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paracompactness -- partition of unity

30.1 Paracompactness (Cont.)

Proposition 30.1

uppose U = {U;},, is an open cover of X, which admits a locally finite refinement V = {V}
Then, there exists a locally finite refinement W = {VVi}z‘e[ such that W; C U; for all © € 1.
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Proof
Suppose ¢ : J — I is the function such that V; C Uy for each j € J. For each i € I, consider

the set
wo=UJWVilet)=it= U v
Jj€dTL(9)

Clearly, W; C V; foralli € I, and W = {W;},_, still covers X. Thus, W is a refinement of I/ (but
now with same indexing). We need to show that W is locally finite. Let © € X be fixed. Then,
there is an open neighborhood x € N C X, such that NNV; =0 forall j € J\ A, where A C J
is a finite set. Then, B = ¢(A) C [ is also a finite set. If possible, for some i € I\ B, suppose
NNW; # (. Then, NN (Ud)(j):i‘/}) # (). So, for some j € J with ¢(j) = i, we must have
N NV, # (. But then we must have j € B = i = ¢(j) € ¢(B) = A, a contradiction. Hence,
NNW; =0 forallie I\ B.Thus, W is a locally finite refinement of U. O

Example 30.2: (Compact and Lindel6f space)

Since for a compact space, you can get a finite sub-cover of any open cover, it will clearly be
a locally finite refinement. Thus, any compact space is paracompact. A Lindel6f space may not
be paracompact! As an example, consider the double-origin plane. We have seen that it is TQ%
but not T3. Also, it is second countable, and hence, Lindeloéf. On the other hand, it cannot be
paracompact, as a paracompact 75 space is T}.

Proposition 30.3: (Closed subset of Paracompact)

Let X be a paracompact space, and C' C X be closed. Then, C' is paracompact.
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Proof

Let U = {U;},.; be an open cover of C. Suppose U; = C'N U;, where U; C X is open. Then,
U= {X\C}u {Ui}ig is an open cover of X. By paracompactness, we have a locally finite
refinement, say, ¥V = {Vo} U {V;},c;, so that V; € X \ C and V; C U for all i € I. Now, for
any x € C, there is some open set z € N C X such that NNV; = 0 for all i € I\ F, where
F C Iy = I U {0} is a finite subset. Then, clearly NN X NV, = 0 for any i € I\ F. Thus,
{Vin C},.; is alocally finite refinement of U/. Consequently, C' is paracompact. ([l

Theorem 30.4: (Paracompact 715 is 7})

A paracompact 715 space is T}.

Proof
Let X be a paracompact 75 space. Let us first proof regularity of X. Say, A C X is closed, and

x € X\ Aisapoint. As X is T, for each a € A there are open sets U,, V, such that x € U,,a € V,
and U, NV, = 0. Now, ¥V = {X \ A} U {V,},c4 is an open cover of X, and hence, there is a
locally finite refinement, say, W. Define

V= J{Wew|WnA#p}.

Note that A C V. Since W is a locally finite collection (and hence, so is any subcollection of W),
we also have

V= J{W|Wew, WnA#p}.

Now, any W € W with W N A # () is contained in some V, for some a € A, and hence, W C V/,.
Thus,
velJv.
acA
Asa € U, and U,NV, = 0, we have a € V,, and hence, a . Then, consider U = X\\_/. Clearly,
reUACVand UNV =0. Thus, X is a regular space.

Now, consider A, B C X be closed sets, with AN B = (). For each a € A, there are open sets
U,,V, C X such that a € U,,B C V, and U, NV, = 0. In particular, BN U, = 0. Again,
consider the open cover {X \ A} U {U,},.4 of X, and get a locally finite refinement, say, G.
Define U = J{G €G|GNA#D}. Then, U=J{G|GeG, GNAD} follows from local
finiteness. Observe that BNU = (). Then, set V = X\ U. Clearlyy, AC U, B CV and UNV = ().
Thus, X is normal. As X is T,, we have X is T}. O

Example 30.5: (7, 7 Paracompact)

Consider [0,€2), the first uncountable ordinal with the order topology. We have seen that X is
Ty (in fact, T5). Now, the product space [0,2) x [0, 2] was shown to be not 7y. If [0,€2) was
paracompact, then the product with the compact space must be paracompact again. But then
the product being paracompact and T; has to be normal, a contradiction. Hence, [0, ) is not
paracompact. On the other hand, a Lindelof, regular space is paracompact.




