
Topology Course Notes (KSM1C03)

Day 25 : 5th November, 2025
Lebesgue number property -- Tietze extension

25.1 Lebesgue number property

Definition 25.1: (Lebesgue number property)
A metric space (X, d) is said to have the Lebsgue number property if given any open cover
{Uα}, there is a number δ > 0 (known as the Lebesgue number of the covering) such that for
any set A ⊂ X with DiamA < δ, we have A ⊂ Uα for some α.

Theorem 25.2: (Lebesgue number property and uniform continuity)

Let (X, d) be a metric space. Suppose every continuous map f : X → R is uniformly continuous.
Then, X has the Lebesgue number property

Proof
Suppose not. Then there exists an open cover U = {Uα} without a Lebesgue number. Conse-
quently, for each n ≥ 1, there is a point xn such that the set An = Bd

(
xn,

1
n

)
is not contained in

any of the Uα, i.e, Uα \ An 6= ∅ for all α. Choose some yn ∈ An with yn 6= xn. Note that An is
not singleton, otherwise An ⊂ Uα for some α, and so, yn can always be chosen.

Let us observe that {xn} and {yn} has no convergent subsequence. If possible, suppose xnk
→ x.

Then, x ∈ Uα for some α. Now, there is some ε > 0 such that x ∈ Bd (x, 2ε) ⊂ Uα. Since
xnk

→ x, there exists some N ≥ 1 such that xnk
∈ Bd (x, ε) ⊂ Bd (x, 2ε) ⊂ Uα for all

nk ≥ N . But then for some nk sufficiently large, it follows from the triangle inequality that
Ank

⊂ Bd (X, 2ε) ⊂ Uα, a contradiction. On the other hand, if ynk
→ y, then it is clear that the

subsequence xnk
→ y, which is a contradiction. Thus, none of the sequences admit a convergent

subsequence.

Next, we construct two disjoint closed sets from the two sequences. Set xn1 = x1, yn1 = y1. Clearly
{xn1} ∩ {xn1} = ∅. Choose n2 > n1, such that xn2 6= xn1 , yn2 6= yn1 , and {xn1 , xn2} ∩ {yn1 , yn2}.
This is possible, since otherwise the sequence will have to be eventually constant. Inductively,
assume that we have constructed {xn1 , . . . , xnk

} and {yn1 , . . . , ynk
}, which are disjoint sets of

distinct points, with n1 < n2 < · · · < nk. Now, each of the points {xn1 , . . . , xnk
, yn1 , . . . , ynk

}
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can only repeat finitely many times in {xn} and in {yn} (since otherwise there will be a
convergent subsequence). Hence, we can choose xnk+1

, ynk+1
at the induction step, so that{

xn1 , . . . , xnk+1

}
,
{
yn1 , . . . , ynk+1

}
are disjoint set of distinct points, with nk+1 > nk. Set

A := {xni
} and B := {yni

}. By construction, A ∩ B = ∅. Also, A,B are closed, since there are
no (sub)sequential limits, and thus, A,B contains all of their limit points (which are none).

Now, (X, d) is a T4-space. Hence, there is a continuous function f : X → R with f(A) = 0 and
f(B) = 1. We claim that f is not uniformly continuous. Indeed, for ε = 1

2
fixed, consider any

δ > 0 small. We must have some nk with 1
nk

< δ. Now, d(xnk
, ynk

) < δ, but |f(xnk
)− f(ynk

)| =
|0− 1| = 1 > ε. This contradicts the hypothesis. Hence, X has the Lebesgue number property.�

Exercise 25.3

Show that a metric space X has the Lebesgue number property if and only for any metric space
Y any continuous map f : X → Y is uniformly continuous.

25.2 Tietze extension theorem
Theorem 25.4: (Tietze Extension Theorem)

A space X is normal if and only if given any closed set A ⊂ X and continuous map f : A → R,
there is an extension f̃ : X → R, i.e, there is a continuous map f̃ : X → R such that
f̃(a) = f(a) for all a ∈ A.

Proof
Suppose X is normal. Firstly, let us consider a map f : A → [−1, 1]. Define

A1 :=:=

{
x ∈ A

∣∣∣∣ f(x) ≥ 1

3

}
= f−1

[
1

3
, 1

]
, B1 :=

{
x ∈ A

∣∣∣∣ f(x) ≤ −1

3

}
= f−1

[
−1,−1

3

]
.

Clearly A1, B1 are disjoint closed sets of A, and hence, closed in X. As X is normal, by the
Urysohn’s lemma, we have continuous function f1 : X →

[
−1

3
, 1
3

]
such that

f1(A1) =
1

3
, f1(B1) = −1

3
.

