

Assignment 3

Topology (KSM1C03)

Submission Deadline: 5th October, 2025

1) Given a space X , define a relation

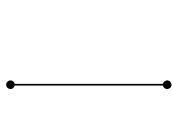
$a \sim b \Leftrightarrow a$ and b are in the same connected component.

- a) Check that \sim is an equivalence relation.
- b) Prove that the connected components of X are disjoint closed sets, whose union is X .
- c) Given an example where the connected components are not open.
- d) If X only has finitely many components, show that the quotient space $Y = X/\sim$ is a discrete space.

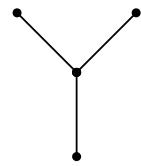
$$3 + 3 + 2 + 2 = 10$$

2) a) Suppose X and Y are homeomorphic. Show that there is an induced bijection between the connected components of X and Y .

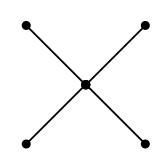
b) Conclude that none of the following shapes (as subspaces of \mathbb{R}^2) are homeomorphic to each other.



(i)



(ii)



(iii)

Hint : If $f : X \rightarrow Y$ is a homeomorphism, then we have an induced homeomorphism $\tilde{f} : X \setminus \{x\} \rightarrow Y \setminus \{f(x)\}$ for any $x \in X$.

c) Prove that \mathbb{R} is not homeomorphic to \mathbb{R}^n for any $n \geq 2$.

Note : similar argument can be used to show that the circle \mathbb{S}^1 is not homeomorphic to the sphere \mathbb{S}^2 (or any other \mathbb{S}^n for $n \geq 2$).

d) Why does this argument cannot be used to show that \mathbb{R}^2 is not homeomorphic to \mathbb{R}^3 ?

$$5 + 3 \times 3 + 4 + 2 = 20$$

3) Suppose $\{A_\alpha \subset X\}_{\alpha \in I}$ is a collection of connected subsets of X . If $\bigcap A_\alpha \neq \emptyset$, then show that $\bigcup A_\alpha$ is a connected set. Given an example when A, B are connected but $A \cup B$ is not connected.

$$8 + 2 = 10$$

4) Prove that the following spaces are totally disconnected.

- a) \mathbb{Q} with the subspace topology from \mathbb{R} .
- b) $\{\frac{1}{n}\} \cup \{0\}$ as a subspace of \mathbb{R}
- c) The Sorgenfrey line \mathbb{R}_l (i.e, \mathbb{R} with the lower limit topology).

$$5 \times 3 = 15$$

5) Recall the K -topology \mathbb{R}_K on \mathbb{R} given by the basis

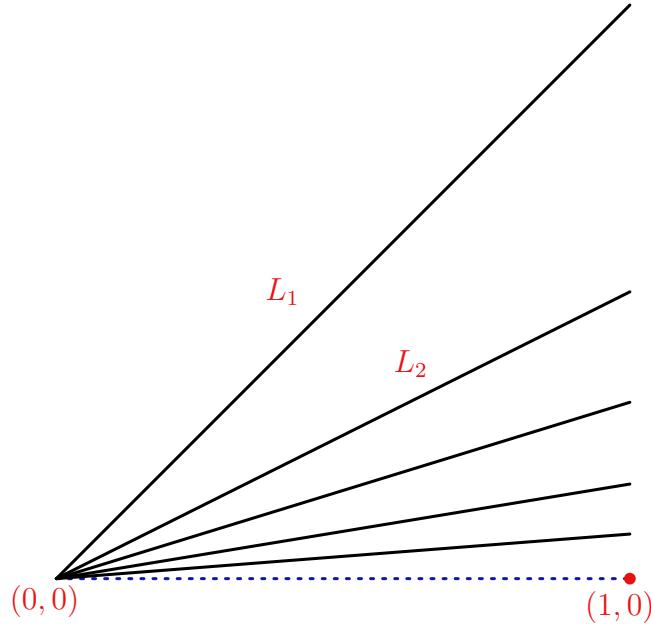
$$\mathcal{B} := \{(a, b) \mid a, b \in \mathbb{R}\} \cup \{(a, b) \setminus K \mid a, b \in \mathbb{R}\},$$

where $K = \{\frac{1}{n} \mid n \geq 1\}$.

- a) Show that the inclusions $(0, \infty) \hookrightarrow \mathbb{R}_K$, and $(-\infty, 0) \hookrightarrow \mathbb{R}_K$ are homeomorphisms onto the image.
- b) Conclude that \mathbb{R}_K is connected.

$$5 + 5 = 10$$

6) For each $n \geq 1$, consider the line L_n joining $(0, 0)$ to $(1, \frac{1}{n})$ in \mathbb{R}^2 . Finally, denote L_0 to be the line joining $(0, 0)$ to $(0, 1)$. The *broom space* is defined to be the union $\bigcup_{n \geq 0} L_n$ as a subspace of \mathbb{R}^2 .



Broom space. Removing $(0, 1) \times \{0\}$, we get the deleted broom space.

The *deleted broom space* is defined by removing the open segment $(0, 1) \times \{0\}$ from the broom space.

Prove that the deleted broom space is connected, but not path connected.

Hint : Use the gradient function $m(x, y) = \frac{y}{x}$, which is a well-defined continuous function away from the y -axis. Note that after removing the origin, m maps the broom space to the totally disconnected space $\{0\} \cup \{\frac{1}{n} \mid n \geq 1\}$.

$$10$$

7) Give examples of the following cases, with justification.

- a) X is both connected and locally connected.
- b) X is not connected, but locally connected.
- c) X is connected, but not locally connected. (Hint: Think of the broom space or the comb space)
- d) X is neither connected nor locally connected.

$$2\frac{1}{2} \times 4 = 10$$