Topology Course Notes (KSM1C03)

Day 29 : 19" November, 2025

Baire category theorem -- paracompactness

29.1 Baire Category Theorems

Theorem 29.1: (Baire Category Theorem)

A Gs-set in a compact T, space is a Baire space.

Proof
Let X be compact, T5-space. Note that X is a Ty-space. Let us first show that X itself is Baire.

Let G,, C X be a countable collection of open dense sets, and U C X be a fixed nonempty
open set. Denote V; = U. Now, U N Gy # (). Then, by regularity, there is a nonempty open
set V4, with V; ¢ U NGy, Inductively, assume that there is a nonempty open set V,, such that
V, C Vo1 NG, Since V,, N Gpyq # 0, again by regularity, we have a nonempty open set V4
with V.41 C V, N Gpyr. Now, by construction, {V,,} _ are closed sets, with V; D V5 D ...
Consequently, {V,,} is a collection of (nonempty) closed sets with finite intersection property.
Hence, NV, # 0. But, NV, C UN[ G, by construction. Thus, U N G,, # 0. As U is arbitrary
nonempty open set, we have [ G, is dense in X. Thus, X is a Baire space.

Now, let us consider a Gs-set K = (U, where U, C X is open. Consider K, which is closed,
hence compact, and also 7. Now, V,, = U, N K is an open set in /. Note that AVe =N U,NK =
KNK =K. Also, KV, c K= K =1V,. Thus, V, is an open dense set in the compact, T}
space K. Now, suppose W; C K are open, dense subsets. Then, W; = K N G; for some G; C K
open. Clearly, G; is also dense in K, since for any nonempty open set IV C K we have,

VNK#0=VNK)NW;40=VNG; #0.

as W; is dense in K

Thus, we have a countable collection {G;} U {V,,} of open dense subsets in K. Hence, the inter-

section

OGmV,-: (OG) N (ﬂV> = (ﬂG) NK=(GnK=W,

is dense in K. But then (VWi is dense in K as well. Hence, K is a Baire space. O



Corollary 29.2: (BCT 1)

A locally compact 75 space is a Baire space.

Proof
Suppose X is locally compact, T5. A locally compact, 75 noncompact space embeds as an open

subset in its one point compactification X which is compact, T5. Thus, X is a Gs-set in X and

hence, a Baire space. ([l

Theorem 29.3: (BCT 2)

A completely metrizable space is a Baire space

Proof
Let (X,d) be a complete metric space. Suppose GG; C X is a countable collection of open

dense set, and U C X is a fixed nonempty open set. Proceeding as in the proof of Baire
category theorem, consider V, = U, and get open balls V,, = By (z,,r,) of radius r, < %
such that V,,,; C V,, N G,41 holds. In particular, we have a decreasing sequence of closed balls
VoD ViD Ve D ..., and moreover, NV, C UN( G, holds.

We claim that the sequence {x,} is Cauchy. Indeed, for any € > 0, get N > 1 such that < &.
Then, for any n,m > N we have z,,z,, € V. Hence,

2
d(Tp, ) < d(Tp,zn) +d(zn, ) < Ty +TN < N <€

As X is complete, we have x,, — . Clearly, x € V., for all n. Hence, z € UNG,, for all n. > 1.
Thus, UN(, Uy # 0. As U is arbitrary nonempty open set, we have ()G, is dense. Thus, X is a
Baire space. ([l

Corollary 29.4: (Q is not Gjs)

The set of rationals Q C R is not a GGs-set.

Proof
If possible, suppose Q is Gs. Then, Q = (), U, for some open sets U, C R. Clearly, U, is

dense in R, since Q C U, is already dense. Now, foreach ¢ € Q, consider V, = R\ {¢q}, which
are also open and dense. Note that () .oV = R\ Q. Now, {Un},, U{Vy} ¢ is a countable
collection of open dense sets. Since R is a Baire space, there intersection must be dense. But,
Nz Un NNyeq Vo = QN (R\ Q) = 0, a contradiction. Hence, Q is not a Gs-set. O

Remark 29.5

Since for a function f : R — R the set of continuities must be a Gs-set, it follows that there does
not exist a function which is continuous only at the rationals.

Theorem 29.6: (Choquet spaces are Baire space)

Let X be a nonempty space. Then, X is a Choquet space if and only if X is a Baire space.




Proof
Let X be a Choquet space. Suppose GG, is a countable collection of open dense sets. Fix some

nonempty open set O C X. Let player E choose the open set Uy := G; N O, which is nonempty
as (3, is dense. Suppose at the nt"-stage, player N chooses V,, C U, according to their winning
strategy. Then, player E chooses U,, 1 := V,, N G},51, which is again nonempty as G, is dense.
At the end of the game, since N must win, we have

0#(\Un=(0NG)N(\VaNGn1 CON[) G

n>0 n>1 n>1

As O is an arbitrary nonempty open set, we have (|G, is dense in X.

