

Assignment 2

Topology (KSM1C03)

Submission Deadline: 5th October, 2025

1) Let X_α be a family of spaces, and $A_\alpha \subset X_\alpha$. Consider $A := \prod A_\alpha \subset X := \prod X_\alpha$. Show that $\overline{A} = \prod \overline{A_\alpha}$, for both product and box topology on X .

$5 + 5 = 10$

2) Given an infinite collection $\{X_\alpha\}_{\alpha \in I}$ of (non-empty) spaces, consider the product space $X = \prod X_\alpha$. Fix a point $z = (z_\alpha) \in X$. Consider the subset

$$A := \{(x_\alpha) \in X \mid x_\alpha = z_\alpha \text{ for all but finitely many } \alpha \in I\}.$$

Show that $\overline{A} = X$.

Prove (or disprove by example) the same if X is given the box topology.

$7 + 3 = 10$

3) Let X be an infinite set, equipped with the cofinite topology. Prove the following.

- X is T_1 but not T_2 .
- A sequence $\{x_n\}$ in X which is eventually constant, say, $x_n = x$ for some $n \geq N$, converges to only x and no other point.
- A sequence $\{x_n\}$ in X where no point is repeated infinitely many times, converges to every point in X .

$3 + 3 + 4 = 10$

4) Let X be an uncountable set, equipped with the cocountable topology. Prove the following.

- X is T_1 but not T_2 .
- If a sequence $\{x_n\}$ in X converges to some x , the sequence is eventually constantly equal to x , i.e., there is some $N \geq 1$ such that $x_n = x$ for all $n \geq N$.
- Any sequence in X can converge to at most one point.

$3 + 3 + 4 = 10$

5) Given a collection of T_2 -spaces (even T_1 will suffice) $\{X_\alpha\}$, denote the product set $X = \prod X_\alpha$. Suppose $x_n = (x_{n,\alpha})$ is a sequence of points, and let $x = (x_\alpha) \in X$. Prove the following.

- $x_n \rightarrow x$ in the product topology, if and only if $x_{n,\alpha} \rightarrow x_\alpha$ in X_α for each α .

(Note : you don't need to assume T_2 for this case.)

b) $x_n \rightarrow x$ in the box topology, if and only if

- i) $x_{n,\alpha} \rightarrow x_\alpha$ in each X_α , and moreover,
- ii) there is a finite set of $S = \{\alpha_1, \dots, \alpha_n\}$ of indices, and an integer $N \geq 1$, such that $x_{n,\alpha} = x_\alpha$ for all $n \geq N$ and for all $\alpha \notin S$.

That is to say, $x_n \rightarrow x$ in the box topology if and only if it converges component-wise, and moreover, all but finitely many components are uniformly eventually constant.

(Note : you need to assume T_2 for the "only if" part.)

$$4 + 6 = 10$$

6) Let $X = \mathbb{R}/\mathbb{Q}$ be the quotient space induced by the relation $x \sim y$ if and only if $x - y \in \mathbb{Q}$. Prove that X has the indiscrete topology.

$$5$$

7) a) Suppose $A \subset X$ is a subspace and $f : A \rightarrow Y$ is a continuous map. On the disjoint union $X \sqcup Y$, consider the relation $u \sim v$ if and only if

- i) $u = v$, or
- ii) $u, v \in A$, $f(u) = f(v)$, or
- iii) $u \in A$, $v = f(u)$, or
- iv) $v \in A$, $u = f(v)$, or

Check that \sim is an equivalence relation on $X \sqcup Y$.

b) Let us denote the quotient space under the equivalence relation as $X \cup_f Y$, which is called the *attaching space* obtained by the *attaching map* f . Check that the maps

$$\begin{aligned} p : X &\rightarrow X \cup_f Y & q : Y &\rightarrow X \cup_f Y \\ x &\mapsto [x], & y &\mapsto [y] \end{aligned}$$

are continuous. Moreover, check that $p|_A = q \circ f$.

c) Suppose we have maps $\phi : X \rightarrow Z$ and $\psi : Y \rightarrow Z$ such that the outer square in the diagram commutes (i.e., $\phi|_A = \psi \circ f$):

$$\begin{array}{ccccc} A & \xrightarrow{\quad} & X & \xrightarrow{\quad} & Z \\ f \downarrow & & \downarrow p & & \downarrow \phi \\ Y & \xrightarrow{\quad} & X \cup_f Y & \xrightarrow{\quad} & Z \\ & & \swarrow \psi & \nearrow \exists! h & \\ & & & & \end{array}$$

Then, show that there exists a unique continuous map $h : X \cup_f Y \rightarrow Z$ making the triangles commutative, i.e., $h \circ p = \phi$ and $h \circ q = \psi$.

$$5 + (3 + 2) + 5 = 15$$

8) Suppose $A \subset X$ is a subspace, and consider the identification space X/A (which identifies the points of A to each other, and any point outside A to itself). Say, $q : X \rightarrow X/A$ is the identification map.

a) Suppose $f : X \rightarrow Z$ is a continuous map, such that $f|_A$ is constant. Then, show that there exists a unique continuous map $\tilde{f} : X/A \rightarrow Z$ such that $\tilde{f} \circ q = f$.

b) Consider the constant map $f : A \rightarrow Y = \{\star\}$ (i.e, single-point space). Prove that the attaching space $X \cup_f Y$ is homeomorphic to the identification space X/A .

$$2 + 8 = 10$$

9) Suppose $\mathcal{F} = \{f_\alpha : (X_\alpha, \mathcal{T}_\alpha) \rightarrow Y\}$ is a given family of maps. Consider the collection

$$\mathcal{T} := \{U \subset Y \mid f_\alpha^{-1}(U) \in \mathcal{T}_\alpha \ \forall f_\alpha\}.$$

Prove that \mathcal{T} is a topology (called the topology *co-induced by the family* \mathcal{F}).

Prove that any map $f : (Y, \mathcal{T}) \rightarrow (Z, \mathcal{T}_Z)$ is continuous if and only if $f \circ f_\alpha : (X_\alpha, \mathcal{T}_\alpha) \rightarrow (Z, \mathcal{T}_Z)$ is continuous for all α .

$$5 + 5 = 10$$