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product of complete metric space —— Lavrentieff's theorem -- completely

metrizable and Gy

27.1 Product of metric spaces

Proposition 27.1: (Metric on Product Topology)

Suppose (X;,d;) is a countable collection of metric spaces. Let X = [[:2, X; be the product.
Define

pn(a,b) = min{d,(a,b),1}, a,b € X, plx,y) = Z W, x,y € X.
i=1

Then, p is a metric on X, inducing the product topology.

Proof
Since each p,, is a bounded metric, it follows that p is well-defined. The metric properties can be

checked easily. Let us show that the induced metric is the product topology. For some open U C X;,
consider the sub-basic open set & = 7; '(U). Without loss of generality, assume U = B, (z;,7;).
Fix some y € U. Set € := %(“’”“) Consider the metric ball B,(y, €). Then, for any z € B,(y, €),

we have

pi(Ti, 2i) < pilxi, vi) + pi(yis 2i)
< pi(wi, yi) +2'p(y, 2)
< pi(xi, yi) + (ri — pi(ws,45)) = 74
=>zeU=z€el.

Thus, B,(y,€) C U. This proves that the metric topology is finer than the product topology.

Conversely, consider a metric ball B := B,(z,€). Get some N > 1 with Y.\ o < %. Consider

the set
N e
V=I|I|B, |z,— Xi,

i>N
which is open in the product topology. Now, for any y € V' we have

2te

%) N

i=1 =1 i>N




Thus, V' C B. This proves that the product topology is finer than the metric topology. Hence, the
two topologies coincide. ([l

Remark 27.2: (Arbitrary product of metric spaces)

Any uncountable product of (nonempty) metric space fails to be metrizable. In fact, the product
topology fails to be first countable. There is a notion of uniform metric on an uncountable product,
but the induced topology is strictly finer than the product topology, and strictly coarser than the
box topology.

Theorem 27.3: (Countable product of completely metrizable spaces)

Let {X,} be a countable collection of nonempty spaces, and denote X = [[’", X, be the
product space. Then the following are equivalent.

a) X is completely metrizable.

b) X, is completely metrizable for each n > 1.

Proof
Suppose X is completely metrizable. Fix some a; € X;. Then, for each n, we have the subspace

X ={x|x;=q; ifi#n}= ﬂw{l(ai),
which is closed being the intersection of closed sets, and hence, completely metrizable. But X, is
homeomorphic to X, and thus, X,, is completely metrizable as well.

Conversely, suppose each X, is completely metrizable. Fix some complete metric d,, on X,,, and
set

pn(x,y) = min{d,(z,y),1}, z,y€ X,.

Then, p, is a bounded, complete metric, inducing the same topology. On X = [[ X, define
p(z,y) = i M z,y € X.
=1 2

Then, p induces the product topology on X. Let us check that p is complete. Say, {z"} C X is a
Cauchy sequence. Then, for a fixed i, consider the sequence {z}'}, ., C X,. Fore >0, get N > 1
such that p(z™,2™) < & for all n,m > N. Then, for n,m > N we have

o < 2'p (2™, 2™) < e.

pn (T}, 27")
Thus, {z'} C X is a Cauchy sequence, and hence, converges to some y; € X;. Consider the point
y = () € X. Fix some € > 0. Then, get some K > 1 such that ) _ . % < 5. Also, for each
1 <1 < K, get some N; such that
2. ¢

(@) < 5 > Ni.



Set N = max {K, Ny,...,Ny}. Then, for n > N we have

[e's) N
pi (77, yi) pi (77, yi) 1 € €
" :E+:<E+ E—.<N-— - =
p(a:,y) : 9i — 4 i +' 9t 2N+2 ‘
=1 =1 i>N
Thus, 2™ — y. Hence, (X, p) is a completely metric space. O

27.2 Lavrenthieff’s Theorem

Proposition 27.4

Let X be a metrizable space, and Y be a completely metrizable space. Suppose, for some
A C X, we have a continuous map f : A — Y. Then, there exists a Gs-set, say, A* C X with
A C A* C A, and a continuous map f* : A* — Y, which extends f.

Proof
Fix a complete metric dy on Y. For any = € A, denote the oscillation

osc(f,z) = inf {Diamf (UNA) | U C X is open, x € U} .

As x € A, for any open neighborhood = € U, we have AN U # (). Let us consider

1

A, = {a:EA osc(f,x)<ﬁ}, A* ={x € A|osc(f,x) =0}

Clearly A* = ﬂnz1 A,,. Moreover, for any a € A, by continuity of f, we have some open U C X
such that z € U and Diamf(UNA) < % Thus, a € A, for any n > 1. In particular, A C A* C A
is clear.

Let us check that A,, is open in A. For any € A,,, we have some open U C X such that z € U,
and Diamf(U N'A) < L. But then for any w € U N A, it follows that osc(f,w) < %. Thus,
r € UNAC A,. Since z € A, is arbitrary, we have A, is open in A. Then, A, = AN B, for
some open B, C X. We have,

A*:ﬂAn:ﬂAmBn:[mﬂBn.

n>1 n>1 n>1

Since A is a closed set in a metric space, it is itself Gs. Hence, we have A* is a G set in X.