Conversely, let X be a Baire space. If possible, suppose player E has a winning strategy,
f: 7. =T,

where T, denotes the set of nonempty open sets of X. Say, according to this strategy, player E
chooses the open set Uy C X. We shall show that Uj is not a Baire space.

Fix some open U C U,. Given any collection O of nonempty open subsets of U, call O is good if
O ={f(0) | O € O}

is a pairwise disjoint collection of (necessarily nonempty) open subsets of U. Let Oy be the
collection of all good sub-collections of U, partially ordered by inclusion. For a chain {O,} in Oy,
consider the union O = |JO,. If possible, suppose there are O, € O, and O € O such that
f(Oq) Nf(Og). Without loss of generality, O, C Os. But as Op is good, we have a contradiction.
Thus, O is a good sub-collection of nonempty open sets of U. Hence, by Zorn's lemma, we can
then get a maximal good collection, say, O}**. Let us denote

U= |J f0).
00y
Clearly, U* is a nonempty open set of U*. We claim that U* is dense in U. If not, then there is
some nonempty open set O C U such that ONU* = (). Then, f(O) C O is a nonempty open set,
and clearly, f(O) N U* = (). But then, Op® U {O} is also good, violating the maximality of Oy .
Hence, for any U C Uy, we have constructed U*, which is open and dense in Uy, and given as the
union of pairwise disjoint open sets of the form F(O) for open subsets O C U.

Let us now inductively construct the following open dense sets. Set GG; = Uj. Assuming G,, is
defined, set G, 11 = UWeGn W™*. Observe that each GG,, is a disjoint union of open sets of the form
f(U) for some open U C Uy. Moreover, G, is dense in GG,,, and hence, by a simple induction,
each GG, is dense in Uy as well. If possible, let © € (| G,,. Since © € G4, we have a unique open
Vo C Uy, such that x € (V) (as G, is a disjoint union). Set U; = f(V}). Inductively, suppose
we have constructed (Uy, Vp, Uy, Vi, ..., U,). Now, x € G, 41. Hence, there is a unique open set
V, C U, such that = € f(V},) (as G,41 is a disjoint union). Set U,, = f(V},). This is a game of
Choquet! Now, by construction, € (U, = [\ V,. Thus, player N wins in this game. This is a
contradiction, since player E is playing by a winning strategy by assumption. Hence, we must have
(G, = 0. But then, Uj is an open set of X, which is not Baire. Consequently, X itself cannot be
a Baire space. O



Corollary 29.7: (BCT 1 and 2 by game of Choquet)

X is a Choquet space (and hence, a Baire space) if either a) X is completely metrizable, or b)
X locally compact T5.

Proof

Suppose X completely metrizable. At the n'"-stage of any Choquet game, let player N choose
V, C U, satisfying V,, C V,, C U,, and DiamV,, < iDiamU,. Then, a usual argument using
Cauchy sequence shows that (\V,, =V, # 0. Thus, X is a Choquet space.

Next, suppose X is a locally compact T5 space. This time, at the n'"-stage, let player N choose
V., C U, satisfying V,, C V,, C U,, and V,, compact (this is possible, as the space is locally
compact, Tb). It follows that (\V; = (Vi # (), as the intersection of decreasing nonempty closed
sets in a compact space (here, the compact space is V}) is always nonempty. [l

29.2 Paracompactness

Definition 29.8: (Refinement)

Given an open cover U = {U;},.; of X, a refinement of U is an open cover V = {V}._,, such
that there exists a function ¢ : I — J for which

V} C qu(i), jedJ

holds. In words, each V; € V is contained in some U; € U.

-

Definition 29.9: (Paracompact space)

A space X is called paracompact if any open cover of X admits a locally finite refinement.

Example 29.10: (R" is Paracompact)

Suppose U = {U;},.; be an arbitrary open cover. Denote, B,, = B,4(0,n) be the open ball of
radius n, centered at orgin, and B,, be the closed ball. Note that each B,, is compact. Hence,
for each n, there is a finte subset I,, C I such that B,, C Uieln U;. Denote,

Vi={Uilieh}, Va={Ui\Bual|icL}, n>2

Set, V = |J V... By construction, each element of V is a subset of some U; € U. For any = € R",
consider n > 1 to be the least integer such that x € B,,. Then, z ¢ B,_1. Clearly, we have
x €U\ B,_; for some i € I,,. Thus, V is a refinement of &. More over, for any € R”, we
have some n > 1 such that x € B,,. It is clear that B,, can intersect only the open sets from
Vi U---UYV,, which is a finite collection. Thus, V is a locally finite refinement. Consequently,

R™ is paracompact.




