

End-semester Examination

Course : Topology (KSM1C03)

Instructor : Aritra Bhowmick

6th December, 2025

Time: 2:00 PM onwards

Total marks: 100

Attempt any **3** from **Q1 - Q5**, any **3** from **Q6 - Q10**, and **Q11** is mandatory. You can get maximum **70 marks**.

Q1. A topology \mathcal{T} on X is said to be *minimally Hausdorff* if (X, \mathcal{T}) is a T_2 -space, and given any strictly coarser topology $\mathcal{T}' \subsetneq \mathcal{T}$ on X , we have (X, \mathcal{T}') is not T_2 . Show that a compact, T_2 space is minimally Hausdorff. [5]

Q2. A space X is called *hereditarily connected* if every subspace of X is connected. Show that X is hereditarily connected if and only if the topology on X is a totally ordered set with respect to set inclusion (i.e., if and only if for any two open sets $U, V \subset X$ we have $U \subset V$ or $V \subset U$). [2 $\frac{1}{2}$ + 2 $\frac{1}{2}$ = 5]

Q3. Let X be a locally connected, separable space. Show that any open set $U \subset X$ can be written as a countable union of disjoint, open, connected sets. [5]

Q4. Let X be a locally compact, T_2 space. [3 + 2 = 5]

- a) Show that X is $T_{3\frac{1}{2}}$.
- b) If X is second countable, show that X is paracompact.

Q5. Show that a perfectly normal, T_0 -space is T_6 . [5]

Q6. Let X be a T_2 space. [3 + (1 + 4) + 2 = 10]

- a) Suppose $f, g : Z \rightarrow X$ are continuous maps. Show that the set $E(f, g) := \{z \in Z \mid f(z) = g(z)\}$ is closed in Z .
- b) Let $\iota : A \rightarrow X$, and $r : X \rightarrow A$ be continuous maps satisfying $r \circ \iota = \text{Id}_A$. Show that ι is injective, and $\iota(A)$ is closed in X .

A subspace $A \subset X$ is called a *retract* of X if there exists a continuous map $r : X \rightarrow A$ such that $r(a) = a$ for any $a \in A$. Show that a retract of a T_2 -space is a closed subset.

Q7. On \mathbb{R} , consider the particular point topology \mathcal{T}_0 with base 0, i.e,

$$\mathcal{T}_0 := \{\emptyset\} \cup \{A \subset \mathbb{R} \mid 0 \in A\}.$$

Denote $X = (\mathbb{R}, \mathcal{T}_0)$. [(2 × 4) + 2 = 10]

- a) Which of the following properties does X have? Justify.
 - i) Lindelöf
 - ii) Separable
 - iii) Locally compact
 - iv) Path connected.
- b) Explicitly describe all the open sets in the Alexandroff compactification $\hat{X} = X \cup \{\infty\}$.

Q8. On \mathbb{R} , consider the following topology

$$\mathcal{T} := \{\emptyset, \mathbb{R}\} \cup \{S \mid S \subset \mathbb{R}, 0 \notin S\} \cup \{\mathbb{R} \setminus C \mid C \subset \mathbb{R} \setminus \{0\} \text{ is countable}\}.$$

The space $X = (\mathbb{R}, \mathcal{T})$ is called the *fortissimo space* on \mathbb{R} . [3 + 3 + 2 + 2 = 10]

- a) Show that X is T_5 .
- b) Show that X is not T_6 .
- c) Show that X is Lindelöf, but not compact.
- d) Is X metrizable?

Q9. On \mathbb{R} , for each irrational x , fix a sequence $x_i \in \mathbb{Q}$ such that $x_i \rightarrow x$ (in the usual sense). Denote the set

$$U_n(x) = \{x\} \cup \{x_i \mid i > n\}, \quad x \in \mathbb{R} \setminus \mathbb{Q}, n \geq 0.$$

Consider the collection of subsets

$$\mathcal{B} := \{\{q\} \mid q \in \mathbb{Q}\} \cup \{U_n(x) \mid x \in \mathbb{R} \setminus \mathbb{Q}, n \geq 0\}.$$

Prove the following. [2 + 3 + (2 + 3) = 10]

- a) \mathcal{B} is a basis for a topology, say, \mathcal{T} on \mathbb{R} (called the *rational sequence topology*).
- b) Each basic open set of \mathcal{B} is also closed in \mathcal{T} .
- c) The space $X = (\mathbb{R}, \mathcal{T})$ is $T_{3\frac{1}{2}}$, but not T_4 .

Hint: Use Jones' lemma.

