
Topology Course Notes (KSM1C03)

Day 26 : 6th November, 2025
completely metrizable space -- completion -- Gδ-subspace of completely
metrizable space

26.1 Completely metrizable space

Definition 26.1: (Cauchy sequence)
A sequence xn in a metric space (X, d) is called a Cauchy sequence if given ε > 0, there exists
some N = Nε ≥ 1 such that d(xn, xm) < ε for all n,m ≥ N .

Definition 26.2: (Complete metric space)
A metric space (X, d) is called complete if every Cauchy sequence in (X, d) converges.

Exercise 26.3

Given a metric space (X, d), we have a new metric d̄(x, y) = min {d(x, y), 1}, which is clearly
bounded. Show that (X, d) is complete if and only if (X, d̄) is complete.

Example 26.4

R with the usual metric is complete, but X = (0,∞) is not complete. Indeed,
{

1
n

}
is a Cauchy

sequence (with the usual distance metric), which does not converge. On the other hand, consider

d(x, y) = |x− y|+
∣∣∣∣1x − 1

y

∣∣∣∣ , x, y ∈ X.

Check that d is a complete metric on X, inducing the same topology. Indeed, if {xn} is a Cauchy
sequence in this metric, then both {xn} and

{
1
xn

}
are Cauchy in R with the usual metric, which

implies xn → c 6= 0 (as we must have 1
xn

→ 1
c
). Thus, (0,∞) is completely metrizable.

Example 26.5: (Q is not complete)

In Q, consider the following sequence

x1 = 1, xn+1 =
xn +

2
xn

2
, n ≥ 1.

This sequence converges to
√
2 in R, and hence, is a Cauchy sequence. Clearly, {xn} ⊂ Q does

not converge. Thus, Q is not complete with the usual metric.
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Definition 26.6: (Completely metrizable space)
A space X is called a completely metrizable space if there exists a complete metric d on X

inducing the topology.

Exercise 26.7

Check that complete metrizability is a topological property. That is, check that if X is homeo-
morphic to Y , and if Y is completely metrizable, then so is X.

Theorem 26.8: (Q is not completely metrizable)

A completely metrizable space, without any isolated point, is uncountable. Consequently, Q is
not a completely metrizable space.

Proof
Suppose (X, d) is a complete metric space, without isolated points. Choose two distinct point
x0, x1 ∈ X. This is possible, as X has no isolated point. Get open balls U0, U1 of radius ≤ 1 such
that

x0 ∈ U0, x1 ∈ U1, U0 ∩ U1 = ∅.

This is possible as X is T3. Next, get more distinct points x00, x01 ∈ U0 \ {x0} and x10, x11 ∈
U1 \ {x1}. Again, this is possible since there are no isolated points. Get open neighborhoods of
radius ≤ 1

2

x00 ∈ U00 ⊂ U00 ⊂ U0, x01 ∈ U01 ⊂ U01 ⊂ U0, x10 ∈ U10 ∈ U10 ⊂ U1, x11 ∈ U11 ⊂ U11 ⊂ U1,

with
U00 ∩ U01 = ∅ = U10 ∩ U11.

Inductively contitue getting points and open sets with disjoint closures. Thus, for any finite length
word s formed by {0, 1} we have a unique point xs contained in an open set Us of radius ≤ 1

|s| ,
where |s| is the length of the word. Note that this is a countable infinite collection of points (and
open sets), since the collection of all finite words formed by {0, 1} is countable infinite. Moreover,
for two distinct words s, t, if they are not sub-word of the other, then Us ∩ Ut = ∅. If s ⊂ t, then
Ut ⊂ Us.

Let us now consider s to be an infinite word formed by {0, 1}. Denote sn to be the initial word
of s of length n, and set xn := xsn . Let us check that {xsn} is Cauchy. Let ε > 0 be given, and
fix N ≥ 1 such that 1

N
< ε

2
. Observe that for any n,m ≥ N , we have xn, xm ∈ UsN , and by

construction, UsN is a ball with radius ≤ 1
|sN | =

1
N

< e
2
. Hence, d(xn, xm) < ε for all n,m ≥ N .

Thus, {xn} is Cacuhy, which converges to a point, which we denote by xs (where s is the infinite
word).

Now, suppose s, t are two distinct infinite words of {0, 1}. Then, they differ at, say, the nth

position. But then Usn+1 ∩ Utn+1 = ∅. This implies that xs 6= xs. Consequently, for each infinite
word, we have unique point in X. Since the number of infinite words are uncountable (in fact, the
cardinality is same as R), it follows that X must be uncountable.
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Since Q is a (metrizable) space without any isolated point, it cannot be completely metrizable. �

26.2 Completion of a metric space

Definition 26.9: (Isometry)
A function f : (X, dX) → (Y, dY ) between two metric spaces is said to be an isometry if

dY (f(x), f(y)) = dX(x, y), ∀x, y ∈ X.