Now, for any x ∈ A we have 3 cases.

a) x ∈ A1 ⇒ f1(x) =
1
3
, f(x) ∈

[
1
3
, 1
]
⇒ |f(x)− f1(x)| ≤ 2

3
.

b) x ∈ B1 ⇒ f1(x) = −1
3
, f(x) ∈

[
−1,−1

3

]
⇒ |f(x)− f1(x)| ≤ 2

3
.

c) x ∈ A \ A1 ∪B1 ⇒ f1(x), f(x) ∈
[
−1

3
, 1
3

]
⇒ |f(x)− f1(x)| ≤ 2

3
.

In other words, we have a continuous map g1 := f − f1 : A →
[
−2

3
, 2
3

]
. We repeat the process for

g1 instead of f . That is, we define A2 := g−1
1

[
−2

3
,−2

9

]
and B2 := g−1

1

[
2
9
, 2
3

]
. We get a function

f2 : X →
[
−2

9
, 2
9

]
, such that f2(A2) = 2

9
, f2(B2) = −2

9
. Clearly, |g1 − f2| ≤

(
2
3

)2 on points
of A. Define, g2 := g1 − f2 = f − f1 − f2, clearly, g2 : A →

[
−2

9
, 2
9

]
. Inductively, we define

fn : X →
[
− 2

3n
, 2
3n

]
, such that∣∣∣∣∣f −

n∑
i=1

fi

∣∣∣∣∣ ≤
(
2

3

)n

, on points of A.
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Let us define F (x) =
∑∞

i=1 fi(x). Observe that for any fixed x ∈ X, the series sum converges,
since the partial sums ∣∣∣∣∣

n∑
i=1

fi(x)

∣∣∣∣∣ ≤
n∑

i=1

2

3i

are dominated by the geometric series. Moreover, for a ∈ A we have,∣∣∣∣∣f(a)−
n∑

i=1

fi(a)

∣∣∣∣∣ ≤
(
2

3

)n

→ 0 ⇒ F (a) = f(a).

In other words, F extends f . Let us show that F is continuous.

Fix some x ∈ X and ε > 0. Then, pick N ≥ 1 such that
∑

n>N

(
2
3

)n
< ε

4
. For i = 1, . . . , N , using

the continuity of fi, pick open neighborhoods x ∈ Ui ⊂ X such that

y ∈ Ui ⇒ |fi(y)− fi(x)| <
ε

2N
.

Set U =
⋂N

i=1 Ui, which is an open neighborhood of x. Then, for any y ∈ U we have

|F (y)− F (x)| =

∣∣∣∣∣
∞∑
i=1

fi(y)− fi(x)

∣∣∣∣∣
≤

N∑
i=1

|fi(y)− fi(x)|+
∑
i>N

|fi(y)− fi(x)|

< N · ε

2N
+ 2

∑
i>N

(
2

3

)i

<
ε

2
+

ε

2
= ε.

Consequently, F is continuous at x ∈ X. Since x was arbitrary, we have the continuous extension
F : X → [−1, 1] of f : A → [−1, 1].

Now, let us consider the general case. If f : A → [a, b] was given, we can use any home-
omorphism [a, b] → [−1, 1] and its inverse, to get an extension X → [a, b]. In case
f : A → R is given, we can use a homeomorphism R → (−1, 1) to assume that the map
is f : A → (−1, 1). Then, we end up with an extension F0 : X → [−1, 1]. Consider the set
A0 = {x ∈ X | F0(x) ∈ {±1}} = F−1

0 ({±1}), which is clearly a closed set, disjoint from A. Then,
by Urysohn’s lemma, we have continuous map φ : X → [0, 1] such that φ(A0) = 0 and φ(A) = 1.
Consider the function F = φF0. Then, F is continuous, and clearly, F (a) = F0(a) = f(a) for any
a ∈ A. Observe that F : X → (−1, 1). This concludes one direction of the proof.

Conversely, assume that given any closed A ⊂ X, and any continuous function f : A → R, there
is a continuous extension f̃ : X → R. Let A,B ⊂ X be closed sets with A ∩ B = ∅. Then, on
the closed set C = A ∪ B consider the function f0 : C → [0, 1] given by f0(a) = 0 for all a ∈ A,
and f0(b) = 1 for all b ∈ B. Clearly it is continuous. Then, we have an extension f : X → R such
that f(A) = 0 and f(B) = 1. By modifying the range of f , we can get the function X → [0, 1]

as well. Thus, X is a normal space. �
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Exercise 25.5

Assuming Tietze extension theorem, prove the Urysohn’s lemma!
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