

# Topology Course Notes (KSM1C03)

## Day 25 : 5<sup>th</sup> November, 2025

Lebesgue number property -- Tietze extension

### 25.1 Lebesgue number property

#### Definition 25.1: (Lebesgue number property)

A metric space  $(X, d)$  is said to have the *Lebesgue number property* if given any open cover  $\{U_\alpha\}$ , there is a number  $\delta > 0$  (known as the *Lebesgue number of the covering*) such that for any set  $A \subset X$  with  $\text{Diam}A < \delta$ , we have  $A \subset U_\alpha$  for some  $\alpha$ .

#### Theorem 25.2: (Lebesgue number property and uniform continuity)

Let  $(X, d)$  be a metric space. Suppose every continuous map  $f : X \rightarrow \mathbb{R}$  is uniformly continuous. Then,  $X$  has the Lebesgue number property

#### Proof

Suppose not. Then there exists an open cover  $\mathcal{U} = \{U_\alpha\}$  without a Lebesgue number. Consequently, for each  $n \geq 1$ , there is a point  $x_n$  such that the set  $A_n = B_d(x_n, \frac{1}{n})$  is *not contained in any of the  $U_\alpha$* , i.e.,  $U_\alpha \setminus A_n \neq \emptyset$  for all  $\alpha$ . Choose some  $y_n \in U_\alpha \setminus A_n$  with  $y_n \neq x_n$ . Note that  $A_n$  is not singleton, otherwise  $A_n \subset U_\alpha$  for some  $\alpha$ , and so,  $y_n$  can always be chosen.

Let us observe that  $\{x_n\}$  and  $\{y_n\}$  has no convergent subsequence. If possible, suppose  $x_{n_k} \rightarrow x$ . Then,  $x \in U_\alpha$  for some  $\alpha$ . Now, there is some  $\epsilon > 0$  such that  $x \in B_d(x, 2\epsilon) \subset U_\alpha$ . Since  $x_{n_k} \rightarrow x$ , there exists some  $N \geq 1$  such that  $x_{n_k} \in B_d(x, \epsilon) \subset B_d(x, 2\epsilon) \subset U_\alpha$  for all  $n_k \geq N$ . But then for some  $n_k$  sufficiently large, it follows from the triangle inequality that  $A_{n_k} \subset B_d(x, 2\epsilon) \subset U_\alpha$ , a contradiction. On the other hand, if  $y_{n_k} \rightarrow y$ , then it is clear that the subsequence  $x_{n_k} \rightarrow y$ , which is a contradiction. Thus, none of the sequences admit a convergent subsequence.

Next, we construct two disjoint closed sets from the two sequences. Set  $x_{n_1} = x_1, y_{n_1} = y_1$ . Clearly  $\{x_{n_1}\} \cap \{y_{n_1}\} = \emptyset$ . Choose  $n_2 > n_1$ , such that  $x_{n_2} \neq x_{n_1}, y_{n_2} \neq y_{n_1}$ , and  $\{x_{n_1}, x_{n_2}\} \cap \{y_{n_1}, y_{n_2}\}$ . This is possible, since otherwise the sequence will have to be eventually constant. Inductively, assume that we have constructed  $\{x_{n_1}, \dots, x_{n_k}\}$  and  $\{y_{n_1}, \dots, y_{n_k}\}$ , which are disjoint sets of distinct points, with  $n_1 < n_2 < \dots < n_k$ . Now, each of the points  $\{x_{n_1}, \dots, x_{n_k}, y_{n_1}, \dots, y_{n_k}\}$

can only repeat finitely many times in  $\{x_n\}$  and in  $\{y_n\}$  (since otherwise there will be a convergent subsequence). Hence, we can choose  $x_{n_{k+1}}, y_{n_{k+1}}$  at the induction step, so that  $\{x_{n_1}, \dots, x_{n_{k+1}}\}, \{y_{n_1}, \dots, y_{n_{k+1}}\}$  are disjoint set of distinct points, with  $n_{k+1} > n_k$ . Set  $A := \{x_{n_i}\}$  and  $B := \{y_{n_i}\}$ . By construction,  $A \cap B = \emptyset$ . Also,  $A, B$  are closed, since there are no (sub)sequential limits, and thus,  $A, B$  contains all of their limit points (which are none).

