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Attempt any 3 from Q1 - Q5, any 3 from Q6 - Q10, and Q11 is mandatory. You can get maximum 70 marks.

Q1. A topology T on X is said to be minimally Hausdorff if (X, T ) is a T2-space, and given any strictly coarser topology

T ′ ⊊ T on X, we have (X, T ′) is not T2. Show that a compact, T2 space is minimally Hausdorff. [5]

Q2. A space X is called hereditarily connected if every subspace of X is connected. Show that X is hereditarily connected if

and only if the topology on X is a totally ordered set with respect to set inclusion (i.e., if and only if for any two open

sets U, V ⊂ X we have U ⊂ V or V ⊂ U). [2 1
2 + 2 1

2 = 5]

Q3. Let X be a locally connected, separable space. Show that any open set U ⊂ X can be written as a countable union of

disjoint, open, connected sets. [5]

Q4. Let X be a locally compact, T2 space. [3 + 2 = 5]

a) Show that X is T3 1
2
.

b) If X is second countable, show that X is paracompact.

Q5. Show that a perfectly normal, T0-space is T6. [5]

Q6. Let X be a T2 space. [3 + (1 + 4) + 2 = 10]

a) Suppose f, g : Z → X are continuous maps. Show that the set E(f, g) := {z ∈ Z | f(z) = g(z)} is closed in Z.

b) Let ι : A → X, and r : X → A be continuous maps satisfying r ◦ ι = IdA. Show that ι is injective, and ι(A) is

closed in X.

A subspace A ⊂ X is called a retract of X if there exists a continuous map r : X → A such that r(a) = a for any a ∈ A.

Show that a retract of a T2-space is a closed subset.

Q7. On R, consider the particular point topology T0 with base 0, i.e,

T0 := {∅} ∪ {A ⊂ R | 0 ∈ A} .

Denote X = (R, T0). [(2× 4) + 2 = 10]

a) Which of the following properties does X have? Justify.

i) Lindelöf ii) Separable iii) Locally compact iv) Path connected.

b) Explicitly describe all the open sets in the Alexandroff compactification X̂ = X ∪ {∞}.

Q8. On R, consider the following topology

T := {∅,R} ∪ {S | S ⊂ R, 0 ̸∈ S} ∪ {R \ C | C ⊂ R \ {0} is countable} .

The space X = (R, T ) is called the fortissimo space on R. [3 + 3 + 2 + 2 = 10]

a) Show that X is T5.

b) Show that X is not T6.

c) Show that X is Lindelöf, but not compact.

d) Is X metrizable?



Q9. On R, for each irrational x, fix a sequence xi ∈ Q such that xi → x (in the usual sense). Denote the set

Un(x) = {x} ∪ {xi | i > n} , x ∈ R \Q, n ≥ 0.

Consider the collection of subsets

B := {{q} | q ∈ Q} ∪ {Un(x) | x ∈ R \Q, n ≥ 0} .

Prove the following. [2 + 3 + (2 + 3) = 10]

a) B is a basis for a topology, say, T on R (called the rational sequence topology).

b) Each basic open set of B is also closed in T .

c) The space X = (R, T ) is T3 1
2
, but not T4.

Hint: Use Jones’ lemma.

Q10. Show that the product of a compact space and a paracompact space is again paracompact. [10]

Hint: Use the tube lemma.

Q11. A function f : R → R is called a smooth function if f is (continuously) differentiable infinitely many times. Polynomials

are smooth, and so are the trigonometric functions sin(x), cos(x) etc. The function ρ(x) =

e−
1
x , x ≥ 0

0, x ≤ 0
is also

smooth; note that ρ is a (constant) polynomial on (−∞, 0) but not on all of R.

Denote the nth-derivative of a smooth function f as f (n) : R → R; for convenience, set f (0) = f . Recall that if for some

n ≥ 1 we have f (n) is identically 0 on an interval (a, b) (possibly unbounded), then f is a polynomial of degree ≤ n− 1

on (a, b). And conversely, if f is a (nonzero) polynomial of degree d on (a, b), then f (d)|(a,b) is a nonzero constant.

Let f : R → R be a smooth function. Suppose, for each x ∈ R, there is some n = nx ≥ 0 such that f (n)(x) = 0. The

goal is to prove that f must be a polynomial. If you wish, you can try to give some direct proof! Otherwise, for the sake

of contradiction, let us assume that f is not a polynomial. [25]

a) Denote

Ω =
⋃

{U ⊂ R | U is open, and f |U is a polynomial} .

By our assumption, Ω ̸= R.

i) If Ω ̸= ∅, then justify that one can write Ω =
⋃

Ij , for countably many open intervals (possibly unbounded),

which are pairwise disjoint.

ii) For any bounded interval [u, v] ⊂ Ω with u < v, show that f |(u,v) is a polynomial.

iii) Show that f |Ij is a polynomial for any open interval Ij appearing in the expression of Ω.

