Topology Course Notes (KSM1C03)
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26.1 Completely metrizable space

Definition 26.1: (Cauchy sequence)

A sequence x,, in a metric space (X, d) is called a Cauchy sequence if given € > 0, there exists
some N = N, > 1 such that d(z,, x,,) < € for all n,m > N.

Definition 26.2: (Complete metric space)

A metric space (X, d) is called complete if every Cauchy sequence in (X, d) converges.
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Exercise 26.3

Given a metric space (X, d), we have a new metric d(x,y) = min{d(z,y), 1}, which is clearly
bounded. Show that (X, d) is complete if and only if (X, d) is complete.

Example 26.4

R with the usual metric is complete, but X = (0, 00) is not complete. Indeed, {%} is a Cauchy
sequence (with the usual distance metric), which does not converge. On the other hand, consider

1

X

d(l‘,y):|l’—y|+ ) Zl'),yEX.

Check that d is a complete metric on X, inducing the same topology. Indeed, if {z, } is a Cauchy
sequence in this metric, then both {xz,} and {i} are Cauchy in R with the usual metric, which

implies @, — ¢ # 0 (as we must have -~ — 2). Thus, (0,00) is completely metrizable.

Example 26.5: (Q is not complete)

In Q, consider the following sequence

ZL’n—i——xz > 1
~on o
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T = 1, M e

This sequence converges to V2 in R, and hence, is a Cauchy sequence. Clearly, {z,,} C Q does

not converge. Thus, Q is not complete with the usual metric.




Definition 26.6: (Completely metrizable space)

A space X is called a completely metrizable space if there exists a complete metric d on X
inducing the topology.

Exercise 26.7

Check that complete metrizability is a topological property. That is, check that if X is homeo-
morphic to Y, and if Y is completely metrizable, then so is X.

Theorem 26.8: (Q is not completely metrizable)

A completely metrizable space, without any isolated point, is uncountable. Consequently, Q is
not a completely metrizable space.

Proof
Suppose (X, d) is a complete metric space, without isolated points. Choose two distinct point

xo,x1 € X. This is possible, as X has no isolated point. Get open balls Uy, U; of radius < 1 such
that
Xo € UQ, x| € Ul, mmﬁl: @

This is possible as X is T3. Next, get more distinct points xg, o1 € Up \ {zo} and x1g, 211 €
Uy \ {x1}. Again, this is possible since there are no isolated points. Get open neighborhoods of
radius < 3

ZL‘()()GUO()CU_OQCU(), ZE01€U01CU_01CUO, 1‘10€U10€U_10CU1, z11 € Uy CU_HCUl,

with
U NUp =0 =TUoN Ty

Inductively contitue getting points and open sets with disjoint closures. Thus, for any finite length
word s formed by {0, 1} we have a unique point x, contained in an open set U, of radius < ﬁ
where |s| is the length of the word. Note that this is a countable infinite collection of points (and
open sets), since the collection of all finite words formed by {0, 1} is countable infinite. Moreover,
for two distinct words s, t, if they are not sub-word of the other, then U, N U, = 0. If s C ¢, then

U, C Us.

Let us now consider s to be an infinite word formed by {0, 1}. Denote s, to be the initial word
of s of length n, and set z,, := x,, . Let us check that {z;,} is Cauchy. Let ¢ > 0 be given, and
fix N > 1 such that % < 5. Observe that for any n,m > N, we have z,, 7, € Us,, and by
construction, Uy, is a ball with radius < ﬁ = % < 5. Hence, d(xp, ) < € for all n,m > N.
Thus, {z,} is Cacuhy, which converges to a point, which we denote by x, (where s is the infinite

word).

Now, suppose s,t are two distinct infinite words of {0,1}. Then, they differ at, say, the n'"
position. But then m N m = (). This implies that z, # x,. Consequently, for each infinite
word, we have unique point in X. Since the number of infinite words are uncountable (in fact, the
cardinality is same as R), it follows that X must be uncountable.



