
Topology Course Notes (KSM1C03)

Day 27 : 7th November, 2025
product of complete metric space -- Lavrentieff's theorem -- completely
metrizable and Gδ

27.1 Product of metric spaces

Proposition 27.1: (Metric on Product Topology)

Suppose (Xi, di) is a countable collection of metric spaces. Let X =
∏∞

i=1Xi be the product.
Define

ρn(a, b) := min {dn(a, b), 1} , a, b ∈ Xn, ρ(x, y) :=
∞∑
i=1

ρi(xi, yi)

2i
, x, y ∈ X.

Then, ρ is a metric on X, inducing the product topology.

Proof
Since each ρn is a bounded metric, it follows that ρ is well-defined. The metric properties can be
checked easily. Let us show that the induced metric is the product topology. For some open U ⊂ Xi,
consider the sub-basic open set U = π−1

i (U). Without loss of generality, assume U = Bρi(xi, ri).
Fix some y ∈ U . Set ε := ri−ρi(xi,yi)

2i
. Consider the metric ball Bρ(y, ε). Then, for any z ∈ Bρ(y, ε),

we have

ρi(xi, zi) ≤ ρi(xi, yi) + ρi(yi, zi)

≤ ρi(xi, yi) + 2iρ(y, z)

< ρi(xi, yi) + (ri − ρi(xi, yi)) = ri

⇒ zi ∈ U ⇒ z ∈ U .

Thus, Bρ(y, ε) ⊂ U . This proves that the metric topology is finer than the product topology.

Conversely, consider a metric ball B := Bρ(x, ε). Get some N ≥ 1 with
∑

i>N
1
2i

< ε
2
. Consider

the set

V =
N∏
i=1

Bρi

(
xi,

2iε

2N

)
×

∏
i>N

Xi,

which is open in the product topology. Now, for any y ∈ V we have

ρ(x, y) =
∞∑
i=1

ρi(xi, yi)

2i
≤

N∑
i=1

2iε
2N

2i
+
∑
i>N

1

2i
<

ε

2
+

ε

2
= ε.
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Thus, V ⊂ B. This proves that the product topology is finer than the metric topology. Hence, the
two topologies coincide. �

Remark 27.2: (Arbitrary product of metric spaces)

Any uncountable product of (nonempty) metric space fails to be metrizable. In fact, the product
topology fails to be first countable. There is a notion of uniform metric on an uncountable product,
but the induced topology is strictly finer than the product topology, and strictly coarser than the
box topology.

Theorem 27.3: (Countable product of completely metrizable spaces)

Let {Xn} be a countable collection of nonempty spaces, and denote X =
∏∞

n=1 Xn be the
product space. Then the following are equivalent.

a) X is completely metrizable.

b) Xn is completely metrizable for each n ≥ 1.

Proof
Suppose X is completely metrizable. Fix some ai ∈ Xi. Then, for each n, we have the subspace

X?
n = {x | xi = ai if i 6= n} =

⋂
i 6=n

π−1
i (ai),

which is closed being the intersection of closed sets, and hence, completely metrizable. But Xn is
homeomorphic to X?

n, and thus, Xn is completely metrizable as well.

Conversely, suppose each Xn is completely metrizable. Fix some complete metric dn on Xn, and
set

ρn(x, y) = min {dn(x, y), 1} , x, y ∈ Xn.

Then, ρn is a bounded, complete metric, inducing the same topology. On X =
∏

Xn, define

ρ(x, y) :=
∞∑
i=1

ρi(xi, yi)

2i
, x, y ∈ X.

Then, ρ induces the product topology on X. Let us check that ρ is complete. Say, {xn} ⊂ X is a
Cauchy sequence. Then, for a fixed i, consider the sequence {xn

i }n≥1 ⊂ Xn. For ε > 0, get N ≥ 1

such that ρ(xn, xm) < ε
2i

for all n,m ≥ N . Then, for n,m ≥ N we have

ρn(x
n
i , x

m
i ) = 2i

ρn (x
n
i , x

m
i )

2i
≤ 2iρ (xn, xm) < ε.

