

Assignment 8

Topology (KSM1C03)

Submission Deadline: 4th November, 2025

1) A metric space (X, d) is said to have the *Lebesgue number property* if given any open cover $\mathcal{U} = \{U_\alpha\}$ of X , there exists a number $\delta = \delta(\mathcal{U}) > 0$, which is a Lebesgue number for the covering (i.e, given any subset $A \subset X$, with $\text{Diam}A < \delta$, there is some $U_\alpha \in \mathcal{U}$ such that $A \subset U_\alpha$). Suppose (X, d) has the Lebesgue number property. Show that every continuous map $f : X \rightarrow Y$, where Y is a metric space, is uniformly continuous. We shall see later that the converse is also true!

10

2) Given a space X , show that the following are equivalent.

- a) X is completely T_2 .
- b) The map

$$\begin{aligned}\iota : X &\longrightarrow [0, 1]^{C(X, [0, 1])} := \prod_{f \in C(X, [0, 1])} [0, 1] \\ x &\longmapsto (f(x))_{f \in C(X, [0, 1])}\end{aligned}$$

is injective, where $C(X, [0, 1]) = \{f : X \rightarrow [0, 1] \mid f \text{ is continuous}\}$.

5 + 5 = 10

3) An open set $O \subset X$ is called a *regular open set* if it satisfies $\text{int}(\bar{O}) = O$. A space X is called *semiregular* if it admits a basis \mathcal{B} of regular open sets. Prove the following.

- a) A regular space is always semiregular.
- b) A semiregular space may not be regular. (Hint : Arens square)
- c) A semiregular, T_2 space may not be $T_{2\frac{1}{2}}$ (and hence, not functionally T_2 either). (Hint: the double-origin plane)

4 + 4 + 2 = 10

4) Let us verify the usual operations on regular spaces.

- a) Show that a subspace of a regular space is regular (that is, regularity is a hereditary property).
- b) Let $\{X_\alpha\}$ be a collection of (nonempty) spaces, and $X = \prod X_\alpha$ be the product space. Show that X is regular if and only if each X_α is regular.

We shall see later that continuous image of a regular space need not be regular.

$$4 + 6 = 10$$

5) Given $K = \{\frac{1}{n} \mid n \geq 1\}$, recall the topology \mathbb{R}_K on the reals : every usual open set of \mathbb{R} is open in \mathbb{R}_K , and moreover, for any usual open set $U \subset \mathbb{R}$, sets of the form $U \setminus K$ is also open. Show that \mathbb{R}_K is functionally T_2 (hence $T_{2\frac{1}{2}}$), but not T_3 .

Hint : Show that \mathbb{R}_K is submetrizable (since the identity map $\mathbb{R}_K \rightarrow \mathbb{R}$ is continuous). Also, note that K is closed in \mathbb{R}_K .

$$4 + 6 = 10$$

6) On the set $[0, 1)$ consider the following topology

$$\mathcal{T} := \{\emptyset\} \cup \{[0, 1) \setminus F \mid F \subset (0, 1) \text{ is finite}\} \cup \{S \mid S \subset (0, 1)\}.$$

Let $X = ([0, 1), \mathcal{T})$ be the space.

- a) Show that X is the one-point compactification of \mathbb{R} equipped with discrete topology.
- b) Suppose $f : X \rightarrow \mathbb{R}$ is a continuous map (where \mathbb{R} has the usual topology). Show that f is constant outside a countable subset of $(0, 1)$.

Hint : Note that

$$\{f(0)\} = \bigcap_{n \geq 1} \left(f(0) - \frac{1}{n}, f(0) + \frac{1}{n} \right),$$

and look at $f^{-1}(f(0))$.

$$4 + 6 = 10$$

7) A space X is called *zero-dimensional* if it admits a basis of clopen sets (i.e, both open and closed sets).

- a) Show that a zero-dimensional space is completely regular.
- b) Show that $[0, \Omega] = \overline{S_\Omega}$ is zero-dimensional. (Hint : if $\alpha = \beta + 1$ for some β , then $(\beta, \beta + 2) = \{\alpha\}$ is clopen. What if there is no such β ?).
- c) Show that arbitrary product of zero-dimensional spaces is again zero-dimensional.
- d) Conclude that the Tychonoff plank is a Tychonoff space.

$$3 + 4 + 4 + 4 = 15$$

8) The *Thomas plank* is defined as the product $[0, 1) \times (\{0\} \cup \{\frac{1}{n} \mid n \geq 1\})$, where $[0, 1)$ is the fort space on the reals, and $K = \{0\} \cup \{\frac{1}{n} \mid n \geq 1\}$ has the subspace topology from \mathbb{R} (equivalently, K is the Fort space of \mathbb{N}). The *deleted Thomas plank* is defined by deleting the point $\{(0, 0)\}$ from the Thomas plank.

Construct the *Thomas corkscrew* : take four copies of the deleted Thomas plank to make a coordinate plane (by reflecting them as necessary), add two special points $\{\alpha_{\pm}\}$, and finally, perform the corkscrew construction.

Show that the Thomas corkscrew is T_3 , but not $T_{3\frac{1}{2}}$.

$$10 + (5 + 5) = 20$$