Topology Course Notes (KSM1C03)

Day 28 : 14" November, 2025

game of Choquet -- strongly Choquet space -- Baire space

28.1 A digression: Game of Choquet
Given a space X, let us assume that two players are playing a game.

Round 0: Player | goes first by choosing an open set Uy C X and a point g € Uy. Then, player Il
chooses another open set 1} satisfying xq € V, C U.

Round 1: Player | now chooses an open set U; C Vj, and a point x; € U;. Then, player Il chooses
another open set V; satisfying x; € V; C Uj.

Round n: At this stage, player | chooses an open set U,, C V,,_1 and a point z,, € U,,. Player Il then
chooses an open set V,, satisfying x,, € V,, C U,.

Thus, we have an infinite game that goes like this:

Player | : (Up, o) (Uy,xq) . (Up, xp,)

Player Il : Vo Vi .. V.,

This game is known as the strong game of Choquet. The usual game of Choquet is played the same
way, but player | does not choose any points x,, € U,, at any stage, and thus, player |l does not care

(N U.=[)Va

n>0 n>0

about the points either. Observe that

We say player Il wins the game if (\V,, # () at the end of the game. Conversely, player | wins the game
if (U, = 0 at the end of the game.

Remark 28.1: (Winning strategy)

To formalize the concept of winning strategy (for player Il), let us consider the following. Given a
space, (X, 7)), let us consider the sets

T.={UeT|U=#0}, S={Uxz)|UeT, z€U}.
Then, a winning strategy for player Il is a map

f:8S—>T.




such that the following holds.

i) Forany (U,x) € S, we have
z e f(Uzx)CU.

ii) For any sequence (U, z,) € S defined inductively, such that,
Up D Vo= f(Up,x0) DU D V1 = f(U,21) D+~ DU, D Vyy = f(Up,xn) D ...,

we always have NV, # 0.

Definition 28.2: (Strong) Choquet space .

A space X is called a Choquet space (resp. strongly Choquet space) if in a game of Choquet
(resp. strong game of Choquet), player Il always has a winning strategy.

Remark 28.3

Winning a strong game of Choquet is more difficult for player Il, as at the nt"-stage they have to
choose an open set V,, C U, satisfying the extra condition x,, € V,,. Thus, a strongly Choquet
space is always a Choquet space. Also, since player I's goal is to make the intersection empty,
player | is also denoted as player E (Empty). In this convention, player Il is denoted as player N
(Nonempty).

Proposition 28.4: (Completely metrizable space is strongly Choquet)

Let X be a completely metrizable space. Then X is strongly Choquet.

Proof

Let us fix a complete metric d on X, inducing the underlying topology. At the nth-stage, after player
E has chosen z,, € U, C V,,_y, player N chooses z,, € V,, C V;, C U, such that DiamV}, < 3.
This is always possible in the metric space (X, d). Now, observe that

U =(Va=[)Va-

But {Vn} is a decreasing sequence of closed sets in a complete metric space with diameter going
to zero. Hence, N V,, # 0 (Check!). Thus, player N always wins. Hence, X is a strongly Choquet
space. ]

Theorem 28.5: (Strongly Choquet implies Complete Metrizability)

Suppose X is a metrizable space. If X is strongly Choquet, then X is completely metrizable.

Proof
Fix an arbitrary metric d on (X,7), and consider the completion (X,d) — (X*,d*). We shall

show that X is G5 in X™.



Let us fix a winning strategy player N, and denote it by
f:{(Ux)|2eUecT}—{UecT|U#0D}.

For each n > 1, let us consider W,, to be the collection of open sets W C X™*, such that for some
r €U C X we have

i) U= X NU, for some U C X* open, with U C By (x, l),

n

i) WnNX =f(U,x), and

i) W C By (z, ).

n

Denote,

Gon=J{W|Wwew,}.

Clearly G,, C X™ is open (possibly empty). Let us check that X C G,,. For any z € X, let player
E choose Uy = By (z,2) N X and xy = x. At the n'-stage, say player E chooses an open set
U, =XnNU,, where z, = = € U,, and U,, C By- (x, %) Then, player N chooses V,, = f (U,, z),
such that z € V,, C U,,. But then, V,, = X "W’ for some W’ C X* open. Consider W = W’'NU,,.
Clearly,

XﬂW:Xﬂ(W’ﬂUn> :(XﬂW’)ﬂ(XﬂUn> —V,NU, =V, = f(U,,).

Also, z € W C By (x,%) Thus, z € G,. Note that this argument requires strong game of
Choquet. Consequently, we have X C () G,.

Let us show that (G, C X. Let z € (\U,. For ny = 1, as € G,,,, we have some Vi € W,
such that z € f/l Then, for some y; € U; C X, we have V| := \71 NX = f(Uy,y1), and moreover,
Vi C By (yl, n%) As z € V;, we have ¢; == d*(x, X*\ \71) > (). Choose some ny > n; such that
n% < 5. As z € Gy,, we have some ‘72 € W, such that x € 172 Then, for some 3y € Us C X,
we have V5 = f/g N X = f(Us,y2), and moreover, ‘N/Q C By (yg, niQ) Note that U; C f/l Indeed,
U, =XnN UQ for some U C X* open with UQ C By (yg, %) Then, for any z € Us; we have

d*(ya,2) < n—12 Also, we have z € V, C By- (yQ, n%) Thus,
1 1 . P ~
d(l’,Z) < d(J],yQ) +d(y272) < n—+n— <e =d <ZL’,X \%) =ze V.
2 2

Thus, Uy C V; holds, which implies Uy C Vi = X N V4. Inductively, we continue this (strong)
game of Choquet in a similar way. Since player N is playing by a winning strategy, it follows that
NUn. = NV, # 0. Now, by construction, 2 € (| V,.. Since (X*,d*) is a complete metric space,
and since the diameters of V, are going to 0, it follows that N V, = {z}, a singleton. But then,

D£\Va=Xn[Va=Xn{z}=z€X

Thus, we have X =G, i.e, X is a Gs-set in X*. Hence, X is completely metrizable. O



Example 28.6: (Wheel with its Hub)

Let X = {(z,y) € R*| 0 < 2?2 + y* < 1} be the closed unit disc with the center removed.
Consider the collection of usual open sets in D as a subspace of R?, and additionally, consider
every open intervals (in the usual sense) on every open radial line. It is easy to see, this collection
is a basis for a topology on X. The space X is called the wheel without its hub.

