

Assignment 4

Topology (KSM1C03)

Submission Deadline: 5th October, 2025

1) Consider the set $X = (-2, -1) \cup \{0\} \cup (1, 2) \subset \mathbb{R}$. Show that with the subspace topology, X is not path connected. Now, equip X with the topology \mathcal{T} generated by the base

$$\mathcal{B} := \{(a, b) \mid -2 < a < b < -1\} \bigcup \{(a, b) \mid 1 < a < b < 2\} \\ \bigcup \{(a, -1) \cup \{0\} \cup (1, b) \mid -2 < a < -1, 1 < b < 2\}.$$

Show that (X, \mathcal{T}) is homeomorphic to $(-2, 2)$ (and hence path connected).

$$2 + 8 = 10$$

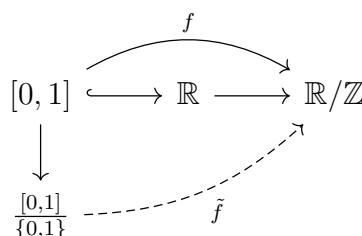
2) A collection $\Sigma \subset \mathcal{P}(X)$ of subsets of X is said to have the *finite intersection property (FIP)* if any finite sub-collection of Σ has nonempty intersection.
Show that a space X is compact if and only if given any collection Σ of closed sets of X with FIP, has nonempty intersection (i.e, $\bigcap_{F \in \Sigma} F \neq \emptyset$).

$$5 + 5 = 10$$

3) Prove the following.

a) Let $X = [0, 1]$, any $Y = X/\{0, 1\}$ which is the quotient space. Then, Y is homeomorphic to the circle S^1 .
b) Let $X = \mathbb{R}$, and $Y = \mathbb{R}/\mathbb{Z}$ be the quotient space obtained by the equivalence relation $x \sim y$ if and only if $x - y \in \mathbb{Z}$. Then, Y is homeomorphic to S^1 .

Hint : Look at this diagram



where $f(t) = t + \mathbb{Z}$. The induced map \tilde{f} is continuous and bijective. Argue that \mathbb{R}/\mathbb{Z} is T_2 . Conclude that \tilde{f} is a homeomorphism.

$$3 + 7 = 10$$

4) Let X be the real line equipped with the lower limit topology.

- a) Show that $[0, 1]$ is not compact in X .
- b) Let C be compact set in X . Show that C is compact in the usual topology, and hence closed and bounded in X as well. (Recall : lower limit topology is (strictly) finer than the usual topology.)
- c) Let C be a subset in X . Suppose $\{x_n\}$ is a strictly increasing sequence in C , i.e, $x_i \in C$ and $x_1 < x_2 < \dots$. Show that C is not compact. (If C is compact, we have a minimum $a = \min C = \inf C$ and a maximum $b = \max C = \sup C$. Consider $U_0 = [a, x_0], U_i = [x_i, x_{i+1}], V = [x_0, \infty)$, where $x_0 = \sup x_i$.)
- d) Let $C \subset X$ be a closed set, such that C contains no strictly increasing sequence. Then, show that C is closed in the usual topology as well.
- e) Let $C \subset \mathbb{R}$ be a set such that there is no strictly increasing sequence in C . For any $x \in C$, consider the set $S_x := \{y \in C \mid y < x\}$. If $S_x \neq \emptyset$ (i.e, if x is *not* the minimum element of C), denote $s_x := \sup S_x$. If C has a minimum element x , then set $s_x := x - 1$ for convenience.
 - i) Show that $s_x \neq x$, and $C \cap (s_x, x) = \emptyset$. In other words, s_x is the previous element of x in C (called *predecessor*).
 - ii) Show that $\{I_x := (s_x, x) \mid x \in C\}$ is a collection of disjoint open sets of X .
 - iii) Conclude that C is countable.

In particular, observe that any compact subset of X must be countable.

