
Topology Course Notes (KSM1C03)

Day 29 : 19th November, 2025
Baire category theorem -- paracompactness

29.1 Baire Category Theorems

Theorem 29.1: (Baire Category Theorem)

A Gδ-set in a compact T2 space is a Baire space.

Proof
Let X be compact, T2-space. Note that X is a T4-space. Let us first show that X itself is Baire.
Let Gn ⊂ X be a countable collection of open dense sets, and U ⊂ X be a fixed nonempty
open set. Denote V0 = U . Now, U ∩ G1 6= ∅. Then, by regularity, there is a nonempty open
set V1, with V1 ⊂ U ∩ G1. Inductively, assume that there is a nonempty open set Vn such that
Vn ⊂ Vn−1 ∩ Gn. Since Vn ∩ Gn+1 6= ∅, again by regularity, we have a nonempty open set Vn+1

with Vn+1 ⊂ Vn ∩ Gn+1. Now, by construction,
{
Vn

}
n≥1

are closed sets, with V1 ⊃ V2 ⊃ . . . .
Consequently,

{
Vn

}
is a collection of (nonempty) closed sets with finite intersection property.

Hence,
⋂

Vn 6= ∅. But,
⋂

Vn ⊂ U ∩
⋂

Gn by construction. Thus, U ∩
⋂

Gn 6= ∅. As U is arbitrary
nonempty open set, we have

⋂
Gn is dense in X. Thus, X is a Baire space.

Now, let us consider a Gδ-set K =
⋂

Un, where Un ⊂ X is open. Consider K̄, which is closed,
hence compact, and also T2. Now, Vn = Un∩K̄ is an open set in K̄. Note that

⋂
Vn =

⋂
Un∩K̄ =

K ∩ K̄ = K. Also, K ⊂ Vn ⊂ K̄ ⇒ K̄ = Vn. Thus, Vn is an open dense set in the compact, T2

space K̄. Now, suppose Wi ⊂ K are open, dense subsets. Then, Wi = K ∩Gi for some Gi ⊂ K̄

open. Clearly, Gi is also dense in K̄, since for any nonempty open set V ⊂ K̄ we have,

V ∩K 6= ∅ ⇒ (V ∩K) ∩Wi 6= ∅
as Wi is dense in K

⇒ V ∩Gi 6= ∅.

Thus, we have a countable collection {Gi} ∪ {Vn} of open dense subsets in K̄. Hence, the inter-
section

⋂
i

Gi ∩ Vi =

(⋂
i

Gi

)
∩

(⋂
i

Vi

)
=
(⋂

Gi

)
∩K =

⋂
Gi ∩K =

⋂
Wi

is dense in K̄. But then
⋂
Wi is dense in K as well. Hence, K is a Baire space. �
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Corollary 29.2: (BCT 1)

A locally compact T2 space is a Baire space.

Proof
Suppose X is locally compact, T2. A locally compact, T2 noncompact space embeds as an open
subset in its one point compactification X̂, which is compact, T2. Thus, X is a Gδ-set in X̂, and
hence, a Baire space. �

Theorem 29.3: (BCT 2)

A completely metrizable space is a Baire space

Proof
Let (X, d) be a complete metric space. Suppose Gi ⊂ X is a countable collection of open
dense set, and U ⊂ X is a fixed nonempty open set. Proceeding as in the proof of Baire
category theorem, consider V0 = U , and get open balls Vn = Bd (xn, rn) of radius rn < 1

n
,

such that Vn+1 ⊂ Vn ∩ Gn+1 holds. In particular, we have a decreasing sequence of closed balls
V0 ⊃ V1 ⊃ V2 ⊃ . . . , and moreover,

⋂
Vn ⊂ U ∩

⋂
Gn holds.

We claim that the sequence {xn} is Cauchy. Indeed, for any ε > 0, get N ≥ 1 such that 1
N

< ε
2
.

Then, for any n,m ≥ N we have xn, xm ∈ VN . Hence,

d(xn, xm) ≤ d(xn, xN) + d(xN , xm) < rN + rN <
2

N
< ε.

As X is complete, we have xn → x. Clearly, x ∈ Vn for all n. Hence, x ∈ U ∩ Gn for all n ≥ 1.
Thus, U ∩

⋂
n Un 6= ∅. As U is arbitrary nonempty open set, we have

⋂
Gn is dense. Thus, X is a

Baire space. �

Corollary 29.4: (Q is not Gδ)

The set of rationals Q ⊂ R is not a Gδ-set.