Since Q is a (metrizable) space without any isolated point, it cannot be completely metrizable. [J

26.2 Completion of a metric space

Definition 26.9: (Isometry)

A function f: (X,dx) — (Y, dy) between two metric spaces is said to be an isometry if

dy (f(z), f(y)) = dx(z,y), Vr,y€ X.

Definition 26.10: (Completion of a metric space)

Given a metric space (X, dx), a complete metric space (Y, dy) is said to be a completion of X,

if there exists an isometry ¢ : X < Y such that the image +(X) is dense in Y.

Theorem 26.11: (Completion : Existence and uniqueness)

Every metric space admits a completion, which is unique up to an isometry.

Proof
Let us first prove the uniqueness. Suppose, we have two completions ¢+ : X < Y and // : X — Y.

We have a well-defined continuous map
g=7i o1 (X)—/(X),

from a dense subset of Y to a dense subset of Y. Note tha g is an isometry. Now, for any y € Y/,
get a sequence y,, € ((X) such that y, — y. Then, {y,} is a Cacuchy sequence, and hence, so
is {y!, == g(yn)}. Since Y is complete, there is a point ¢ € Y’ such that y/, — /. Let us define
f(y) = v'. We need to check that f is well-defined. Suppose {z,} is another sequence converging
to y. Denote, 2], = g(z,), and suppose 2z, — z' € Y'. Now,

dy(y',2") = limdy (y,,, z,) = limdy+ (g(yn), 9(2n)) = imdy (yn, 2,) = dy (y,y) = 0.

Thus, y' = 2/, proving that f is well-defined.

T

(X)) — Y

Clearly f is surjective. Let us show that f is an isometry. Let y, 2 € Y be given. Suppose y,, —
Y, zn — 2z, with {y,},{z,} C «(X). Denote, v/, = g(yn), 2, = g(z,), and then, ¢/, — ¢ =
fy), 2, — 2" = f(z). We have,

dy (f(y), f(2)) = dy' (¢, 2') = limdy (y,, 2,) = imdy (Yn, 2,) = dy (y, 2).

Now, let us consider h : Y/ — Y to be the isometry defined in the same way by using ¢ o
()71 /(X)) — o(X). Let us check that h = f~1. It is clear that on points of ¢(X), we have



hof= (ot t)o(ro (L/)il) = Id. Now, for any y € Y we have y = lim y,, for some y,, € 1(X).
Then,
(ho f)(y) = h(f (limyy,)) =limh (f (yn)) = limy, = y.

Thus, ho f = Idy. Similarly, f o h = Idy. Thus, we have Y = Y’ up to an isometry.

Let us now actually prove that a completion exists! The construction is similar to how one constructs
R from Q. Denote C(X) to be the collection of all Cauchy sequences in X. Note that given
two Cauchy sequences {z,},{y,}, we have {d(z,,y,)} is a Cauchy sequence in R, and hence,
converges. Indeed, for any € > 0, we have Ny, Ny > 1 such that d(zy, 2,,,) < § for n,m > N, and
d(Yn, Ym) < § for n,m > Ny. Set N = max { N1, No}. Then, for any n,m > N we have

€

A0, 5) — Al )| < A, 7o) + i ) < 5 + 5 =

The first inequality follows from the triangle inequality and the symmetry! Now, define an equiva-
lence relation ~ on C(X) by

{wn} ~{yn} & limd(z,, y,) =0

Denote X* = C(X)/~ to be the collection of equivalence classes. Define d* : X* x X* — X* by

d” ([zn] [yn]) = Tim d(zn, yn).

Let us check that d* is well-defined. Let {«] } and {y/} be some other representative. Then, we
have
|d(@n, yn) — d(@y,, y,)| < d(zn, 27,) + d(Yn,y,) = 0, as n— > oo.

Hence, in the limit, we have lim d(x,,y,) = limd(z/,,y, ). It is easy to see that d* is a metric on
X* (Check!). For any z € X, define «(z) to be the equivalence class of the constant sequence
{x, = x}. It follows that ¢ : X < X* is an isometry (Check!).