Exercise 30.6: (Product of Compact and Paracompact)

Show that the product of a compact and a paracompact space is again paracompact.

Use the tube lemma.

30.2 Partition of Unity

Definition 30.7: (Support)

Given a continuous map f : X — R, the support of f is defined as

supp(f) == f~1(R\ {0}).

In words, support is the smalles closed set containing the non-zero set of f.

Definition 30.8: (Partition of Unity)

Let & = {U;},.; be an open cover of X. A partition of unity subordinate to U is a collection of
continuous maps { f; : X — [0,1]},.; such that the following holds.

i) For each i € I, we have supp(f;) C U;.
ii) The collection {supp(f;)},c; is a locally finite cover of X.
iii) For each z € X, we have ) ., fi(z) = 1.

The arbitrary sum in the third condition is actually a finite sum by local finiteness.

Theorem 30.9: (Shrinking Lemma)

Let X be a paracompact 75 space. Then, for any open cover U = {U;},.;, there exist a locally
finite open cover V = {V;},.; such that V; C V.cU,foralliel.

Proof
Note that X is T and in particular regular. Consider WV to be the collection of open sets W C X

such that W C W C U; for some i € I. As U is a cover, by regularity, it follows that W is also a

cover. Let us index it as W = {W;}._,. We have function (by axiom of choice)

jeJ-
0:J—1

such that W; C W, C U for all j € J. For each i € I, denote

Vi =W 10G) =i}

Note that if ~'(i) is empty, then V; = (). Consider the collection V = {V;},_;, which is still a
cover, and by construction, V; C U; for all © € I. Now, by local finiteness of W, it follows that
V= UG(j):in C U; as well. Finally, let us check local finiteness of V. For z € X, there is an
open set N C X such that NNW; = 0 for all j € J\ F, where F' C J is a finite set. Then,
O(F) C I is a finite set. Suppose, for some i € I\ (F'), we have NNV, % (). Then, NNW; # ()



for some j € J such that 6(j) = i. But then j € F' = i = 6(j) € 6(F), a contradiction. Thus,
W is a locally finite collection. 0J

Theorem 30.10: (Existence of Partition of Unity)

In a paracompact 75 space, any open cover admits a partition of unity subordinate to the cover.

Proof
Let X be a paracompact T3 space, and U = {U;},.,; be an open cover. Applying the shrinking
lemma twice, we get two open covers V = {V;},_, and W = {W;},_; such that

VicV,cW,CcW, CU, iel.

Note that V; and X \ WW; are disjoint closed sets. Then, by the Urysohn lemma, there are continuous
functions h; : X — [0, 1] such that

hi(Vi) =1, hi(X\W;) =0.

Observe that
hi'(0,1] € Wi = supp(hi) = h; *(0,1] € W; C U

As V = {V;},c, is locally finite, it follows that {V;},_, is again a locally finite collection (Check!).
Hence, {supp(h;)} is a locally finite collection. For any x € X, we have x € V; for some i € I, and
then, h;(x) = 1. Thus, {supp(h;)},.; is a locally finte cover of X. Now, local finiteness implies
that h(x) = >, ; hi(z) is always a finite sum. Let us show that it is in fact a continuous map.
Indeed, for any = € X, there is a neighborhood N C X, such that h|y is a finite sum of continuous
functions, which is then continuous. Since h is continuous on neighborhoods, it follows that A is
continuous. Moreover, h is nowhere vanishing (Check!). In fact, we have h : X — [0, 00) Define
fi= hi which is again continuous. Note that f; : X — [0, 1], as b > 1. Moreover, for each x € X

hi(x hi(x h(x
o) = X o) = 3 i = 2t 8y,

we have
Clearly, supp(f;) C supp(f;). Thus, {f; : X —[0,1]},.; is partition of unity subordinate to the
family U. U




