequently, X is completely normal.

Clearly, {0} is a closed point, as X \ {0} = R \ {0} is open. Also, for any x ̸= 0, we have

X \ {x} = R \ {x} is a cocountable set containing 0, which is open. Thus, X is T1. But

then X is T5.

b) Show that X is not T6.

Solution: We show that the closed set A = {0} ⊂ X is not Gδ. If possible, suppose

A =
⋂

Ui for open sets Ui ⊂ X. Since 0 ∈ Ui, we have Ui = R \Ci for countable subsets

Ci ⊂ R \ {0} Then,

A =
⋂

Ui =
⋂

(R \ Ci) = R \
⋃

Ci.

Since the countable union of countable sets is countable, we have
⋂
Ci is countable. But

then R \
⋃

Ci is uncountable, which is a contradiction. Thus, A is not Gδ. Hence, X is

not perfectly normal, and in particular, not T6.

c) Show that X is Lindelöf, but not compact.

Solution: Let U = {Uα} be an open cover X. Then, for some α0 we have 0 ∈ Uα0 .

As Uα0 is an open neighborhood of 0, we have Uα0 = R \ C for some countable set

C = {xi}i≥1 ⊂ R \ {0}. For each i ≥ 1, we have some αi such that xi ∈ Uαi
. Then,

{Uαi
}i≥0 is a countable sub-cover of X. As U was arbitrary, we have X is Lindelöf.

On the other hand, consider the open sets

V0 = R \ {1, 2, 3, . . . } , Vn = {n} , n ≥ 1.

Clearly, V = {Vi}∞i=0 is an open cover of X, which does not admit any finite sub-cover.

d) Is X metrizable?

Solution: No, X is not metrizable. In fact, X is not first countable at 0. If we have a

countable neighborhood basis {Ni} at 0, then we have
⋂
Ni = R \C, for some countable

set C ⊂ R \ {0}. Choose any 0 ̸= x ∈ R \ C. Then, V = R \ (C ∪ {x}) is an open

neighborhood of 0. Clearly, none of Ni is contained in V . Thus, X is not a first countable

space, and hence, not metrizable.



Q9. On R, for each irrational x, fix a sequence xi ∈ Q such that xi → x (in the usual sense). Denote

the set

Un(x) = {x} ∪ {xi | i > n} , x ∈ R \Q, n ≥ 0.

Consider the collection of subsets

B := {{q} | q ∈ Q} ∪ {Un(x) | x ∈ R \Q, n ≥ 0} .

Prove the following.

a) B is a basis for a topology, say, T on R (called the rational sequence topology).

Solution: Clearly, for each x ∈ R, there is an element of B that contains x. Let B1, B2 ∈
B, and suppose x ∈ B1 ∩ B2. If x is a rational, then we can take B3 = {x} so that

x ∈ B3 ⊂ B1 ∩B2. If x is an irrational, then we must have B1 = Un(x) and B2 = Um(x)

for some m,n ≥ 0. Let k = max {m,n}, and set B3 = Uk(x). Clearly, x ∈ B3 ⊂ B1∩B2.

Thus, B is a basis for a topology on R.

b) Each basic open set of B is also closed in T .

Solution: Consider a rational q ∈ Q, and let x ̸= q. If x ∈ Q, then {x} ⊂ R \ {q} is

an open neighborhood. Say, x ∈ R \ R. Since xi → x ̸= q, there is some n ≥ 1 such

that |x− xi| < ϵ := |x−q|
2

. Then, consider Un(x). Clearly, Un(x) ⊂ R \ {q}. Thus, {q} is

closed.

Next, consider an open set Un(x) for some x ∈ R \Q and n ≥ 0. Again, for each rational

point q ∈ Q∩ (R \ Un(x)), we can take {q} as an open neighborhood disjoint from Un(x).

Say, y ̸= x is an irrational point. Set ϵ0 :=
|y−x|

2
. Since xi → x, there is an integer p ≥ 1

such that

|x− xi| < ϵ0.

Set

ϵ1 := min
1

2
{|y − x| , |y − x1| , . . . , |y − xp|} ,

which is positive as each xi is rational. Since yi → y, there is an integer q ≥ 1 such that

for all i ≥ q we have

|y − yi| < ϵ1.

Then, Un(x) ∩ Uq(y) = ∅. Thus, Un(x) is closed.

c) The space X = (R, T ) is T3 1
2
, but not T4.

Hint: Use Jones’ lemma.