Proof
If possible, suppose Q is Gδ. Then, Q =

⋂
n Un for some open sets Un ⊂ R. Clearly, Un is

dense in R, since Q ⊂ Un is already dense. Now, foreach q ∈ Q, consider Vq = R \ {q}, which
are also open and dense. Note that

⋂
q∈Q Vq = R \ Q. Now, {Un}n≥1 ∪ {Vq}q∈Q is a countable

collection of open dense sets. Since R is a Baire space, there intersection must be dense. But,⋂
n≥1 Un ∩

⋂
q∈Q Vq = Q ∩ (R \Q) = ∅, a contradiction. Hence, Q is not a Gδ-set. �

Remark 29.5

Since for a function f : R → R the set of continuities must be a Gδ-set, it follows that there does
not exist a function which is continuous only at the rationals.

Theorem 29.6: (Choquet spaces are Baire space)

Let X be a nonempty space. Then, X is a Choquet space if and only if X is a Baire space.
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Proof
Let X be a Choquet space. Suppose Gn is a countable collection of open dense sets. Fix some
nonempty open set O ⊂ X. Let player E choose the open set U0 := G1 ∩ O, which is nonempty
as G1 is dense. Suppose at the nth-stage, player N chooses Vn ⊂ Un according to their winning
strategy. Then, player E chooses Un+1 := Vn ∩ Gn+1, which is again nonempty as Gn+1 is dense.
At the end of the game, since N must win, we have

∅ 6=
⋂
n≥0

Un = (O ∩G1) ∩
⋂
n≥1

Vn ∩Gn+1 ⊂ O ∩
⋂
n≥1

Gn.

As O is an arbitrary nonempty open set, we have
⋂

Gn is dense in X.

Conversely, let X be a Baire space. If possible, suppose player E has a winning strategy,

f : T? → T∗,

where T? denotes the set of nonempty open sets of X. Say, according to this strategy, player E

chooses the open set U0 ⊂ X. We shall show that U0 is not a Baire space.

Fix some open U ⊂ U0. Given any collection O of nonempty open subsets of U , call O is good if

O? = {f(O) | O ∈ O}

is a pairwise disjoint collection of (necessarily nonempty) open subsets of U . Let OU be the
collection of all good sub-collections of U , partially ordered by inclusion. For a chain {Oα} in OU ,
consider the union O =

⋃
Oα. If possible, suppose there are Oα ∈ Oα and O ∈ Oβ such that

f(Oα)∩ f(Oβ). Without loss of generality, Oα ⊂ Oβ. But as Oβ is good, we have a contradiction.
Thus, O is a good sub-collection of nonempty open sets of U . Hence, by Zorn’s lemma, we can
then get a maximal good collection, say, Omax

U . Let us denote

U? :=
⋃

O∈OU

f(O).

Clearly, U? is a nonempty open set of U?. We claim that U? is dense in U . If not, then there is
some nonempty open set O ⊂ U such that O ∩U? = ∅. Then, f(O) ⊂ O is a nonempty open set,
and clearly, f(O) ∩ U? = ∅. But then, Omax

U ∪ {O} is also good, violating the maximality of OU .
Hence, for any U ⊂ U0, we have constructed U?, which is open and dense in U0, and given as the
union of pairwise disjoint open sets of the form F(O) for open subsets O ⊂ U .

Let us now inductively construct the following open dense sets. Set G1 = U?
0 . Assuming Gn is

defined, set Gn+1 =
⋃

W∈Gn
W ?. Observe that each Gn is a disjoint union of open sets of the form

f(U) for some open U ⊂ U0. Moreover, Gn+1 is dense in Gn, and hence, by a simple induction,
each Gn is dense in U0 as well. If possible, let x ∈

⋂
Gn. Since x ∈ G1, we have a unique open

V0 ⊂ U0, such that x ∈ f(V0) (as G1 is a disjoint union). Set U1 = f(V0). Inductively, suppose
we have constructed (U0, V0, U1, V1, . . . , Un). Now, x ∈ Gn+1. Hence, there is a unique open set
Vn ⊂ Un, such that x ∈ f(Vn) (as Gn+1 is a disjoint union). Set Un = f(Vn). This is a game of
Choquet! Now, by construction, x ∈

⋂
Un =

⋂
Vn. Thus, player N wins in this game. This is a

contradiction, since player E is playing by a winning strategy by assumption. Hence, we must have⋂
Gn = ∅. But then, U0 is an open set of X, which is not Baire. Consequently, X itself cannot be

a Baire space. �
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Corollary 29.7: (BCT 1 and 2 by game of Choquet)

X is a Choquet space (and hence, a Baire space) if either a) X is completely metrizable, or b)
X locally compact T2.