Let us verify that «(X) is dense in X*. Let 2* € X* is represented by some Cauchy sequence
{z,} € X. Then, for any € > 0, there is some N > 1 such that d(z,,z,,) < § for all n,m > N.
Let z = xy, and consider the point ¢(z) formed by the constant sequence. Then,

d*(z*,1(z)) = limd(x,, zn) < g <€

Since € > 0 and z* is arbitrary, it follows that (X ) is dense in X™.

Finally, we check that d* is a complete metric. Let {z,} be a Cauchy sequence in X*. For k > 1,
there is an N}, > 1 such that d(z,,z,) < % for all n,m > N. For each N,, we have some
wy, € 1(X) such that d(wy, zn,) < 7. Now, for any € > 0, choose some N such that 1 < £. Then,
for k,l > N we have

€ € €
d (wk, 'LU[) < d* (wk, ZNk) + d* (ZNk, ZNl) +d* (le,wl) < 5 + g -+ g = €.
—_—————

<max{%,%

In other words, {wy} is a Cauchy sequence in +(X). Without loss of generality, assume that each wy,
represented as a constant sequence wy, € X. Since ¢ is an isometry, it follows that {wy} is a Cauchy



sequence in X, and hence, represents a point w* € X*. We claim that the subsequence {zy, }
converges to w*. It is easy to see that wj, — w* (Check!). But then by construction, zy, — w*.
Since a subsequence of the Cacuchy sequence {z,} converges to w*, the Cauchy sequence {z,}
also converges to w*. Thus, X* is a completee metric space. In particular, completion of a metric

space exists, unique up to isometry. O

Exercise 26.12

Fill in the details of the proof of the previous theorem.

Exercise 26.13

If X is a completely metrizable space, show that the completion X* is homeomorphic to X.

26.3 Subspace of a completely metrizable space

Theorem 26.14: (G;s-subspace of a completely metrizable space)

A G subspace of a completely metrizable space is again completely metrizable.

Proof
Let (X,d) be a complete metric space. Fix an open set U C X. Then, we have a continuous
function
f:U— (0,00)
1
— .
T Az, X\ U)

Since X \ U is closed, the distance never vanishes, and thus f is indeed continuous. Let us now
define p: U x U — (0,00) by

p(r,y) =d(x,y) +|f(x) = f(y), =yelU

It is easy to see that p is a metric on U. Moreover, p induces the subspace topology on U.

Let us show that (U, p) is complete. Say, {z,} is a Cauchy sequence in (U,p). Then, {z,} is
Cauchy in (X, d) as well. Also, for any € > 0, there is some N > 1 such that for n > N we have

1 1
@) = £ = | g5~ T | <€

Then, it follows that d(x,, X \ U) is bounded away from 0. In other words, there is some § > 0
such that

{zp,} C Xs={xe X |dz,X\U)>0} CU.

Now, X5 is a closed subset, and hence, complete. Thus, we have x,, = = € X5 C U. Thus, (U, p)
is a complete metric space.

Next, consider a Gs-set G = ﬂzo:l U,, where U,, C X is open. Now, U, is completely metrizable,
and hence, so is the product U = HZO:1 U,. Insider U we have the diagonal,

AUI{JTEZ/[|.T1ISC]\V/Z,]}



Note that Ay = A NU, where A is the diagonal in X = Hn21X. Since A is closed in X, it
follows that Ay is closed in U/, and hence, completely metrizable. Now, the map

f:G—)Au
x> (z,x,2,...)

is clearly a continuous, bijection from G to A, with continuous inverse (given by any projection
map). Indeed, it is the restriction of the usual diagonal map X — X. Thus, G is homeomorphic
to A, and hence, GG is completely metrizable. O

Example 26.15: (Irrationals are completely metrizable)

Since R\ Q =, cq (R\ {q}) is a Gs-set in the complete metric space R, it follows that the

set of irrationals is a completely metrizable space.