Open interval
on radial line

Usual open set

Observe that X is not second countable, since the set A = {(x,y) ‘ 24yt = %} is a closed
discrete subspace of X. Nevertheless, X is metrizable. Let us explicitly define a metric.

Consider the function i : X — [0, 00) defined by h(x) = ﬁ — 1, and the function r : X —
[0,00) defined by r(x) = - Here, for any x = (x,y), we have ||x|| = /22 + y2. It is easy to
see that h,r are continuous maps. Define d : X x X — [0, 00) via

[h(x) = h(y)l, if r(x) =r(y),

dx,y) =
E) h(x) 4+ h(y) + ||r(x) — r(y)|| otherwise.

One can easily check that d is a metric on X, inducing the same topology (Check!). Moreover,
one can show that d is a complete metric as well.

Let us instead play a strong game of Choquet on X! If at any stage, player E plays an open set
U, and a point x € U on some open radial line ¢/, then player N plays an open set VV which is an
open interval containing x on the radial line ¢, such that the closed interval has length half that
of the component of /N U containing x (which is going to be interval), and is contained in said
component. Then, we get a decreasing sequence closed intervals of ¢ with diameters going to 0.
The intersection is nonempty by the completeness of R, and so, player N wins. Suppose player
E plays an open set U and a point x € U with z on the boundary circle. Then, player N plays
a usual open neighborhood V' C U of z, such that V' C U. If player E never plays a point on
any radial line (so the points are always on the circle), then we get a decreasing sequence closed
sets in the boundary circle, which is a compact set. Thus, player N again wins. This proves X is
strongly Choquet, and hence, completely metrizable.

Example 28.7: (Discrete rational extension of R)

Consider X to be the discrete rational extension of R, i.e, X = R, with the topology 7 generated
by the basis

B={(a,b)|a,b€Q, a<b}U{{q}|qe€Q}.

It is easy to see that B is a basis of clopen sets, and hence, X is a completely regular, second




______________________________________________________________________________________|
countable space, which is clearly T}. By Urysohn's metrization theorem, X is then metrizable.
Let us show that X is strongly Choquet.

If at any stage player E plays an open set U and a rational ¢ € U, player N can play V' = {q},
and thereby winning the game. Suppose player E plays an open set U € T and an irrational
x € U. Then, there is a finite length interval z € (a,b) C [a,b] C U, such that b—a < 3DiamU.
Player N chooses (a,b). Then, in a game, where player E never plays a rational point, we have
Vi = (ay, by,) for finite intervals, which are nested, with strictly decreasing diameter. In particular,
V. # 0, as R is complete. Thus, X is strongly Choquet. Consequently, the discrete rational
extension of R is a completely metrizable space.

28.2 Baire Space

Definition 28.8: (Baire space)

A space X is called a Baire space if a countable intersection of dense, open sets of X is again
dense.

Definition 28.9: (First and second category)

A subset A C X is called of first category (or meager) if A =J,~, An for some nowhere dense
set A, C X (i.e., intA, = ). If A cannot be written as the countable union of nowhere dense
sets, then A is called of second category (or non-meager).

Exercise 28.10: (Subset of meager set)

Verify that a subset of a meager set is again meager.

Proposition 28.11

X is Baire if and only if countable union of closed nowhere dense sets have empty interior. In
particular, a (nonempty) Baire space is non-meager (in itself).

Proof
Suppose X is a Baire space. Let A, be a collection of closed nowhere dense sets. Then,

U, = X \ A, is a collection of open dense sets. We have (U, is dense. Now, for any nonempty
openset O C X, we have ONU, # 0 = O ¢ X\ U, = A,. Thus, | A,, has empty interior.

Now, suppose countable union of closed nowhere dense sets in X has empty interior. Let
U, be a collection of open dense sets. Then, A, = X \ U, is closed, nowhere dense.
We have |JA, has empty interior. So, for any nonempty open set O C X, we have
O¢UJA, =0Nn(X\UA) #0=0nNU, #0. Thus, U, is dense. Hence, X is a Baire

space.

Now, for a Baire space X, suppose X = |J A, for some nowhere dense sets. Then, X = (J A,
where A, is closed, nowhere dense. But this contradicts that | J A, has empty interior. m



Remark 28.12: (Non-meager spaces need not be Baire)

There are non-meager spaces, which fail to be Baire. Consider X = R x {0} UQ x {1} C R
Then, for each g € U, we have U, = X \ {(¢, 1)}, an open dense set. Clearly, [ JU,, =R x {0} is
not dense in X. Thus, X is not Baire. On the other hand, if possible, let us write X = (J A4,, for
some nowhere dense sets A,. Then, R x {0} = |J (A, NR x {0}). Note that B,, .= AR x {0}
is nowhere dense in R x {0}. But this implies R =2 R x {0} is a meager (in itself) space. This is
a contradiction, as R, being a completely metrizable space, is Baire, and hence, non-meager.




