
Topology Course Notes (KSM1C03)

Day 28 : 14th November, 2025
game of Choquet -- strongly Choquet space -- Baire space

28.1 A digression: Game of Choquet
Given a space X, let us assume that two players are playing a game.

Round 0: Player I goes first by choosing an open set U0 ⊂ X and a point x0 ∈ U0. Then, player II
chooses another open set V0 satisfying x0 ∈ V0 ⊂ U0.

Round 1: Player I now chooses an open set U1 ⊂ V0, and a point x1 ∈ U1. Then, player II chooses
another open set V1 satisfying x1 ∈ V1 ⊂ U1.

Round n: At this stage, player I chooses an open set Un ⊂ Vn−1 and a point xn ∈ Un. Player II then
chooses an open set Vn satisfying xn ∈ Vn ⊂ Un.

Thus, we have an infinite game that goes like this:

Player I : (U0, x0) (U1, x1) . . . (Un, xn) . . .

Player II : V0 V1 . . . Vn . . .

This game is known as the strong game of Choquet. The usual game of Choquet is played the same
way, but player I does not choose any points xn ∈ Un at any stage, and thus, player II does not care
about the points either. Observe that ⋂

n≥0

Un =
⋂
n≥0

Vn.

We say player II wins the game if
⋂

Vn 6= ∅ at the end of the game. Conversely, player I wins the game
if
⋂

Un = ∅ at the end of the game.

Remark 28.1: (Winning strategy)

To formalize the concept of winning strategy (for player II), let us consider the following. Given a
space, (X, T ), let us consider the sets

T∗ := {U ∈ T | U 6= ∅} , S := {(U, x) | U ∈ T∗, x ∈ U} .

Then, a winning strategy for player II is a map

f : S → T∗
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such that the following holds.

i) For any (U, x) ∈ S, we have
x ∈ f(U, x) ⊂ U.

ii) For any sequence (Un, xn) ∈ S defined inductively, such that,

U0 ⊃ V0 := f(U0, x0) ⊃ U1 ⊃ V1 := f(U1, x1) ⊃ · · · ⊃ Un ⊃ Vn := f(Un, xn) ⊃ . . . ,

we always have
⋂

Vn 6= ∅.

Definition 28.2: (Strong) Choquet space
A space X is called a Choquet space (resp. strongly Choquet space) if in a game of Choquet
(resp. strong game of Choquet), player II always has a winning strategy.

Remark 28.3

Winning a strong game of Choquet is more difficult for player II, as at the nth-stage they have to
choose an open set Vn ⊂ Un satisfying the extra condition xn ∈ Vn. Thus, a strongly Choquet
space is always a Choquet space. Also, since player I’s goal is to make the intersection empty,
player I is also denoted as player E (Empty). In this convention, player II is denoted as player N

(Nonempty).

Proposition 28.4: (Completely metrizable space is strongly Choquet)

Let X be a completely metrizable space. Then X is strongly Choquet.

Proof
Let us fix a complete metric d on X, inducing the underlying topology. At the nth-stage, after player
E has chosen xn ∈ Un ⊂ Vn−1, player N chooses xn ∈ Vn ⊂ Vn ⊂ Un, such that DiamVn < 1

2n
.

This is always possible in the metric space (X, d). Now, observe that⋂
Un =

⋂
Vn =

⋂
Vn.

But
{
Vn

}
is a decreasing sequence of closed sets in a complete metric space with diameter going

to zero. Hence,
⋂

Vn 6= ∅ (Check!). Thus, player N always wins. Hence, X is a strongly Choquet
space. �

Theorem 28.5: (Strongly Choquet implies Complete Metrizability)

Suppose X is a metrizable space. If X is strongly Choquet, then X is completely metrizable.

Proof
Fix an arbitrary metric d on (X, T ), and consider the completion (X, d) ↪→ (X?, d?). We shall
show that X is Gδ in X?.
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Let us fix a winning strategy player N, and denote it by

f : {(U, x) | x ∈ U ∈ T } −→ {U ∈ T | U 6= ∅} .

For each n ≥ 1, let us consider Wn to be the collection of open sets W ⊂ X?, such that for some
x ∈ U ⊂ X we have

i) U = X ∩ Ũ , for some Ũ ⊂ X? open, with Ũ ⊂ Bd?
(
x, 1

n

)
,

ii) W ∩X = f (U, x), and

iii) W ⊂ Bd?
(
x, 1

n

)
.

Denote,
Gn =

⋃
{W | W ∈ Wn} .