- f) Suppose $C \subset X$ is a closed, bounded subset, without any strictly increasing sequence. Show that C is compact. (Hint: For any cover $\mathcal{U} = \{U_\alpha\}$, start with $x_0 = \inf C \in C$, and some $x_0 \in U_{\alpha_0}$. Next, get $x_1 := \inf(C \setminus U_{\alpha_0})$. Argue that $x_0 < x_1 \in C$. If this process does not terminate after finitely many steps, arrive at a contradiction.)

Observe that $C \subset X$ is compact if and only if C is compact in the usual topology, and contains no strictly increasing sequence.

$$2 + 2 + 2 + 4 + (3 + 3 + 4) + 5 = 25$$

5) Given a space X , the *cone of X* is defined as the quotient space

$$CX := \frac{X \times [0, 1]}{X \times \{0\}}.$$

- a) Show that CX is homeomorphic to $\frac{X \times [a, b]}{X \times \{a\}}$ and to $\frac{X \times [a, b]}{X \times \{b\}}$ for any interval $[a, b]$.
- b) Show that CX is always path connected, but not necessarily locally path connected. (Recall the broom space.)
- c) Show that $CS^n \cong \mathbb{D}^{n+1}$, where $\mathbb{S}^n = \{(x_1, \dots, x_{n+1}) \in \mathbb{R}^{n+1} \mid \sum_{i=1}^{n+1} x_i^2 = 1\}$ is the n^{th} sphere, and $\mathbb{D}^{n+1} = \{(x_1, \dots, x_{n+1}) \in \mathbb{R}^{n+1} \mid \sum_{i=1}^{n+1} x_i^2 \leq 1\}$ is the $(n+1)^{\text{th}}$ disc.

Hint : Consider the map

$$\begin{aligned} f : \mathbb{S}^n \times [0, 1] &\longrightarrow \mathbb{D}^n \\ (x_1, \dots, x_{n+1}, t) &\longmapsto (tx_1, \dots, tx_{n+1}). \end{aligned}$$

$$(3 + 3) + 4 + 5 = 15$$

6) Prove that $\mathbb{D}^{n+1}/\mathbb{S}^n \cong \mathbb{S}^{n+1}$, where $\mathbb{S}^n \subset \mathbb{D}^{n+1}$ is included as the boundary.

Hint : Consider the map

$$f : \mathbb{D}^{n+1} \longrightarrow \mathbb{S}^{n+1}$$

$$\mathbf{x} \longmapsto \left(2\sqrt{1 - \|\mathbf{x}\|^2} \mathbf{x}, 2\|\mathbf{x}\|^2 - 1 \right),$$

where $\|\mathbf{x}\| = \sqrt{x_1^2 + \dots + x_{n+1}^2}$, for $\mathbf{x} = (x_1, \dots, x_{n+1}) \in \mathbb{R}^{n+1}$.

10

7) On the space $X \times [0, 1]$, consider the following equivalence relation : for any $(x, s), (y, t) \in X \times [0, 1]$, define $(x, s) \sim (y, t)$ if and only if one of the following holds

$$s = t \in (0, 1), \text{ and } x = y, \quad \text{or} \quad s = t = 0, \quad \text{or} \quad s = t = 1.$$

The *suspension of X* is defined as the quotient space of $\Sigma X := (X \times [0, 1])/\sim$.

a) Show that ΣX is independent of the choice of the interval. That is, for some $a < b$, if we consider $\Sigma' X = X \times [a, b]/\sim'$, where $(x, s) \sim' (y, t)$ if and only if

$$s = t \in (a, b), \text{ and } x = y, \quad \text{or} \quad s = t = a, \quad \text{or} \quad s = t = b,$$

then ΣX is homeomorphic to $\Sigma' X$.

b) Show that ΣX is homeomorphic to $\frac{CX}{X \times \{1\}}$, where $X \times \{1\}$ is included in $CX = \frac{X \times [0, 1]}{X \times \{0\}}$.

c) Show that $\Sigma \mathbb{S}^n \cong \mathbb{S}^{n+1}$.

3 + 3 + 4 = 10