Solution: It follows that B is basis of clopen sets in X. Hence, X is completely regular.

We show that X is T0. Let x ̸= y ∈ R. If, without loss of generality, x ∈ Q, then {x}



is an open neighborhood, that does not contain y. Suppose, x, y ∈ R \Q. Then, for any

n ≥ 0 we have Un(x) is an open neighborhood, which does not contain y. Thus, X is T0,

and hence, T3 1
2
.

Let us show that X is not normal (and hence, not T4). Consider Q. For any x ∈ R,
any basic open set contains some rational. Thus, Q is dense in X. Also, Q being union

of basic open sets, is open, and hence, I = R \ Q is closed. For each x ∈ I, we have

I ∩ U0(x) = {x}. Thus, I is a closed, discrete set. Since Q is countable, and I is

uncountable, it follows by Jones lemma that X is not normal. Thus, X is not T4.

Q10. Show that the product of a compact space and a paracompact space is again paracompact.

Hint: Use the tube lemma.

Solution: Let X be a paracompact space, and Y be a compact space. Consider an arbitrary

open cover O = {Oi}i∈I of X × Y . For each x ∈ X, we have {x} × Y is a compact subspace

of X × Y . Hence, there is a finite set Ix ⊂ I such that

{x} × Y ⊂
⋃
i∈Ix

Oi.

By the tube lemma, there is some open neighborhood x ∈ Ux ∈ X such that

Ux × Y ⊂
⋃
i∈Ix

Oi.

Now, U = {Ux}x∈X is an open cover of X, which is paracompact. Hence, there is a locally

finite refinement, say, V = {Vx}x∈X such that Vx ⊂ Ux for all x ∈ X. Consider the collection

of open sets

W = {(Vx × Y ) ∩Oi | i ∈ Ix, x ∈ X} .

Let us show that it is a cover of X × Y . Say, (x, y) ∈ X. Then, there is some x′ ∈ X (possibly

different from x), such that x ∈ Vx′ . Then, (x, y) ∈ Vx′ × Y ⊂
⋃

i∈Ix′
Oi. Clearly, there is

some i ∈ Ix′ so that (x, y) ∈ (Vx′ × Y ) ∩ Oi. Thus, W is a cover, which is a refinement of O
by construction. Next, we show that W is locally finite. Since U is a locally finite cover of X,

there is some open neighborhood x ∈ N ⊂ X, and a finite set F ⊂ X such that

N ∩ Vx = ∅, x ∈ X \ F.

Suppose (u, v) ∈ (N × Y )∩ ((Vx × Y ) ∩Oi) for some i ∈ Ix and x ∈ X. Then, u ∈ N ∩Vx ⇒
x ∈ F . Thus, it follows that N × Y can only intersect the collection

{(Vx × Y ) ∩Oi | i ∈ Ix, x ∈ F} ,

which is clearly finite. Hence, W is a locally finite open cover, which refines O. Thus, X × Y

is a paracompact space.



Q11. A function f : R → R is called a smooth function if f is (continuously) differentiable infinitely

many times. Polynomials are smooth, and so are the trigonometric functions sin(x), cos(x) etc.

The function ρ(x) =

e−
1
x , x ≥ 0

0, x ≤ 0
is also smooth; note that ρ is a (constant) polynomial on

(−∞, 0) but not on all of R.

Denote the nth-derivative of a smooth function f as f (n) : R → R; for convenience, set

f (0) = f . Recall that if for some n ≥ 1 we have f (n) is identically 0 on an interval (a, b)

(possibly unbounded), then f is a polynomial of degree ≤ n− 1 on (a, b). And conversely, if f

is a (nonzero) polynomial of degree d on (a, b), then f (d)|(a,b) is a nonzero constant.

Let f : R → R be a smooth function. Suppose, for each x ∈ R, there is some n = nx ≥ 0 such

that f (n)(x) = 0. The goal is to prove that f must be a polynomial. If you wish, you can try to

give some direct proof! Otherwise, for the sake of contradiction, let us assume that f is not a

polynomial.

a) Denote

Ω =
⋃

{U ⊂ R | U is open, and f |U is a polynomial} .

By our assumption, Ω ̸= R.

i) If Ω ̸= ∅, then justify that one can write Ω =
⋃
Ij, for countably many open

intervals (possibly unbounded), which are pairwise disjoint.

