

Assignment 5

Topology (KSM1C03)

Submission Deadline: 5th October, 2025

- 1) Show the following implications.
 - a) Sequentially compact \Rightarrow countably compact.
 - b) Countably compact \Rightarrow limit point compact.

$6 + 4 = 10$

- 2) Show that the lower limit topology is first countable, but not second countable.

Hint : For each $x \in \mathbb{R}$, consider $x \in [x, \infty)$, and get basic open sets to derive contradiction.

$4 + 6 = 10$

- 3) Given any compact space X , show that the cone CX , and the suspension ΣX are compact. Justify that the n -sphere \mathbb{S}^n and the n -disc \mathbb{D}^n are compact.

$4 + 4 + 2 = 10$

- 4) Suppose $\mathcal{F} \subset \mathcal{P}(X)$ is a family of subsets, such that $\emptyset \notin \mathcal{F}$. Suppose \mathcal{F} has the finite intersection property (FIP) : for any $A_1, \dots, A_n \in \mathcal{F}$, we have $\bigcap_{i=1}^n A_i \neq \emptyset$. Construct a filter \mathfrak{F} containing \mathcal{F} . Show that \mathcal{F} is contained in an ultrafilter \mathfrak{U} .

$3 + 2 = 5$

- 5) A filter \mathcal{F} is called *maximal* if $\mathcal{F} \subset \mathcal{G}$ for any filter \mathcal{G} implies $\mathcal{F} = \mathcal{G}$. Show that a filter is an ultrafilter if and only if it is a maximal filter.

Hint : If $S \notin \mathcal{F}$, $X \setminus S \notin \mathcal{F}$, then check that $\mathcal{F} \cup \{S\}$ has FIP.

$5 + 5 = 10$

- 6) Show that a space X is Hausdorff if and only if every ultrafilter on X converges to at most one point.

Hint : If X is not Hausdorff, there are points $x \neq y$ such that every open nbd of x intersects every open nbd of y . Consider the collection

$$\mathcal{A} := \{U \mid x \in U, U \text{ is open}\} \cup \{V \mid y \in V, V \text{ is open}\}.$$

Close it under supersets to get a filter, and then get an ultrafilter containing it.

$$5 + 5 = 10$$

7) Let $f : X \rightarrow Y$ be a set map, \mathfrak{U} be a filter on X . Define the *pushforward* as

$$f_*\mathfrak{U} := \{A \subset Y \mid f^{-1}(A) \in \mathfrak{U}\}.$$

Then, show that \mathfrak{U} is a filter on Y . If \mathfrak{U} is an ultrafilter, then show that $f_*\mathfrak{U}$ is an ultrafilter.

$$3 + 2 = 5$$

8) Show that the product space $[0, 1]^{[0,1]}$ is not first countable.

Hint : If $\{U_n\}$ is any countable collection of open sets, verify that there exists some $\alpha \in [0, 1]$, for which $\pi_\alpha(U_n) = [0, 1]$ for all $n \geq 1$, where $\pi_\alpha : [0, 1]^{[0,1]} \rightarrow [0, 1]$ is the α^{th} -component projection.

$$10$$