Let us get a function f* : A* — Y. For x € A*, let z, € A be a sequence with limzx, = x.
Fix e > 0. Since osc(f,z) = 0, we have some open set U C X such that z € U and
Diamf(U N A) < €. As xz,, — x, we have some N > 1, such that for all n,m > N we have
T, Ty € U. Then, it follows that dy (f(z,), f(z,)) < € for all n,m > N. In other words,
{f(z,)} is a Cauchy sequence in (Y, dy). Since dy is complete, we have f(z,) — y € Y. Set,

f(z) =y.

Let us check that f* is well-defined. Suppose z, € A is another sequence, with 2z, — © € A*.
Then, {f(z,)} is again Cauchy, and converges to some w € Y. Fix some € > 0. Then, there is
some U C X open such that # € U, and Diamf(U N A) < £. As limy,, = v = lim 2,,, we have



some N > 1, such that y,,, z, € U for all n > N. Taking N larger, we may assume d(f(y,),y) <
and d(f(zn),w) < § for alln > N. Then, we have

£
3

dy (y,w) < dy(y, f(yn)) + dy (f(yn), f(zn)) + dy (f(2n), w) < g + % + % — e

Since € is arbitrary, it follows that dy (y,w) = 0 = y = w. Thus, f* is well-defined.

Finally, let us check that f* is a continuous extension. For any a € A, we can consider the constant
sequence {a, = a} that converges to a. Then, f*(a) = lim f(a,) = lim f(a) = f(a). Thus, f*
extends f. Let us check continuity. Let x € A*, and fix € > 0. Then, there is some open set
U C X such that Diamf(U N A) < 5. Fix a sequence y,, € U N A such that y,, — y. Now, for
any z € U N A*, consider a sequence 2, € U N A such that z, — z. There exists some N > 1
such that dy (f(yn), f*(y)) < § and dy (f(zn), f*(2)) < § for all n > N. We have,

v (J* (), J*(2)) < d (). S (um) -y (Fun). S (200)) -y (Fan) S(2) < 5+ 5+ g = e

This proves f* is continuous at y. Since y € A* is arbitrary, we have f*: A* — Y is a continuous
extension. 0

Theorem 27.5: (Lavrentieff’s Theorem)

Suppose X,Y are completely metrizable spaces, and f : A — B is a homeomorphism, where
AC X,B CY. Then, f extends to a homeomorphism f*: A* — B*, where A* C X, B*CY
are Gs-sets, with A ¢ A* ¢ Aand B C B* C B.

Proof

Let us denote ¢ = f~!. Since f, g are both continuous, we have Gs-sets A; C X, A, C Y, with
AC A, C A BC By C B, and extensions f, : Ay = Y, g1 : Bi — X of f and ¢ respectively.
Let us consider

A ={ze A | filz) € Bi} = (1) (B1), B ={xeBi|g) e A}=(0)" (4)

Since these are inverse images of Gs-sets, they are again G. Clearly, A C A* C Aand B C B* C
B. Let us denote f* = fi|4- and g* = g1|p+. Clearly, f* and g* are continuous maps, extending f
and g respectively. For any = € A*, we have fi(x) € By, and so, g, fi(z) € A; is defined. Thus,
g o f*: A* — Ay is continuous. Say, x,, € A is a sequence, such that z,, — x € A*. Then,

o f* (z) = lim gy f*(2,) = lim gy f () = lim gf (2,,) = limz, = 2.

Thus, g1 o f* : A* — A* is the identity map. In particular, we have ¢g* o f* = Id4~. Similarly, we
have f* o g* = Idg«. Thus, f*: A* — B* is a homeomorphism, with inverse ¢g* : B* — A*. [

Theorem 27.6

Suppose X is a metrizable space, and A C X is a completely metrizable space. Then, A is a
Gs-set in X.




Proof
Fix metric d on X. Consider ¢ : (X,d) — (X*,d*) be the completion. Then, the restriction

f=1tla: A X*is also an embedding, i.e, homeomorphism onto the image. Thus, we have a
homeomorphism A D A — f(A) C X*, where A, X* are completely metrizable. By Lavrenteiff’s
theorem, f has an extension to a homeomorphism of G sets of A and X*, containing A and «(A)
respectively. But then the extension must be ¢ itself, as on the left-hand side, the extended domain
can only possibly be A. Thus, f*(A*) = f(A) = 1(A) is the extended set on the right-hand side.
But then ((A) is a G5 set in X*. Taking inverse, it follows that A is then a G set of X. O

Corollary 27.7: (Characterization of Completely Metrizable Space)

Given a metric space (X, d), the following are equivalent.
a) X is completely metrizable.

b) X is Gs in the completion X*.

Corollary 27.8: (Q is not G; in R)

Q is not G in R.