Clearly Gn ⊂ X? is open (possibly empty). Let us check that X ⊂ Gn. For any x ∈ X, let player
E choose U0 = Bd?

(
x, 1

n

)
∩ X and x0 = x. At the nth-stage, say player E chooses an open set

Un = X ∩ Ũn, where xn = x ∈ Un, and Ũn ⊂ Bd?
(
x, 1

n

)
. Then, player N chooses Vn = f (Un, x),

such that x ∈ Vn ⊂ Un. But then, Vn = X∩W ′ for some W ′ ⊂ X? open. Consider W = W ′∩ Ũn.
Clearly,

X ∩W = X ∩
(
W ′ ∩ Ũn

)
= (X ∩W ′) ∩

(
X ∩ Ũn

)
= Vn ∩ Un = Vn = f(Un, x).

Also, x ∈ W ⊂ Bd?
(
x, 1

n

)
. Thus, x ∈ Gn. Note that this argument requires strong game of

Choquet. Consequently, we have X ⊂
⋂

Gn.

Let us show that
⋂

Gn ⊂ X. Let x ∈
⋂

Un. For n1 = 1, as x ∈ Gn1 , we have some Ṽ1 ∈ Wn1

such that x ∈ Ṽ1. Then, for some y1 ∈ U1 ⊂ X, we have V1 := Ṽ1 ∩X = f(U1, y1), and moreover,
Ṽ1 ⊂ Bd?

(
y1,

1
n1

)
. As x ∈ Ṽ1, we have ε1 := d?(x,X? \ Ṽ1) > 0. Choose some n2 > n1 such that

1
n2

< ε1
2

. As x ∈ Gn2 , we have some Ṽ2 ∈ Wn2 such that x ∈ Ṽ2. Then, for some y2 ∈ U2 ⊂ X,
we have V2 := Ṽ2 ∩X = f(U2, y2), and moreover, Ṽ2 ⊂ Bd?

(
y2,

1
n2

)
. Note that U2 ⊂ Ṽ1. Indeed,

U2 = X ∩ Ũ2 for some Ũ ⊂ X? open with Ũ2 ⊂ Bd?

(
y2,

1
n2

)
. Then, for any z ∈ U2 we have

d?(y2, z) <
1
n2

. Also, we have x ∈ Ṽ2 ⊂ Bd?

(
y2,

1
n2

)
. Thus,

d(x, z) ≤ d(x, y2) + d(y2, z) <
1

n2

+
1

n2

< ε1 = d?
(
x,X? \ Ṽ1

)
⇒ z ∈ Ṽ1.

Thus, U2 ⊂ Ṽ1 holds, which implies U2 ⊂ V1 = X ∩ V1. Inductively, we continue this (strong)
game of Choquet in a similar way. Since player N is playing by a winning strategy, it follows that⋂

Un =
⋂

Vn 6= ∅. Now, by construction, x ∈
⋂

Ṽn. Since (X?, d?) is a complete metric space,
and since the diameters of Ṽn are going to 0, it follows that

⋂
Ṽn = {x}, a singleton. But then,

∅ 6=
⋂

Vn = X ∩
⋂

Ṽn = X ∩ {x} ⇒ x ∈ X.

Thus, we have X =
⋂

Gn, i.e, X is a Gδ-set in X?. Hence, X is completely metrizable. �
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Example 28.6: (Wheel with its Hub)

Let X = {(x, y) ∈ R2 | 0 < x2 + y2 ≤ 1} be the closed unit disc with the center removed.
Consider the collection of usual open sets in D as a subspace of R2, and additionally, consider
every open intervals (in the usual sense) on every open radial line. It is easy to see, this collection
is a basis for a topology on X. The space X is called the wheel without its hub.

Open interval
on radial lineUsual open set

Observe that X is not second countable, since the set A =
{
(x, y)

∣∣ x2 + y2 = 1
2

}
is a closed

discrete subspace of X. Nevertheless, X is metrizable. Let us explicitly define a metric.

Consider the function h : X → [0,∞) defined by h(x) = 1
‖x‖ − 1, and the function r : X →

[0,∞) defined by r(x) = x
‖x‖ . Here, for any x = (x, y), we have ‖x‖ =

√
x2 + y2. It is easy to

see that h, r are continuous maps. Define d : X ×X → [0,∞) via

d(x,y) =

|h(x)− h(y)| , if r(x) = r(y),

h(x) + h(y) + ‖r(x)− r(y)‖ otherwise.

One can easily check that d is a metric on X, inducing the same topology (Check!). Moreover,
one can show that d is a complete metric as well.