Q10. Show that the product of a compact space and a paracompact space is again paracompact. [10]

Hint: Use the tube lemma.

Q11. A function $f : \mathbb{R} \rightarrow \mathbb{R}$ is called a *smooth function* if f is (continuously) differentiable infinitely many times. Polynomials are smooth, and so are the trigonometric functions $\sin(x)$, $\cos(x)$ etc. The function $\rho(x) = \begin{cases} e^{-\frac{1}{x}}, & x \geq 0 \\ 0, & x \leq 0 \end{cases}$ is also smooth; note that ρ is a (constant) polynomial on $(-\infty, 0)$ but not on all of \mathbb{R} .

Denote the n^{th} -derivative of a smooth function f as $f^{(n)} : \mathbb{R} \rightarrow \mathbb{R}$; for convenience, set $f^{(0)} = f$. Recall that if for some $n \geq 1$ we have $f^{(n)}$ is identically 0 on an interval (a, b) (possibly unbounded), then f is a polynomial of degree $\leq n-1$ on (a, b) . And conversely, if f is a (nonzero) polynomial of degree d on (a, b) , then $f^{(d)}|_{(a,b)}$ is a nonzero constant.

Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be a smooth function. Suppose, for each $x \in \mathbb{R}$, there is some $n = n_x \geq 0$ such that $f^{(n)}(x) = 0$. The goal is to prove that f must be a polynomial. If you wish, you can try to give some direct proof! Otherwise, for the sake of contradiction, let us assume that f is not a polynomial. [25]

a) Denote

$$\Omega = \bigcup \{U \subset \mathbb{R} \mid U \text{ is open, and } f|_U \text{ is a polynomial}\}.$$

By our assumption, $\Omega \neq \mathbb{R}$.

- i) If $\Omega \neq \emptyset$, then justify that one can write $\Omega = \bigcup I_j$, for countably many open intervals (possibly unbounded), which are pairwise disjoint.
- ii) For any bounded interval $[u, v] \subset \Omega$ with $u < v$, show that $f|_{(u,v)}$ is a polynomial.
- iii) Show that $f|_{I_j}$ is a polynomial for any open interval I_j appearing in the expression of Ω .

Hint: Note that any open interval (bounded or unbounded) can be written as an increasing union of countably many bounded closed intervals. [1 + 2 + 3 = 6]

b) Consider the closed sets $S_n := \{x \mid f^{(n)}(x) = 0\} = (f^{(n)})^{-1}(0)$.

- i) For any $[a, b]$ with $a < b$, prove that $[a, b] \cap S_{n_0}$ has nonempty interior (in the subspace topology of $[a, b]$) for some n_0 .
- ii) Conclude that $\overline{\Omega} = \mathbb{R}$, i.e., Ω is dense in \mathbb{R} . [1 + 3 = 4]

c) Denote $X = \mathbb{R} \setminus \Omega$. Note that $X \neq \emptyset$, and the (finite) endpoints of each I_j appearing in Ω belongs to X .

- i) Show that any $x \in X$ is *not* an isolated point of X , and hence, there are $x_i \in X$ with $x_i \neq x$, such that $x_i \rightarrow x$.
- ii) Show that $X \cap S_{n_0}$ has nonempty interior (in the subspace topology of X) for some n_0 . Suppose, $X \cap (a_0, b_0) \subset X \cap S_{n_0}$ for some $a_0 < b_0$.
- iii) Show that $f^{(m)}(x) = 0$ for all $m \geq n_0$ and for all $x \in (a_0, b_0) \cap X$.

Hint: By assumption, the limit $f^{(n+1)}(x) = \lim_{h \rightarrow 0} \frac{f^{(n)}(x+h) - f^{(n)}(x)}{h}$ exists. For $x_i \rightarrow x$ with $x_i \neq x$, one can then consider $h_i := x_i - x \rightarrow 0$ in the limit.

iv) Show that for any I_j appearing in Ω , with $I_j \cap (a_0, b_0) \neq \emptyset$, we have $f|_{I_j}$ is a polynomial of degree $\leq n_0$.