Definition 26.10: (Completion of a metric space)
Given a metric space (X, dX), a complete metric space (Y, dY ) is said to be a completion of X,
if there exists an isometry ι : X ↪→ Y such that the image ι(X) is dense in Y .

Theorem 26.11: (Completion : Existence and uniqueness)

Every metric space admits a completion, which is unique up to an isometry.

Proof
Let us first prove the uniqueness. Suppose, we have two completions ι : X ↪→ Y and ι′ : X ↪→ Y ′.
We have a well-defined continuous map

g := i′ ◦ ι−1 : ι(X) → ι′(X),

from a dense subset of Y to a dense subset of Y ′. Note tha g is an isometry. Now, for any y ∈ Y ,
get a sequence yn ∈ ι(X) such that yn → y. Then, {yn} is a Cacuchy sequence, and hence, so
is {y′n := g(yn)}. Since Y ′ is complete, there is a point y′ ∈ Y ′ such that y′n → y′. Let us define
f(y) = y′. We need to check that f is well-defined. Suppose {zn} is another sequence converging
to y. Denote, z′n = g(zn), and suppose z′n → z′ ∈ Y ′. Now,

dY ′(y′, z′) = lim dY ′ (y′n, z
′
n) = lim dY ′ (g(yn), g(zn)) = lim dY (yn, zn) = dY (y, y) = 0.

Thus, y′ = z′, proving that f is well-defined.

ι(X) Y

X

ι′(X) Y ′

g f

ι

ι′

Clearly f is surjective. Let us show that f is an isometry. Let y, z ∈ Y be given. Suppose yn →
y, zn → z, with {yn} , {zn} ⊂ ι(X). Denote, y′n = g(yn), z

′
n = g(zn), and then, y′n → y′ =

f(y), z′n → z′ = f(z). We have,

dY ′ (f(y), f(z)) = dY ′ (y′, z′) = lim dY ′ (y′n, z
′
n) = lim dY (yn, zn) = dY (y, z).

Now, let us consider h : Y ′ → Y to be the isometry defined in the same way by using ι ◦
(ι′)−1 : ι′(X) → ι(X). Let us check that h = f−1. It is clear that on points of ι(X), we have
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h ◦ f = (i′ ◦ ι−1) ◦
(
ι ◦ (ι′)−1) = Id. Now, for any y ∈ Y we have y = lim yn for some yn ∈ ι(X).

Then,
(h ◦ f) (y) = h (f (lim yn)) = limh (f (yn)) = lim yn = y.

Thus, h ◦ f = IdY . Similarly, f ◦ h = IdY ′ . Thus, we have Y = Y ′ up to an isometry.

Let us now actually prove that a completion exists! The construction is similar to how one constructs
R from Q. Denote C(X) to be the collection of all Cauchy sequences in X. Note that given
two Cauchy sequences {xn} , {yn}, we have {d(xn, yn)} is a Cauchy sequence in R, and hence,
converges. Indeed, for any ε > 0, we have N1, N2 ≥ 1 such that d(xn, xm) <

ε
2

for n,m ≥ N , and
d(yn, ym) <

ε
2

for n,m ≥ N2. Set N = max {N1, N2}. Then, for any n,m ≥ N we have

|d(xn, yn)− d(xm, ym)| ≤ d(xn, xm) + d(yn, ym) <
ε

2
+

ε

2
= ε.

The first inequality follows from the triangle inequality and the symmetry! Now, define an equiva-
lence relation ∼ on C(X) by

{xn} ∼ {yn} ⇔ lim d(xn, yn) = 0

Denote X? = C(X)/∼ to be the collection of equivalence classes. Define d? : X? ×X? → X? by

d? ([xn] , [yn]) = lim d(xn, yn).

Let us check that d? is well-defined. Let {x′
n} and {y′n} be some other representative. Then, we

have
|d(xn, yn)− d(x′

n, y
′
n)| ≤ d(xn, x

′
n) + d(yn, y

′
n) → 0, as n− > ∞.

Hence, in the limit, we have lim d(xn, yn) = lim d(x′
n, y

′
n). It is easy to see that d? is a metric on

X? (Check!). For any x ∈ X, define ι(x) to be the equivalence class of the constant sequence
{xn = x}. It follows that ι : X ↪→ X? is an isometry (Check!).

