

Class Test 7

4th November, 2025

Name: _____

Time: 40 min

Marks: ____/10

Q1. On \mathbb{R}^2 , consider \mathcal{B} to be the collection of open discs (in the usual topology), with their horizontal diameters (except the center) removed, which is a basis for a topology, say, \mathcal{T} on \mathbb{R}^2 . Explicitly, a basic open set with center (x_0, y_0) and radius r is of the form

$$\{(x, y) \mid (x - x_0)^2 + (y - y_0)^2 < r^2\} \setminus \{(x, y_0) \mid 0 < |x - x_0| < r\}.$$

The space $X = (\mathbb{R}^2, \mathcal{T})$ is called the *deleted diameter topology*.

[$2 \times 5 = 10$]

- a) Show that X is strictly finer than the usual topology on \mathbb{R}^2 .
- b) Show that X is functionally Hausdorff.
- c) Show that X is not T_3 .
- d) Show that $Y = \mathbb{R} \times \{0\} \subset X$ is a closed discrete subspace.
- e) Show that X is not Lindelöf.