Let us instead play a strong game of Choquet on X! If at any stage, player E plays an open set
U , and a point x ∈ U on some open radial line `, then player N plays an open set V which is an
open interval containing x on the radial line `, such that the closed interval has length half that
of the component of `∩U containing x (which is going to be interval), and is contained in said
component. Then, we get a decreasing sequence closed intervals of ` with diameters going to 0.
The intersection is nonempty by the completeness of R, and so, player N wins. Suppose player
E plays an open set U and a point x ∈ U with x on the boundary circle. Then, player N plays
a usual open neighborhood V ⊂ U of x, such that V̄ ⊂ U . If player E never plays a point on
any radial line (so the points are always on the circle), then we get a decreasing sequence closed
sets in the boundary circle, which is a compact set. Thus, player N again wins. This proves X is
strongly Choquet, and hence, completely metrizable.

Example 28.7: (Discrete rational extension of R)

Consider X to be the discrete rational extension of R, i.e, X = R, with the topology T generated
by the basis

B = {(a, b) | a, b ∈ Q, a < b} ∪ {{q} | q ∈ Q} .

It is easy to see that B is a basis of clopen sets, and hence, X is a completely regular, second
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countable space, which is clearly T1. By Urysohn’s metrization theorem, X is then metrizable.
Let us show that X is strongly Choquet.

If at any stage player E plays an open set U and a rational q ∈ U , player N can play V = {q},
and thereby winning the game. Suppose player E plays an open set U ∈ T and an irrational
x ∈ U . Then, there is a finite length interval x ∈ (a, b) ⊂ [a, b] ⊂ U , such that b−a < 1

2
DiamU .

Player N chooses (a, b). Then, in a game, where player E never plays a rational point, we have
Vn = (an, bn) for finite intervals, which are nested, with strictly decreasing diameter. In particular,⋂
Vn 6= ∅, as R is complete. Thus, X is strongly Choquet. Consequently, the discrete rational

extension of R is a completely metrizable space.

28.2 Baire Space

Definition 28.8: (Baire space)
A space X is called a Baire space if a countable intersection of dense, open sets of X is again
dense.

Definition 28.9: (First and second category)
A subset A ⊂ X is called of first category (or meager) if A =

⋃
n≥1An for some nowhere dense

set An ⊂ X (i.e., intAn = ∅). If A cannot be written as the countable union of nowhere dense
sets, then A is called of second category (or non-meager).

Exercise 28.10: (Subset of meager set)

Verify that a subset of a meager set is again meager.

Proposition 28.11

X is Baire if and only if countable union of closed nowhere dense sets have empty interior. In
particular, a (nonempty) Baire space is non-meager (in itself).

Proof
Suppose X is a Baire space. Let An be a collection of closed nowhere dense sets. Then,
Un = X \ An is a collection of open dense sets. We have

⋂
Un is dense. Now, for any nonempty

open set O ⊂ X, we have O∩
⋂

Un 6= ∅ ⇒ O 6∈ X\
⋂

Un =
⋃

An. Thus,
⋃
An has empty interior.

Now, suppose countable union of closed nowhere dense sets in X has empty interior. Let
Un be a collection of open dense sets. Then, An = X \ Un is closed, nowhere dense.
We have

⋃
An has empty interior. So, for any nonempty open set O ⊂ X, we have

O 6⊂
⋃

An ⇒ O ∩ (X \
⋃

An) 6= ∅ ⇒ O ∩
⋂
Un 6= ∅. Thus,

⋂
Un is dense. Hence, X is a Baire

space.

Now, for a Baire space X, suppose X =
⋃
An for some nowhere dense sets. Then, X =

⋃
An,

where An is closed, nowhere dense. But this contradicts that
⋃
An has empty interior. �
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Remark 28.12: (Non-meager spaces need not be Baire)

There are non-meager spaces, which fail to be Baire. Consider X = R × {0} ∪ Q × {1} ⊂ R2.
Then, for each q ∈ U , we have Uq := X \ {(q, 1)}, an open dense set. Clearly,

⋃
Un = R×{0} is

not dense in X. Thus, X is not Baire. On the other hand, if possible, let us write X =
⋃
An for

some nowhere dense sets An. Then, R× {0} =
⋃

(An ∩ R× {0}). Note that Bn := A×R× {0}
is nowhere dense in R× {0}. But this implies R ∼= R× {0} is a meager (in itself) space. This is
a contradiction, as R, being a completely metrizable space, is Baire, and hence, non-meager.
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