Exercise 29.11: (Exhaustion by Compacts)

A space X is said to be exhaustible by compacts if there are compact sets K,, C X such that
X = UnZl K,, and K,, C Io(nﬂ. Show that a Ts-space, which is exhaustible by compacts, is
paracompact.

Remark 29.12: (Metric space is Paracompact)

Note that R with discrete topology is a metrizable space, which is not exhaustible by compacts,
and hence, we cannot use the previous exercise! It is a deep theorem that any metric space is
paracompact. The original proof was by Stone, which was simplified significantly by Mary Ellen
Rudin.

Theorem 29.13: (M.E. Rudin’s Proof : Metric Spaces are Paracompact)

A metrizable space is paracompact.

Proof

Let (X,d) be a metric space. Suppose U = {U.},c, is an open cover. By the well-ordering
principle, we assume that the indexing set A is well-ordered! Note that for any x € X, there exists
a least o € A such that x € U,, since A is a well-order and U/ is a cover.

By induction over n, we construct a locally finite refinement as follows. Firstly, for each o € A,
define A, ,, to be the set of points x € X, satisfying the following.

i) a € A is the least index such that = € U,
i) For any j < n, we have d(z,y) > 5; whenever y € ;e\ Ag,
i) By (z,5) C Us,.

Note that for n = 1, the second condition is vacuous, and thus A, ; consists of x € X satisfying
only the first and third condition. Moreover, at the nt"-step, the second condition does not involve
any A, . Thus, one can inductively construct all A, . We allow the possibility that A,, = 0 for
some & € A and n > 1. Once these sets are constructed, whenever A, ,, # (), denote

Dow = {Bd (m 2%)

If Aun = 0, set D, ,, = (0 as well. We claim that D, the collection of all D, ,, as defined, is a
locally finite refinement of U/.

xeAa,n}, acelN n>1.

Let us check D covers X. For any x € X, there is a least & € A such that z € U,,, and = & Uj for
all B < a. Now, U, is open, and hence, there is some n > 1 such that B, (x, 2%) c U,. We claim
that © € Dg; for some 8 € A and some j < n. We have two possibilities. Suppose x € A, ,,.
Then, clearly € D, , and we are done. Suppose = € A, ,,. Since the first and third condition is
satisfied, we must have that the second condition is violated. Thus, for some j < n, we have some
y € Agj such that d(z,y) < 2% But then, x € By (y, 2%) C Dg ;. Thus, we see that D covers X.

By construction, each D, ,, C U,, and hence, D is indeed a refinement of /.



Finally, let us show that D is locally finite. Let x € X. Get the least a € A such that x € D,,,, for
somen > 1. Then, choose some 7 > 1 such that By (ac L ) C Dg . Fixthe ball U == By (m, 2%])

)27

We show the following.
a) Forany i >n+ j, we have U N Dg; =0 for all b € A.
b) For any i < n+ j, we have U N Dg; # 0 for at most a single 8 € A.

Let ¢ > n + j. In particular, i > n. Fix some y € Ag;. We then have d(y,z) > 5= whenever
2z € Aan, and hence, y € D, . As By (9(:, 2%) C Dy, we then get d(x,y) > 2% as well. Now,

t>j+1and n+ 7 > j+ 1. Hence, it follows from triangle inequality that

1 1
Bd (IB, W) N Bd (y, 5) = @

Indeed, if z € By (m, #) N By (y, %) then we have

1 1 1 1 1
d@,y) < d(w, 2) +d(z,9) < s T S o T g

a contradiction. Thus, for any y € Ag;, we have UN By (y, 57) = 0. But then clearly, UNDg; =
holds for any ¢ > n + j and any 5 € A.

Now, let ¢ < m + j. Suppose B # v € A, without loss of generality, assume 5 < ~. Fix some
p € Dg,;and g € D, ;. Then, there are y € Ag;, 2z € A, ; such that d(y,p) < 2i and d(z,q) < 2i
By construction, By (y, 2) C Ug, and also, z ¢ Ug (as 7 is the least one so that z € U, ). So, we
must have d(y, z) > 2. But then,

3 1 1 1 1
5 < d(y,z) < d(y,p) +d(p,q) +d(q,2) < 5t d(p,q) + 5 = d(p,q) > 5 Z owrT

Now, if U intersects both Dg,; and D.; (with 3 < 7), then we can choose p € U N Dgs; and
q € D, ;. As argued above, we have d(p, q) > W% But, p,q e U = By (:E, 271%]) We have,

1 1 1

a contradiction. Thus, U can intersect at most one Dg; whenever i < n + j.

But then it is clear U can intersect at most finitely many elements of D, proving that D is a
locally finite collection.

Thus, starting with the open cover D, we have obtained a locally finite refinement D of . Con-
sequently, any metric space is a paracompact space. 0