Proof
Suppose X completely metrizable. At the nth-stage of any Choquet game, let player N choose
Vn ⊂ Un satisfying Vn ⊂ Vn ⊂ Un, and DiamVn < 1

2
DiamUn. Then, a usual argument using

Cauchy sequence shows that
⋂

Vn =
⋂

Vn 6= ∅. Thus, X is a Choquet space.

Next, suppose X is a locally compact T2 space. This time, at the nth-stage, let player N choose
Vn ⊂ Un satisfying Vn ⊂ Vn ⊂ Un, and Vn compact (this is possible, as the space is locally
compact, T2). It follows that

⋂
Vi =

⋂
Vi 6= ∅, as the intersection of decreasing nonempty closed

sets in a compact space (here, the compact space is V1) is always nonempty. �

29.2 Paracompactness

Definition 29.8: (Refinement)
Given an open cover U = {Ui}i∈I of X, a refinement of U is an open cover V = {Vj}j∈J , such
that there exists a function φ : I → J for which

Vj ⊂ Uφ(i), j ∈ J

holds. In words, each Vj ∈ V is contained in some Ui ∈ U .

Definition 29.9: (Paracompact space)
A space X is called paracompact if any open cover of X admits a locally finite refinement.

Example 29.10: (Rn is Paracompact)

Suppose U = {Ui}i∈I be an arbitrary open cover. Denote, Bn = Bd(0, n) be the open ball of
radius n, centered at orgin, and B̄n be the closed ball. Note that each B̄n is compact. Hence,
for each n, there is a finte subset In ⊂ I such that B̄n ⊂

⋃
i∈In Ui. Denote,

V1 := {Ui | i ∈ I1} , Vn :=
{
Ui \ B̄n−1

∣∣ i ∈ In
}
, n ≥ 2.

Set, V =
⋃

Vn. By construction, each element of V is a subset of some Ui ∈ U . For any x ∈ Rn,
consider n ≥ 1 to be the least integer such that x ∈ B̄n. Then, x 6∈ B̄n−1. Clearly, we have
x ∈ Ui \ B̄n−1 for some i ∈ In. Thus, V is a refinement of U . More over, for any x ∈ Rn, we
have some n ≥ 1 such that x ∈ Bn. It is clear that Bn can intersect only the open sets from
V1 ∪ · · · ∪ Vn, which is a finite collection. Thus, V is a locally finite refinement. Consequently,
Rn is paracompact.
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Exercise 29.11: (Exhaustion by Compacts)

A space X is said to be exhaustible by compacts if there are compact sets Kn ⊂ X such that
X =

⋃
n≥1Kn, and Kn ⊂ K̊n+1. Show that a T2-space, which is exhaustible by compacts, is

paracompact.

Remark 29.12: (Metric space is Paracompact)

Note that R with discrete topology is a metrizable space, which is not exhaustible by compacts,
and hence, we cannot use the previous exercise! It is a deep theorem that any metric space is
paracompact. The original proof was by Stone, which was simplified significantly by Mary Ellen
Rudin.

Theorem 29.13: (M.E. Rudin’s Proof : Metric Spaces are Paracompact)

A metrizable space is paracompact.

Proof
Let (X, d) be a metric space. Suppose U = {Uα}α∈Λ is an open cover. By the well-ordering
principle, we assume that the indexing set Λ is well-ordered! Note that for any x ∈ X, there exists
a least α ∈ Λ such that x ∈ Uα, since Λ is a well-order and U is a cover.

By induction over n, we construct a locally finite refinement as follows. Firstly, for each α ∈ Λ,
define Aα,n to be the set of points x ∈ X, satisfying the following.

i) α ∈ Λ is the least index such that x ∈ Uα.

ii) For any j < n, we have d(x, y) ≥ 1
2j

whenever y ∈
⋃

β∈ΛAβ,j

iii) Bd

(
x, 3

2n

)
⊂ Uα.

Note that for n = 1, the second condition is vacuous, and thus Aα,1 consists of x ∈ X satisfying
only the first and third condition. Moreover, at the nth-step, the second condition does not involve
any Aα,n. Thus, one can inductively construct all Aα,n. We allow the possibility that Aα,n = ∅ for
some α ∈ Λ and n ≥ 1. Once these sets are constructed, whenever Aα,n 6= ∅, denote

Dα,n :=
⋃{

Bd

(
x,

1

2n

) ∣∣∣∣ x ∈ Aα,n

}
, α ∈ Λ, n ≥ 1.

