

# Class Test 9

18<sup>th</sup> November, 2025

---

**Q1.** A subset  $A \subset X$  is called *meager* if  $A$  can be written as a countable union of nowhere dense sets of  $X$ ; otherwise  $A$  is called *non-meager*. A space  $X$  is called *Baire* if countable intersection of open dense sets is dense. A (locally) compact  $T_2$  space is a Baire space. Prove the following. [4 + 1 + 2 + 3 = 10]

a)  $X$  is non-meager if and only if countable intersection of open dense sets is non-empty.

**Solution:** Suppose  $X$  is non-meager. Let  $G_n$  be a countable collection of open dense sets of  $X$ . Then,  $F_n = X \setminus G_n$  is a closed set, which is nowhere dense. Consequently,

$$\emptyset \neq X \setminus \bigcup F_n = \bigcap (X \setminus F_n) = \bigcap G_n.$$

Thus, countable intersection of open dense sets are nonempty.

Conversely, suppose any countable intersection of open dense sets is nonempty in  $X$ . If possible, let  $X$  be meager. Then,  $X = \bigcup A_n$  for nowhere dense sets  $A_n$ . It follows that  $F_n = \overline{A_n}$  is a closed nowhere dense sets, and clearly,  $X = \bigcup F_n$ . But then  $G_n = X \setminus F_n$  is an open dense set. We have,  $\bigcap G_n = \bigcap (X \setminus F_n) = X \setminus \bigcup F_n = \emptyset$ , a contradiction. Hence,  $X$  is non-meager.

b) A Baire space is non-meager (in itself).

**Solution:** Since in a Baire space countable intersection of open dense sets is dense, and thus, in particular nonempty, we have a Baire space is non-meager.

c) A subset of meager space is again meager.

**Solution:** Let  $B \subset X$  be a meager set. Then,  $B = \bigcup B_n$  for some nowhere dense sets  $B_n$ . Let  $A \subset B$  be a subset. Consider  $A_n = A \cap B_n$ . Clearly,  $A = \bigcup A_n$ . We have,

$$A_n \subset B_n \Rightarrow \overline{A_n} \subset \overline{B_n} \Rightarrow \text{int} \overline{A_n} \subset \text{int} \overline{B_n} = \emptyset \Rightarrow \text{int} \overline{A_n} = \emptyset.$$

Thus,  $A_n$  is nowhere dense, proving that  $A$  is a meager set.

d)  $X = [0, 1] \cup (\mathbb{Q} \cap [2, 3])$  (as a subspace of  $\mathbb{R}$ ) is a non-meager space, but not Baire.

**Solution:** Since  $[0, 1] \subset X$  is a compact  $T_2$  space, it is Baire, and hence, non-meager. But then  $X$  must be non-meager, as any subset of a meager space is meager. Consider the countable collection open sets

$$G_q = X \setminus \{q\}, \quad q \in \mathbb{Q} \cap [2, 3].$$

Clearly, each  $G_q$  is dense as well. Now,  $\bigcap G_q = [0, 1]$ , which is not dense in  $X$ . Hence,  $X$  is not a Baire space.