Let us verify that ι(X) is dense in X?. Let x? ∈ X? is represented by some Cauchy sequence
{xn} ⊂ X. Then, for any ε > 0, there is some N ≥ 1 such that d(xn, xm) <

ε
2

for all n,m ≥ N .
Let z = xN , and consider the point ι(z) formed by the constant sequence. Then,

d?(x?, ι(z)) = lim
n

d(xn, xN) ≤
ε

2
< ε.

Since ε > 0 and x? is arbitrary, it follows that ι(X) is dense in X?.

Finally, we check that d? is a complete metric. Let {zn} be a Cauchy sequence in X?. For k ≥ 1,
there is an Nk ≥ 1 such that d(zn, zm) < 1

k
for all n,m ≥ N . For each Nk, we have some

wk ∈ ι(X) such that d(wk, zNk
) < 1

k
. Now, for any ε > 0, choose some N such that 1

N
< ε

3
. Then,

for k, l ≥ N we have

d? (wk, wl) ≤ d? (wk, zNk
) + d? (zNk

, zNl
)︸ ︷︷ ︸

<max
{

1
k
, 1
l

} +d? (zNl
, wl) <

ε

3
+

ε

3
+

ε

3
= ε.

In other words, {wk} is a Cauchy sequence in ι(X). Without loss of generality, assume that each wk

represented as a constant sequence wk ∈ X. Since ι is an isometry, it follows that {wk} is a Cauchy
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sequence in X, and hence, represents a point w? ∈ X?. We claim that the subsequence {zNk
}

converges to w?. It is easy to see that wk → w? (Check!). But then by construction, zNk
→ w?.

Since a subsequence of the Cacuchy sequence {zn} converges to w?, the Cauchy sequence {zn}
also converges to w?. Thus, X? is a completee metric space. In particular, completion of a metric
space exists, unique up to isometry. �

Exercise 26.12

Fill in the details of the proof of the previous theorem.

Exercise 26.13

If X is a completely metrizable space, show that the completion X? is homeomorphic to X.

26.3 Subspace of a completely metrizable space

Theorem 26.14: (Gδ-subspace of a completely metrizable space)

A Gδ subspace of a completely metrizable space is again completely metrizable.

Proof
Let (X, d) be a complete metric space. Fix an open set U ⊂ X. Then, we have a continuous
function

f : U −→ (0,∞)

x 7−→ 1

d(x,X \ U)
.

Since X \ U is closed, the distance never vanishes, and thus f is indeed continuous. Let us now
define ρ : U × U → (0,∞) by

ρ(x, y) = d(x, y) + |f(x)− f(y)| , x, y ∈ U

It is easy to see that ρ is a metric on U . Moreover, ρ induces the subspace topology on U .

Let us show that (U, ρ) is complete. Say, {xn} is a Cauchy sequence in (U, ρ). Then, {xn} is
Cauchy in (X, d) as well. Also, for any ε > 0, there is some N ≥ 1 such that for n ≥ N we have

|f(xN)− f(xn)| =
∣∣∣∣ 1

d(xN , X \ U)
− 1

d(xn, X \ U)

∣∣∣∣ < ε

Then, it follows that d(xn, X \ U) is bounded away from 0. In other words, there is some δ > 0

such that
{xn} ⊂ Xδ := {x ∈ X | d(x,X \ U) ≥ δ} ⊂ U.

Now, Xδ is a closed subset, and hence, complete. Thus, we have xn → x ∈ Xδ ⊂ U . Thus, (U, ρ)
is a complete metric space.

Next, consider a Gδ-set G =
⋂∞

n=1 Un, where Un ⊂ X is open. Now, Un is completely metrizable,
and hence, so is the product U =

∏∞
n=1 Un. Insider U we have the diagonal,

∆U = {x ∈ U | xi = xj ∀i, j} .
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Note that ∆U = ∆ ∩ U , where ∆ is the diagonal in X =
∏

n≥1X. Since ∆ is closed in X , it
follows that ∆U is closed in U , and hence, completely metrizable. Now, the map

f : G −→ ∆U

x 7−→ (x, x, x, . . . )

is clearly a continuous, bijection from G to ∆, with continuous inverse (given by any projection
map). Indeed, it is the restriction of the usual diagonal map X ↪→ X . Thus, G is homeomorphic
to ∆, and hence, G is completely metrizable. �

Example 26.15: (Irrationals are completely metrizable)

Since R \ Q =
⋂

q∈Q (R \ {q}) is a Gδ-set in the complete metric space R, it follows that the
set of irrationals is a completely metrizable space.
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