Hint: Note that any open interval (bounded or unbounded) can be written as an increasing union of countably

many bounded closed intervals. [1 + 2 + 3 = 6]

b) Consider the closed sets Sn :=
{
x
∣∣ f (n)(x) = 0

}
=

(
f (n)

)−1
(0).

i) For any [a, b] with a < b, prove that [a, b]∩Sn0
has nonempty interior (in the subspace topology of [a, b]) for

some n0.

ii) Conclude that Ω = R, i.e, Ω is dense in R. [1 + 3 = 4]

c) Denote X = R \ Ω. Note that X ̸= ∅, and the (finite) endpoints of each Ij appearing in Ω belongs to X.

i) Show that any x ∈ X is not an isolated point of X, and hence, there are xi ∈ X with xi ̸= x, such that

xi → x.

ii) Show thatX∩Sn0 has nonempty interior (in the subspace topology ofX) for some n0. Suppose, X∩(a0, b0) ⊂
X ∩ Sn0

for some a0 < b0.

iii) Show that f (m)(x) = 0 for all m ≥ n0 and for all x ∈ (a0, b0) ∩X.

Hint: By assumption, the limit f (n+1)(x) = limh→0
f(n)(x+h)−f(n)(x)

h exists. For xi → x with xi ̸= x, one

can then consider hi := xi − x → 0 in the limit.

iv) Show that for any Ij appearing in Ω, with Ij ∩ (a0, b0) ̸= ∅, we have f |Ij is a polynomial of degree ⪇ n0.

Hint: (a0, b0) must contain some end-point of Ij .

v) Conclude that f is a polynomial. [3 + 1 + 3 + 4 + 4 = 15]



Definitions/Hints

• A relation ≤ on a set X is called a total order if the following holds for any x, y, z ∈ X.

a) For any x ∈ X we have x ≤ x.

b) For any x, y, z ∈ X we have x ≤ y, y ≤ z ⇒ x ≤ z.

c) For any x, y ∈ X we have x ≤ y, y ≤ x ⇒ x = y.

d) For any x, y ∈ X we have either x ≤ y or y ≤ x.

• X is called locally connected if given any open set U ⊂ X and a point x ∈ U , there is an open neighborhood x ∈ V ⊂ U ,

such that V is a connected set.

• X is separable if there is a countable dense subset.

• X is second countable if there is a countable basis.

• X is locally compact if given any open set U ⊂ X and a point x ∈ U , there is a compact set C ⊂ X such that

x ∈ C̊ ⊂ C ⊂ U , where C̊ is the interior of C.

• If X is T2, then X is locally compact if and only if for any open set U and any x ∈ U , we have x ∈ V ⊂ V̄ ⊂ U , with V

open and V̄ compact.

• X is T0 if given any two distinct points x, y ∈ X, there is an open set U ⊂ X which contains exactly one of {x, y}.

• X is T1 if given any two distinct points x, y ∈ X there are open sets U, V ⊂ X such that x ∈ U, y ̸∈ U and x ̸∈ V, y ∈ V .

Equivalently, any singleton subsets of X is closed.

• X is completely regular if given any closed set A ⊂ X and a point x ∈ X \A, there is a continuous function f : X → [0, 1]

such that f(x) = 0 and f(A) = 1.

• X is T3 1
2
if X is completely regular and T0.

• X is normal if any of the following holds:

a) Given closed subsets A,B ⊂ X with A∩B = ∅, there are open set U, V ⊂ X such that A ⊂ U,B ⊂ V and U ∩V = ∅.

b) Given any closed set A ⊂ X, and an open set U ⊂ X with A ∈ U , there is an open set V ⊂ X such that

A ∈ V ⊂ V̄ ⊂ U .

c) Given closed subsets A,B ⊂ X with A∩B = ∅, there is a continuous map f : X → [0, 1] such that f(A) = 0, f(B) = 1.

• X is T4 if it is normal and T1.

• X is completely normal if any of the following holds:

a) Any subset A ⊂ X is normal.

b) Any open subset U ⊂ X is normal.

c) Given any subsets A,B ⊂ X, with Ā ∩B = ∅ = A ∩ B̄, there are open sets U, V ⊂ X such that A ⊂ U,B ⊂ V and

U ∩ V = ∅.

• X is T5 if it is completely normal and T1.

• X is perfectly normal if any of the following holds:

a) Given closed subsets A,B ⊂ X with A ∩B = ∅, there is a continuous function f : X → [0, 1] such that A = f−1(0)

and B = f−1(1).

b) X is normal, and any closed set C ⊂ X is a Gδ-set.

c) Given any closed set C ⊂ X, there is a continuous function f : X → R such that C = f−1(0).

• X is T6 if it is perfectly normal and T1.

• X is Lindelöf if any open cover has a countable sub-cover.



• X is paracompact if given any open cover U = {Ui}i∈I there exists a locally finite open cover V = {Vi}j∈J such that for

each j ∈ I there is some i ∈ I such that Vj ⊂ Ui. One can assume that J = I and Vi ⊂ Ui for all i ∈ I.

• A collection A = {Aα ⊂ X} of subsets is called locally finite, if for any x ∈ X, there exists an open neighborhood

x ∈ U ⊂ X, such that U intersects at most finitely many (possibly none) of Aα.

• X is a Baire space if countable intersection of open dense sets of X is again dense. Equivalently, countable union of closed

nowhere dense sets of X has empty interior.

• If X is locally compact, T2, then X is a Baire space.

• If X is completely metrizable, then X is a Baire space.

• Tube lemma : Let x ∈ X and C ⊂ Y be compact. If {x} × C ⊂ O ⊂ X × Y , where O is open, then there exists an open

neighborhood x ∈ U ⊂ X such that {x} × C ⊂ U × C ⊂ O ⊂ X × Y .

• Jones’ lemma : Let Q ⊂ X be a dense set, and Z ⊂ X be a closed discrete set. If |P(Q)| < |P(Z)|, then X cannot be

normal.