Hint: (a_0, b_0) must contain some end-point of I_j .

v) Conclude that f is a polynomial. [3 + 1 + 3 + 4 + 4 = 15]

Definitions/Hints

- A relation \leq on a set X is called a *total order* if the following holds for any $x, y, z \in X$.
 - a) For any $x \in X$ we have $x \leq x$.
 - b) For any $x, y, z \in X$ we have $x \leq y, y \leq z \Rightarrow x \leq z$.
 - c) For any $x, y \in X$ we have $x \leq y, y \leq x \Rightarrow x = y$.
 - d) For any $x, y \in X$ we have either $x \leq y$ or $y \leq x$.
- X is called *locally connected* if given any open set $U \subset X$ and a point $x \in U$, there is an open neighborhood $x \in V \subset U$, such that V is a connected set.
- X is *separable* if there is a countable dense subset.
- X is *second countable* if there is a countable basis.
- X is *locally compact* if given any open set $U \subset X$ and a point $x \in U$, there is a compact set $C \subset X$ such that $x \in \mathring{C} \subset C \subset U$, where \mathring{C} is the interior of C .
- If X is T_2 , then X is locally compact if and only if for any open set U and any $x \in U$, we have $x \in V \subset \bar{V} \subset U$, with V open and \bar{V} compact.
- X is T_0 if given any two distinct points $x, y \in X$, there is an open set $U \subset X$ which contains exactly one of $\{x, y\}$.
- X is T_1 if given any two distinct points $x, y \in X$ there are open sets $U, V \subset X$ such that $x \in U, y \notin U$ and $x \notin V, y \in V$. Equivalently, any singleton subsets of X is closed.
- X is *completely regular* if given any closed set $A \subset X$ and a point $x \in X \setminus A$, there is a continuous function $f : X \rightarrow [0, 1]$ such that $f(x) = 0$ and $f(A) = 1$.
- X is $T_{3\frac{1}{2}}$ if X is completely regular and T_0 .
- X is *normal* if any of the following holds:
 - a) Given closed subsets $A, B \subset X$ with $A \cap B = \emptyset$, there are open set $U, V \subset X$ such that $A \subset U, B \subset V$ and $U \cap V = \emptyset$.
 - b) Given any closed set $A \subset X$, and an open set $U \subset X$ with $A \in U$, there is an open set $V \subset X$ such that $A \in V \subset \bar{V} \subset U$.
 - c) Given closed subsets $A, B \subset X$ with $A \cap B = \emptyset$, there is a continuous map $f : X \rightarrow [0, 1]$ such that $f(A) = 0, f(B) = 1$.
- X is T_4 if it is normal and T_1 .
- X is *completely normal* if any of the following holds:
 - a) Any subset $A \subset X$ is normal.
 - b) Any open subset $U \subset X$ is normal.
 - c) Given any subsets $A, B \subset X$, with $\bar{A} \cap B = \emptyset = A \cap \bar{B}$, there are open sets $U, V \subset X$ such that $A \subset U, B \subset V$ and $U \cap V = \emptyset$.
- X is T_5 if it is completely normal and T_1 .
- X is *perfectly normal* if any of the following holds:
 - a) Given closed subsets $A, B \subset X$ with $A \cap B = \emptyset$, there is a continuous function $f : X \rightarrow [0, 1]$ such that $A = f^{-1}(0)$ and $B = f^{-1}(1)$.
 - b) X is normal, and any closed set $C \subset X$ is a G_δ -set.
 - c) Given any closed set $C \subset X$, there is a continuous function $f : X \rightarrow \mathbb{R}$ such that $C = f^{-1}(0)$.
- X is T_6 if it is perfectly normal and T_1 .
- X is *Lindelöf* if any open cover has a countable sub-cover.

- X is paracompact if given any open cover $\mathcal{U} = \{U_i\}_{i \in I}$ there exists a locally finite open cover $\mathcal{V} = \{V_i\}_{j \in J}$ such that for each $j \in J$ there is some $i \in I$ such that $V_j \subset U_i$. One can assume that $J = I$ and $V_i \subset U_i$ for all $i \in I$.
- A collection $\mathcal{A} = \{A_\alpha \subset X\}$ of subsets is called *locally finite*, if for any $x \in X$, there exists an open neighborhood $x \in U \subset X$, such that U intersects at most finitely many (possibly none) of A_α .
- X is a *Baire space* if countable intersection of open dense sets of X is again dense. Equivalently, countable union of closed nowhere dense sets of X has empty interior.
- If X is locally compact, T_2 , then X is a Baire space.
- If X is completely metrizable, then X is a Baire space.
- Tube lemma : Let $x \in X$ and $C \subset Y$ be compact. If $\{x\} \times C \subset O \subset X \times Y$, where O is open, then there exists an open neighborhood $x \in U \subset X$ such that $\{x\} \times C \subset U \times C \subset O \subset X \times Y$.
- Jones' lemma : Let $Q \subset X$ be a dense set, and $Z \subset X$ be a closed discrete set. If $|\mathcal{P}(Q)| < |\mathcal{P}(Z)|$, then X cannot be normal.