

Assignment 1

Topology (KSM1C03)

Submission Deadline: 19th August, 2024

- 1) Recall the equivalence relation which identifies a subset $A \subset X$ to a singleton.
 - a) Identify the equivalence classes X/A , when $X = [0, 1]$ (the closed interval), and $A = \{0, 1\}$ (the endpoints).
 - b) Identify the equivalence classes X/A when $X = \mathbb{R}$ (the real line), and $A = \mathbb{Z}$ (the integers).
 - c) Can you see a natural bijection between $[0, 1]/\{0, 1\}$ and \mathbb{R}/\mathbb{Z} ?

$3 + 3 + 4 = 10$

- 2) On any set X , consider the following collections of subsets.

- a) $\mathcal{T}_1 := \{A \subset X \mid X \setminus A \text{ is finite}\} \cup \{\emptyset\}$.
- b) $\mathcal{T}_2 := \{A \subset X \mid X \setminus A \text{ is countable}\} \cup \{\emptyset\}$.

Show that \mathcal{T}_1 and \mathcal{T}_2 are topologies on X , respectively called the *cofinite* and the *cocountable* topologies.

Now, suppose X is uncountable (say, $X = \mathbb{R}$), and consider the collection

$$\mathcal{T}_3 := \{A \subset X \mid X \setminus A \text{ is uncountable}\}.$$

Is \mathcal{T}_3 a topology on X ?

$4 + 4 + 2 = 10$

- 3) On the real line \mathbb{R} , consider the collection of all half-open intervals

$$\mathcal{B}_l := \{[a, b) \mid a, b \in \mathbb{R}\}.$$

Show that \mathcal{B}_l is a basis for a topology on \mathbb{R} (called the *lower limit topology*). The real line equipped with the lower limit topology is also known as the *long line* or the *Sorgenfrey line*.

5

- 4) Suppose (X, \mathcal{T}) is a topological space, and $\mathcal{S} \subset \mathcal{T}$ is a sub-collection. Prove that the following are equivalent.
 - a) \mathcal{S} is a subbasis of \mathcal{T} .
 - b) \mathcal{T} is the intersection of all possible topologies on X , that contains \mathcal{S} .
 - c) The collection \mathcal{B} of all possible finite intersections of elements of \mathcal{S} is a basis for \mathcal{T} .

$5 + 5 + 5 = 15$

5) Denote, $K = \left\{ \frac{1}{n} \mid n \in \mathbb{N} \right\} \subset \mathbb{R}$. Consider the collection,

$$\mathcal{B} = \{(a, b) \mid a, b \in \mathbb{R}\} \bigcup \{(a, b) \setminus K \mid a, b \in \mathbb{R}\}.$$

Show that \mathcal{B} is a basis for a topology on \mathbb{R} (called the K -topology). Prove that the K -topology is strictly finer than the usual topology on \mathbb{R} , but is not comparable to the lower limit topology.

$$5 + 3 + 2 = 10$$

6) Let X be a space.

a) For $A, B \subset X$, if $A \subset B$ then $\bar{A} \subset \bar{B}$. Give an example where $A \subsetneq B$ but $\bar{A} = \bar{B}$.

b) Given a finite collection $A_1, \dots, A_n \subset X$, show that

$$\overline{\bigcup_{i=1}^n A_i} = \bigcup_{i=1}^n \overline{A_i}.$$

c) Given any infinite collection of subsets $A_\alpha \subset X$ (for $\alpha \in \mathcal{I}$, some indexing set), show that

$$\overline{\bigcup_{\alpha \in \mathcal{I}} A_\alpha} \supset \bigcup_{\alpha \in \mathcal{I}} \overline{A_\alpha}.$$

Give an example of a countably infinite collection, where equality doesn't hold.

d) Given any collection of subsets $A_\alpha \subset X$ (for $\alpha \in \mathcal{I}$, some indexing set), show that

$$\overline{\bigcap_{\alpha \in \mathcal{I}} A_\alpha} \subset \bigcap_{\alpha \in \mathcal{I}} \overline{A_\alpha}.$$

Give an example of $A, B \subset X$ such that $\overline{A \cap B} \subsetneq \bar{A} \cap \bar{B}$.

$$(4 + 1) + 5 + (4 + 1) + 5 = 20$$

7) Compute the boundary of the following subsets $A \subset X$.

a) X is any space, and $A = X$.

b) X is any space, and $A = \emptyset$.

c) X is a discrete space, and $\emptyset \neq A \subsetneq X$.

d) X is an indiscrete space, and $\emptyset \neq A \subsetneq X$.

e) $X = \mathbb{R}$ and $A = \mathbb{Z}$.

f) $X = \mathbb{R}$ and $A = \mathbb{Q}$.

g) $X = \mathbb{R}$ and $A = \left\{ \frac{1}{n} \mid n \in \mathbb{N} \right\}$.

$$1 \times 4 + 2 \times 3 = 10$$

8) Suppose (X, \mathcal{T}) is a topological space. Show that the following are equivalent.

a) X has the discrete topology, i.e., $\mathcal{T} = \mathcal{P}(X)$.

b) Given any space Y , any function $f : X \rightarrow Y$ is continuous.

c) The map $\text{Id} : (X, \mathcal{T}) \rightarrow (X, \mathcal{P}(X))$ is continuous.

$$5 + 5 + 5 = 15$$

9) Suppose (X, \mathcal{T}) is a space, and some $A \subset X$ is equipped with the subspace topology \mathcal{T}_A .

- a) Show that the inclusion map $\iota : A \hookrightarrow X$ is continuous.
- b) Suppose \mathcal{S} is some topology on A such that the inclusion map $\iota : (A, \mathcal{S}) \hookrightarrow (X, \mathcal{T})$ is continuous. Show that \mathcal{S} is finer than \mathcal{T}_A .

$$5 + 5 = 10$$

10) Let X be a set and $\mathcal{F} = \{f_\alpha : X \rightarrow Y_\alpha\}_{\alpha \in \mathcal{I}}$ be a collection of functions, where $(Y_\alpha, \mathcal{T}_\alpha)$ is a topological space. Consider the collection

$$\mathcal{S} := \{f^{-1}(U) \mid f = f_\alpha \in \mathcal{F}, U \in \mathcal{T}_\alpha\}.$$

Show that the topology on X generated by \mathcal{S} (as a subbasis) is the smallest (i.e., coarsest) possible topology on X such that each $f_\alpha : (X, \mathcal{T}) \rightarrow (Y_\alpha, \mathcal{T}_\alpha)$ is continuous.

$$10$$