If Aα,n = ∅, set Dα,n = ∅ as well. We claim that D, the collection of all Dα,n as defined, is a
locally finite refinement of U .

Let us check D covers X. For any x ∈ X, there is a least α ∈ Λ such that x ∈ Uα, and x 6∈ Uβ for
all β < α. Now, Uα is open, and hence, there is some n ≥ 1 such that Bd

(
x, 3

2n

)
⊂ Uα. We claim

that x ∈ Dβ,j for some β ∈ Λ and some j ≤ n. We have two possibilities. Suppose x ∈ Aα,n.
Then, clearly x ∈ Dα,n and we are done. Suppose x 6∈ Aα,n. Since the first and third condition is
satisfied, we must have that the second condition is violated. Thus, for some j < n, we have some
y ∈ Aβ,j such that d(x, y) < 1

2j
. But then, x ∈ Bd

(
y, 1

2j

)
⊂ Dβ,j. Thus, we see that D covers X.

By construction, each Dα,n ⊂ Uα, and hence, D is indeed a refinement of U .
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Finally, let us show that D is locally finite. Let x ∈ X. Get the least α ∈ Λ such that x ∈ Dα,n for
some n ≥ 1. Then, choose some j ≥ 1 such that Bd

(
x, 1

2j

)
⊂ Dα,n. Fix the ball U := Bd

(
x, 1

2n+j

)
.

We show the following.

a) For any i ≥ n+ j, we have U ∩Dβ,i = ∅ for all b ∈ Λ.

b) For any i < n+ j, we have U ∩Dβ,i 6= ∅ for at most a single β ∈ Λ.

Let i ≥ n + j. In particular, i > n. Fix some y ∈ Aβ,i. We then have d(y, z) ≥ 1
2n

whenever
z ∈ Aα,n, and hence, y 6∈ Dα,n. As Bd

(
x, 1

2j

)
⊂ Dα,n, we then get d(x, y) ≥ 1

2j
as well. Now,

i ≥ j + 1 and n+ j ≥ j + 1. Hence, it follows from triangle inequality that

Bd

(
x,

1

2n+j

)
∩Bd

(
y,

1

2i

)
= ∅.

Indeed, if z ∈ Bd

(
x, 1

2n+j

)
∩Bd

(
y, 1

2i

)
, then we have

d(x, y) ≤ d(x, z) + d(z, y) <
1

2n+j
+

1

2j
≤ 1

2j+1
+

1

2j+1
=

1

2j
,

a contradiction. Thus, for any y ∈ Aβ,i, we have U ∩Bd

(
y, 1

2i

)
= ∅. But then clearly, U ∩Dβ,i = ∅

holds for any i ≥ n+ j and any β ∈ Λ.

Now, let i < n + j. Suppose β 6= γ ∈ Λ, without loss of generality, assume β < γ. Fix some
p ∈ Dβ,i and q ∈ Dγ,i. Then, there are y ∈ Aβ,i, z ∈ Aγ,i such that d(y, p) < 1

2i
and d(z, q) < 1

2i
.

By construction, Bd

(
y, 3

2i

)
⊂ Uβ, and also, z 6∈ Uβ (as γ is the least one so that z ∈ Uγ). So, we

must have d(y, z) ≥ 3
2i

. But then,

3

2i
≤ d(y, z) ≤ d(y, p) + d(p, q) + d(q, z) <

1

2i
+ d(p, q) +

1

2i
⇒ d(p, q) >

1

2i
≥ 1

2n+j−1
.

Now, if U intersects both Dβ,i and Dγ,i (with β < γ), then we can choose p ∈ U ∩ Dβ,i and
q ∈ Dγ,i. As argued above, we have d(p, q) > 1

2n+j−1 . But, p, q ∈ U = Bd

(
x, 1

2n+j

)
. We have,

d(p, q) ≤ d(p, z) + d(z, q) <
1

2n+j
+

1

2n+j
=

1

2n+j−1
,

a contradiction. Thus, U can intersect at most one Dβ,i whenever i < n+ j.

But then it is clear U can intersect at most finitely many elements of D, proving that D is a
locally finite collection.

Thus, starting with the open cover D, we have obtained a locally finite refinement D of U . Con-
sequently, any metric space is a paracompact space. �
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