

Class Test 9

18th November, 2025

Name: _____

Time: 40 min

Marks: _____/10

Q1. A subset $A \subset X$ is called *meager* if A can be written as a countable union of nowhere dense sets of X ; otherwise A is called *non-meager*. A space X is called *Baire* if countable intersection of open dense sets is dense. A (locally) compact T_2 space is a Baire space. Prove the following. $[4 + 1 + 2 + 3 = 10]$

- a) X is non-meager if and only if countable intersection of open dense sets of X is non-empty.
- b) A Baire space is non-meager (in itself).
- c) A subset of meager set is again meager.
- d) $X = [0, 1] \cup (\mathbb{Q} \cap [2, 3])$ (as a subspace of \mathbb{R}) is non-meager (in itself), but not Baire.