Now,  $(X, d)$  is a  $T_4$ -space. Hence, there is a continuous function  $f : X \rightarrow \mathbb{R}$  with  $f(A) = 0$  and  $f(B) = 1$ . We claim that  $f$  is not uniformly continuous. Indeed, for  $\epsilon = \frac{1}{2}$  fixed, consider any  $\delta > 0$  small. We must have some  $n_k$  with  $\frac{1}{n_k} < \delta$ . Now,  $d(x_{n_k}, y_{n_k}) < \delta$ , but  $|f(x_{n_k}) - f(y_{n_k})| = |0 - 1| = 1 > \epsilon$ . This contradicts the hypothesis. Hence,  $X$  has the Lebesgue number property.  $\square$

### Exercise 25.3

Show that a metric space  $X$  has the Lebesgue number property if and only for any metric space  $Y$  any continuous map  $f : X \rightarrow Y$  is uniformly continuous.

## 25.2 Tietze extension theorem

### Theorem 25.4: (Tietze Extension Theorem)

A space  $X$  is normal if and only if given any closed set  $A \subset X$  and continuous map  $f : A \rightarrow \mathbb{R}$ , there is an extension  $\tilde{f} : X \rightarrow \mathbb{R}$ , i.e, there is a continuous map  $\tilde{f} : X \rightarrow \mathbb{R}$  such that  $\tilde{f}(a) = f(a)$  for all  $a \in A$ .

#### Proof

Suppose  $X$  is normal. Firstly, let us consider a map  $f : A \rightarrow [-1, 1]$ . Define

$$A_1 := \left\{ x \in A \mid f(x) \geq \frac{1}{3} \right\} = f^{-1} \left[ \frac{1}{3}, 1 \right], \quad B_1 := \left\{ x \in A \mid f(x) \leq -\frac{1}{3} \right\} = f^{-1} \left[ -1, -\frac{1}{3} \right].$$

Clearly  $A_1, B_1$  are disjoint closed sets of  $A$ , and hence, closed in  $X$ . As  $X$  is normal, by the Urysohn's lemma, we have continuous function  $f_1 : X \rightarrow \left[ -\frac{1}{3}, \frac{1}{3} \right]$  such that

$$f_1(A_1) = \frac{1}{3}, \quad f_1(B_1) = -\frac{1}{3}.$$

Now, for any  $x \in A$  we have 3 cases.

- a)  $x \in A_1 \Rightarrow f_1(x) = \frac{1}{3}, f(x) \in \left[ \frac{1}{3}, 1 \right] \Rightarrow |f(x) - f_1(x)| \leq \frac{2}{3}$ .
- b)  $x \in B_1 \Rightarrow f_1(x) = -\frac{1}{3}, f(x) \in \left[ -1, -\frac{1}{3} \right] \Rightarrow |f(x) - f_1(x)| \leq \frac{2}{3}$ .
- c)  $x \in A \setminus (A_1 \cup B_1) \Rightarrow f_1(x), f(x) \in \left[ -\frac{1}{3}, \frac{1}{3} \right] \Rightarrow |f(x) - f_1(x)| \leq \frac{2}{3}$ .

In other words, we have a continuous map  $g_1 := f - f_1 : A \rightarrow \left[ -\frac{2}{3}, \frac{2}{3} \right]$ . We repeat the process for  $g_1$  instead of  $f$ . That is, we define  $A_2 := g_1^{-1} \left[ -\frac{2}{9}, -\frac{2}{9} \right]$  and  $B_2 := g_1^{-1} \left[ \frac{2}{9}, \frac{2}{9} \right]$ . We get a function  $f_2 : X \rightarrow \left[ -\frac{2}{9}, \frac{2}{9} \right]$ , such that  $f_2(A_2) = \frac{2}{9}, f_2(B_2) = -\frac{2}{9}$ . Clearly,  $|g_1 - f_2| \leq \left( \frac{2}{3} \right)^2$  on points of  $A$ . Define,  $g_2 := g_1 - f_2 = f - f_1 - f_2$ , clearly,  $g_2 : A \rightarrow \left[ -\frac{2}{9}, \frac{2}{9} \right]$ . Inductively, we define  $f_n : X \rightarrow \left[ -\frac{2}{3^n}, \frac{2}{3^n} \right]$ , such that

$$\left| f - \sum_{i=1}^n f_i \right| \leq \left( \frac{2}{3} \right)^n, \quad \text{on points of } A.$$