Solution: As R is a separable and locally connected space, any open set can be

written as countable union of disjoint open connected components. Since the open

connected sets are necessarily intervals, the claim follows.

ii) For any bounded interval [u, v] ⊂ Ω with u < v, show that f |(u,v) is a polynomial.

Solution: Suppose [u, v] ⊂ Ω for some u < v. For each x ∈ [u, v] there is some

(ax, bx) ⊂ R such that f |(ax,bx) is a polynomial. Since [a, b] is compact, there are

finitely many such intervals, say, {(axi
, bxi

)}ki=1 that covers [a, b]. Suppose f |(axi ,bxi )
is a polynomial of degree di. Set d = max1≤i≤k {di}. Then,

f (di)|(axi ,bxi=0) ⇒ f (d)|(axi ,bxi ) = 0, 1 ≤ i ≤ k.

Thus, f (d) = 0 on the union
⋃k

i=1(axi
, bxi

) ⊃ (a, b). Hence, f |(a,b) is a polynomial

of degree ≤ d− 1.

iii) Show that f |Ij is a polynomial for any open interval Ij appearing in the expression

of Ω.

Hint: Note that any open interval (bounded or unbounded) can be written as an

increasing union of countably many bounded closed intervals.



Solution: For any a, b with a < b we have (a, b) =
⋃

n≥n0
[a + 1

n
, b − 1

n
] for some

n0 large, and also (a,∞) =
⋃
[a + 1

n
, a + n], (−∞, b) =

⋃
[b − n, b − 1

n
]. Thus,

any open interval can be written as a countable collection of increasing closed

intervals. Without loss of generality, let us write I =
⋃

i[ai, bi], where ai < bi and

[ai, bi] ⊂ (ai+1, bi+1) for all i.

Now, suppose f |(a1,b1) is a polynomial of degree, say, d. In particular, f (d)|(a1,b1) is
a nonzero constant. We show that f (d+1)|I = 0 identically. If not, then for some

x ∈ I we have f (d+1)(x) ̸= 0. By continuity of f (d+1), we have some x ∈ (a, b) ⊂ I

such that f (d+1)|(a,b) is nonvanishing. Now, from the above increasing union, we

can assume that [a, b] ⊂ (aN , bN) for some N ≥ 1. By previous part, we have

f |(aN ,bN ) is a polynomial of degree, say, m. As f (m+1)|(aN ,bN ) = 0, we must have

m + 1 ≮ d + 1 ⇒ d + 1 ≤ m + 1 ⇒ d ≤ m. Also, f (m+1)|(a1,b1) = 0 as

(a1, b1) ⊂ (aN , bN). Thus, f |(a1,b1) is a polynomial of degree ≤ m, which forces,

m ≤ d. Hence, we have f |(aN ,bN ) is a polynomial of degree d. This contradicts

f (d+1)(x) ̸= 0. We conclude that f (d+1)|I is zero, and hence, f is a polynomial of

degree ≤ d. In fact, f is a polynomial of degree exactly d, as f (d)|(a1,b1) is nonzero.

b) Consider the closed sets Sn :=
{
x
∣∣ f (n)(x) = 0

}
=

(
f (n)

)−1
(0).

i) For any [a, b] with a < b, prove that [a, b] ∩ Sn0 has nonempty interior (in the

subspace topology of [a, b]) for some n0.

Solution: We are given that for every x ∈ R, there is some n such that f (n)(x) =

0 ⇒ x ∈ Sn. Thus, R =
⋃
Sn. Then, [a, b] =

⋃
([a, b] ∩ Sn). Now, [a, b] is a

compact T2 space, and hence, a Baire space. As [a, b] ∩ Sn is closed, all of them

cannot be nowhere dense. Consequently, for some n0, we must have [a, b]∩Sn0 has

nonempty interior (in the subspace topology of [a, b]).

ii) Conclude that Ω = R, i.e, Ω is dense in R.

Solution: Fix some [a, b] with a < b. Then, for some n0, we have [a, b] ∩ Sn0

has nonempty intersection. In particular, we can have some c < d such that

(c, d) ⊂ [a, b] ∩ Sn0 . But then f (n0)|(c,d) = 0 which implies, f |(c,d) is a polynomial

of degree ≤ n0 − 1. Thus, (c, d) ⊂ Ω. Hence, (a, b) ∩ Ω ̸= ∅. Thus, Ω = R.

c) Denote X = R \ Ω. Note that X ̸= ∅, and the (finite) endpoints of each Ij appearing in

Ω belongs to X.

i) Show that any x ∈ X is not an isolated point of X, and hence, there are xi ∈ X

with xi ̸= x, such that xi → x.



