

Class Test 8

11th November, 2025

Q1. On \mathbb{R} , consider the topology \mathcal{T} (known as the *discrete rational extension of \mathbb{R}*) generated by the basis

$$\mathcal{B} := \{(a, b) \mid a, b \in \mathbb{R}, a < b\} \cup \{\{q\} \mid q \in \mathbb{Q}\}.$$

Show that X is metrizable.

Solution: We shall use Urysohn's metrization theorem. Let us check the following.

X is completely regular: Consider the collection

$$\mathcal{I} = \{[p, q] \mid p, q \in \mathbb{Q}, p \leq q\}.$$

Clearly $X \setminus [p, q] = (-\infty, p) \cup (q, \infty)$ is open (in the usual topology), and thus, $[p, q]$ is closed for any $p \leq q$. For $p = q$, we have $[p, q] = \{p\}$, which is open. For $p < q$, we have $[p, q] = (p, q) \cup \{p, q\}$, which is also open in \mathcal{T} . Thus, \mathcal{I} is a collection of clopen sets.

For any open set $U \in \mathcal{T}$ and any $x \in U$, we have two possibilities. If $x \in \mathbb{Q}$, then we have $x \in \{x\} \subset U$, where $\{x\} \in \mathcal{I}$. On the other hand, if $x \notin \mathbb{Q}$, then there is some $(a, b) \in \mathcal{B}$ so that $x \in (a, b) \subset U$. But then there is some $r, s \in \mathbb{Q}$ so that $x \in [r, s] \subset (a, b) \subset U$. Clearly, $[r, s] \in \mathcal{I}$. Thus, \mathcal{I} is a basis of \mathcal{T} .

Since \mathcal{I} is a basis of clopen sets, it follows that X is zero-dimensional. But then X is completely regular, and hence, regular.

X is second countable: The basis \mathcal{I} constructed previously is countable. Hence, X is second countable.

X is T_3 : It is clear that X is T_1 , as any singleton is closed. Thus, X is T_3 .

X is metrizable: Since X is second countable, T_3 , it follows that X is metrizable.

Alternatively, you can also consider the countable collection

$$\mathcal{J} = \{(p, q) \mid p, q \in \mathbb{Q}, p \leq q\} \cup \{\{q\} \mid q \in \mathbb{Q}\},$$

and show that it is also a basis of clopen sets.

As an explicit metric, let us fix an enumeration $\mathbb{Q} = \{r_i\}_{i=1}^{\infty}$. Then, define $d : \mathbb{R} \times \mathbb{R} \rightarrow [0, \infty)$ by

$$d(x, y) = \begin{cases} \sup \left\{ \frac{1}{i} \mid x \leq r_i \leq y \right\}, & x < y, \\ 0, & x = y, \\ \sup \left\{ \frac{1}{i} \mid y \leq r_i \leq x \right\}, & y < x. \end{cases}$$

You may check that d is a metric on \mathbb{R} , inducing the topology \mathcal{T} . Indeed, for any $r \in \mathbb{Q}$, we have $r = r_i$ for some i , and then, $d(x, r_i) \geq \frac{1}{i}$ whenever $x \neq r_i$. Thus, $B_d(r, \epsilon) = \{r\}$ for any $\epsilon < \frac{1}{i}$. Also, for any $x < y < z$ it follows that $d(x, y) \leq d(x, z)$, which implies that $B_d(x, \epsilon)$ is always an interval (possibly degenerate). This shows that the metric balls form a basis for the topology.