Let us define  $F(x) = \sum_{i=1}^{\infty} f_i(x)$ . Observe that for any fixed  $x \in X$ , the series sum converges, since the partial sums

$$\left| \sum_{i=1}^n f_i(x) \right| \leq \sum_{i=1}^n \frac{2}{3^i}$$

are dominated by the geometric series. Moreover, for  $a \in A$  we have,

$$\left| f(a) - \sum_{i=1}^n f_i(a) \right| \leq \left( \frac{2}{3} \right)^n \rightarrow 0 \Rightarrow F(a) = f(a).$$

In other words,  $F$  extends  $f$ . Let us show that  $F$  is continuous.

Fix some  $x \in X$  and  $\epsilon > 0$ . Then, pick  $N \geq 1$  such that  $\sum_{n>N} \left( \frac{2}{3} \right)^n < \frac{\epsilon}{4}$ . For  $i = 1, \dots, N$ , using the continuity of  $f_i$ , pick open neighborhoods  $x \in U_i \subset X$  such that

$$y \in U_i \Rightarrow |f_i(y) - f_i(x)| < \frac{\epsilon}{2N}.$$

Set  $U = \bigcap_{i=1}^N U_i$ , which is an open neighborhood of  $x$ . Then, for any  $y \in U$  we have

$$\begin{aligned} |F(y) - F(x)| &= \left| \sum_{i=1}^{\infty} f_i(y) - f_i(x) \right| \\ &\leq \sum_{i=1}^N |f_i(y) - f_i(x)| + \sum_{i>N} |f_i(y) - f_i(x)| \\ &< N \cdot \frac{\epsilon}{2N} + 2 \sum_{i>N} \left( \frac{2}{3} \right)^i \\ &< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon. \end{aligned}$$

Consequently,  $F$  is continuous at  $x \in X$ . Since  $x$  was arbitrary, we have the continuous extension  $F : X \rightarrow [-1, 1]$  of  $f : A \rightarrow [-1, 1]$ .

Now, let us consider the general case. If  $f : A \rightarrow [a, b]$  was given, we can use any homeomorphism  $[a, b] \rightarrow [-1, 1]$  and its inverse, to get an extension  $X \rightarrow [a, b]$ . In case  $f : A \rightarrow \mathbb{R}$  is given, we can use a homeomorphism  $\mathbb{R} \rightarrow (-1, 1)$  to assume that the map is  $f : A \rightarrow (-1, 1)$ . Then, we end up with an extension  $F_0 : X \rightarrow [-1, 1]$ . Consider the set  $A_0 = \{x \in X \mid F_0(x) \in \{\pm 1\}\} = F_0^{-1}(\{\pm 1\})$ , which is clearly a closed set, disjoint from  $A$ . Then, by Urysohn's lemma, we have continuous map  $\phi : X \rightarrow [0, 1]$  such that  $\phi(A_0) = 0$  and  $\phi(A) = 1$ . Consider the function  $F = \phi F_0$ . Then,  $F$  is continuous, and clearly,  $F(a) = F_0(a) = f(a)$  for any  $a \in A$ . Observe that  $F : X \rightarrow (-1, 1)$ . This concludes one direction of the proof.

Conversely, assume that given any closed  $A \subset X$ , and any continuous function  $f : A \rightarrow \mathbb{R}$ , there is a continuous extension  $\tilde{f} : X \rightarrow \mathbb{R}$ . Let  $A, B \subset X$  be closed sets with  $A \cap B = \emptyset$ . Then, on the closed set  $C = A \cup B$  consider the function  $f_0 : C \rightarrow [0, 1]$  given by  $f_0(a) = 0$  for all  $a \in A$ , and  $f_0(b) = 1$  for all  $b \in B$ . Clearly it is continuous. Then, we have an extension  $f : X \rightarrow \mathbb{R}$  such that  $f(A) = 0$  and  $f(B) = 1$ . By modifying the range of  $f$ , we can get the function  $X \rightarrow [0, 1]$  as well. Thus,  $X$  is a normal space.  $\square$

### Exercise 25.5

Assuming Tietze extension theorem, prove the Urysohn's lemma!