Thus, {xn
i } ⊂ Xi is a Cauchy sequence, and hence, converges to some yi ∈ Xi. Consider the point

y = (yi) ∈ X. Fix some ε > 0. Then, get some K ≥ 1 such that
∑

n>N
1
2n

< ε
2
. Also, for each

1 ≤ i ≤ K, get some Ni such that

ρi (x
n
i , yi) <

2i · ε
2N

, n ≥ Ni.

2



Set N = max {K,N1, . . . , Nk}. Then, for n ≥ N we have

ρ (xn, y) =
∞∑
i=1

ρi (x
n
i , yi)

2i
=≤

N∑
i=1

ρi (x
n
i , yi)

2i
+
∑
i>N

1

2i
< N · ε

2N
+

ε

2
= ε.

Thus, xn → y. Hence, (X, ρ) is a completely metric space. �

27.2 Lavrenthieff’s Theorem
Proposition 27.4

Let X be a metrizable space, and Y be a completely metrizable space. Suppose, for some
A ⊂ X, we have a continuous map f : A → Y . Then, there exists a Gδ-set, say, A? ⊂ X with
A ⊂ A? ⊂ Ā, and a continuous map f ? : A? → Y , which extends f .

Proof
Fix a complete metric dY on Y . For any x ∈ Ā, denote the oscillation

osc(f, x) := inf {Diamf (U ∩ A) | U ⊂ X is open, x ∈ U} .

As x ∈ Ā, for any open neighborhood x ∈ U , we have A ∩ U 6= ∅. Let us consider

An :=

{
x ∈ Ā

∣∣∣∣ osc(f, x) < 1

n

}
, A∗ :=

{
x ∈ Ā

∣∣ osc(f, x) = 0
}

Clearly A? =
⋂

n≥1An. Moreover, for any a ∈ A, by continuity of f , we have some open U ⊂ X

such that x ∈ U and Diamf(U ∩A) < 1
n
. Thus, a ∈ An for any n ≥ 1. In particular, A ⊂ A? ⊂ Ā

is clear.

Let us check that An is open in Ā. For any x ∈ An, we have some open U ⊂ X such that x ∈ U ,
and Diamf(U ∩ A) < 1

n
. But then for any w ∈ U ∩ Ā, it follows that osc(f, w) < 1

n
. Thus,

x ∈ U ∩ Ā ⊂ An. Since x ∈ An is arbitrary, we have An is open in Ā. Then, An = Ā ∩ Bn for
some open Bn ⊂ X. We have,

A? =
⋂
n≥1

An =
⋂
n≥1

Ā ∩Bn = Ā ∩
⋂
n≥1

Bn.

Since Ā is a closed set in a metric space, it is itself Gδ. Hence, we have A? is a Gδ set in X.

Let us get a function f ? : A? → Y . For x ∈ A?, let xn ∈ A be a sequence with limxn = x.
Fix ε > 0. Since osc(f, x) = 0, we have some open set U ⊂ X such that x ∈ U and
Diamf(U ∩ A) < ε. As xn → x, we have some N ≥ 1, such that for all n,m ≥ N we have
xn, xm ∈ U . Then, it follows that dY (f(xn), f(xm)) < ε for all n,m ≥ N . In other words,
{f(xn)} is a Cauchy sequence in (Y, dY ). Since dY is complete, we have f(xn) → y ∈ Y . Set,
f ?(x) = y.

Let us check that f ? is well-defined. Suppose zn ∈ A is another sequence, with zn → x ∈ A?.
Then, {f(zn)} is again Cauchy, and converges to some w ∈ Y . Fix some ε > 0. Then, there is
some U ⊂ X open such that x ∈ U , and Diamf(U ∩ A) < ε

3
. As lim yn = x = lim zn, we have

3



some N ≥ 1, such that yn, zn ∈ U for all n ≥ N . Taking N larger, we may assume d(f(yn), y) < ε
3

and d(f(zn), w) <
ε
3

for all n ≥ N . Then, we have

dY (y, w) ≤ dY (y, f(yN)) + dY (f(yN), f(zN)) + dY (f(zN), w) <
ε

3
+

ε

3
+

ε

3
= ε.

Since ε is arbitrary, it follows that dY (y, w) = 0 ⇒ y = w. Thus, f ? is well-defined.