Solution: If possible, suppose x ∈ X is an isolated point. Then, there are a < x < b

such that (a, b)∩X = {x}. Consequently, (a, x)∪ (x, b) ⊂ Ω. Then, there are two

open intervals, say, Ij and Ik, such that (a, x) ⊂ Ij and (x, b) ⊂ Ik. Now, f |Ij and
f |Ik are both polynomials, of degree, say, n1 and n2. Fix some n > max {n1, n2}.
Then,

f (n)|(a,x) = 0 = f (n)|(x,b).

Continuity of f (n) forces that f (n)(x) = 0. But then f (n)|(a,b) = 0, which implies,

f |(a,b) is a polynomial of degree ≤ n − 1. Then, x ∈ (a, b) ⊂ Ω, a contradiction.

Thus, for any x ∈ X we have xi ∈ X, with xi ̸= x, such that xi → x.

ii) Show that X ∩Sn0 has nonempty interior (in the subspace topology of X) for some

n0. Suppose, X ∩ (a0, b0) ⊂ X ∩ Sn0 for some a0 < b0.

Solution: As X = R\Ω is closed in the complete space R, we have X is complete,

and hence, a Baire space. As Sn is a cover, again we have some n0 so that X ∩Sn0

has nonempty interior (in the subspace topology of X). That is, we have some

a0 < b0 so that X ∩ (a0, b0) ⊂ X ∩ Sn0 .

iii) Show that f (m)(x) = 0 for all m ≥ n0 and for all x ∈ (a0, b0) ∩X.

Hint: By assumption, the limit f (n+1)(x) = limh→0
f (n)(x+h)−f (n)(x)

h
exists. For

xi → x with xi ̸= x, one can then consider hi := xi − x → 0 in the limit.

Solution: Let x ∈ X ∩ (a0, b0). Then, there are xi ∈ X ∩ (a0, b0) with xi ̸= x such

that xi → x. Now, f (n0)(xi) = 0 = f (n0)(x), as X ∩ (a0, b0) ⊂ X ∩ Sn0 . Since

f (n0) is differentiable, we have

f (n0+1)(x) = lim
i

f (n0)(xi)− f (n0)(x)

xi − x
= 0.

Thus, for all x ∈ X∩(a0, b0) we have f (n0+1)(x) = 0. In other words, X∩(a0, b0) ⊂
X∩Sn0+1. Inductively, it follows that for anym ≥ n0 we haveX∩(a0, b0) ⊂ X∩Sm,

i.e, f (m)(x) = 0 for all x ∈ X ∩ (a0, b0) and m ≥ n0.

iv) Show that for any Ij appearing in Ω, with Ij ∩ (a0, b0) ̸= ∅, we have f |Ij is a

polynomial of degree ⪇ n0.

Hint: (a0, b0) must contain some end-point of Ij.

Solution: As Ω = R, we must have (a0, b0) ∩ Ω ̸= ∅. Now, suppose for some Ij

we have Ij ∩ (a0, b0) ̸= ∅. Clearly, (a0, b0) ⊂ Ij is not possible, as (a0, b0) also

intersects X = R \Ω. Then, we must have that some endpoint (left or right) of Ij

belongs to (a0, bj). Suppose, the endpoint is some x. Then, x ∈ X as the interval



Ij is maximal (being connected components of Ω). Suppose f |Ij is a polynomial of

degree d. Then, f (d) is a nonzero constant, say, c on Ij. By continuity, we must

have f (d)(x) = c. But we have seen f (m)(x) = 0 for all m ≥ n0. Hence, we must

have d < n0. Thus, whenever (a0, b0) intersects some Ij ⊂ Ω, we have f |Ij is a

polynomial of degree ≤ n0 − 1.

v) Conclude that f is a polynomial.

Solution: For x ∈ X ∩ (a0, b0) we have proved f (n0)(x) = 0. Also, for any

x ∈ Ω ∩ (a0, b0), we have x ∈ Ij ∩ (a0, b0) for some j, and hence, f (n0)(x) = 0.

Thus, f (n0)|(a0,b0) = 0. This means f is a polynomial of degree ≤ n0 − 1, and

so, (a0, b0) ⊂ Ω. This contradicts x ∈ X ∩ (a0, b0). Hence, we must have f is a

polynomial.