Finally, let us check that f ? is a continuous extension. For any a ∈ A, we can consider the constant
sequence {an = a} that converges to a. Then, f ?(a) = lim f(an) = lim f(a) = f(a). Thus, f ?

extends f . Let us check continuity. Let x ∈ A?, and fix ε > 0. Then, there is some open set
U ⊂ X such that Diamf(U ∩ A) < ε

3
. Fix a sequence yn ∈ U ∩ A such that yn → y. Now, for

any z ∈ U ∩ A?, consider a sequence zn ∈ U ∩ A such that zn → z. There exists some N ≥ 1

such that dY (f(yn), f
?(y)) < ε

3
and dY (f(zn), f

?(z)) < ε
3

for all n ≥ N . We have,

dY (f
?(y), f ?(z)) ≤ dY (f

?(y), f(yN)) + dY (f(yN), f(zN)) + dY (f(zN), f
?(z)) <

ε

3
+

ε

3
+

ε

3
= ε.

This proves f ? is continuous at y. Since y ∈ A? is arbitrary, we have f ? : A? → Y is a continuous
extension. �

Theorem 27.5: (Lavrentieff’s Theorem)

Suppose X,Y are completely metrizable spaces, and f : A → B is a homeomorphism, where
A ⊂ X,B ⊂ Y . Then, f extends to a homeomorphism f ? : A? → B?, where A? ⊂ X,B? ⊂ Y

are Gδ-sets, with A ⊂ A? ⊂ Ā and B ⊂ B? ⊂ B̄.

Proof
Let us denote g = f−1. Since f, g are both continuous, we have Gδ-sets A1 ⊂ X,A2 ⊂ Y , with
A ⊂ A1 ⊂ Ā, B ⊂ B1 ⊂ B̄, and extensions f1 : A1 → Y, g1 : B1 → X of f and g respectively.
Let us consider

A? := {x ∈ A1 | f1(x) ∈ B1} = (f1)
−1 (B1), B? := {x ∈ B1 | g1(x) ∈ A1} = (g1)

−1 (A1).

Since these are inverse images of Gδ-sets, they are again Gδ. Clearly, A ⊂ A? ⊂ Ā and B ⊂ B? ⊂
B̄. Let us denote f ? = f1|A? and g? = g1|B? . Clearly, f ? and g? are continuous maps, extending f

and g respectively. For any x ∈ A?, we have f1(x) ∈ B1, and so, g1f1(x) ∈ A1 is defined. Thus,
g1 ◦ f ? : A? → A1 is continuous. Say, xn ∈ A is a sequence, such that xn → x ∈ A?. Then,

g1f
? (x) = lim g1f

?(xn) = lim g1f(xn) = lim gf(xn) = lim xn = x.

Thus, g1 ◦ f ? : A? → A? is the identity map. In particular, we have g? ◦ f ? = IdA? . Similarly, we
have f ? ◦ g? = IdB? . Thus, f ? : A? → B? is a homeomorphism, with inverse g? : B? → A?. �

Theorem 27.6

Suppose X is a metrizable space, and A ⊂ X is a completely metrizable space. Then, A is a
Gδ-set in X.
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Proof
Fix metric d on X. Consider ι : (X, d) ↪→ (X?, d?) be the completion. Then, the restriction
f = ι|A : A ↪→ X? is also an embedding, i.e, homeomorphism onto the image. Thus, we have a
homeomorphism A ⊃ A → f(A) ⊂ X?, where A,X? are completely metrizable. By Lavrenteiff’s
theorem, f has an extension to a homeomorphism of Gδ sets of A and X?, containing A and ι(A)

respectively. But then the extension must be ι itself, as on the left-hand side, the extended domain
can only possibly be A. Thus, f ?(A?) = f(A) = ι(A) is the extended set on the right-hand side.
But then ι(A) is a Gδ set in X?. Taking inverse, it follows that A is then a Gδ set of X. �

Corollary 27.7: (Characterization of Completely Metrizable Space)

Given a metric space (X, d), the following are equivalent.

a) X is completely metrizable.

b) X is Gδ in the completion X?.

Corollary 27.8: (Q is not Gδ in R)

Q is not Gδ in R.
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