Topology Course Notes (KSM1C03)

Day 24 : 31%* October, 2025

product of normal space

24.1 Separation axioms : More properties and counterexamples

Proposition 24.1: (T # T; : The uncountable ordinal space S = [0, ())

The uncountable ordinal space [0, (2] is a T5-space, which is not T§.

Proof
Since [0,9] is a linearly ordered space, we have [0,Q] is T5. Let us show that it is not Gj.

Consider {2}, which is closed. If possible, suppose {Q2} = [, -, O, for some open neighborhoods
Q € 0, C [0,9]. Then, there is some «,, € [0,9) such that Q € (an, Q] C O,. Since any
countable collection of [0, §2) is bounded above, we have some 3 € [0,€2) such that 8 > «,, for all
n > 1. But then, {Q} € (5,9] C[),>1 On. Thus, {Q2} fails to be a Gs-set. Hence, [0, €] is not
Ts. 0

Remark 24.2

It is fact that the first uncountable ordinal Sq = [0, 2) is also not a Gs-space, and hence, is not a
Ts-space. Clearly, Sq, being a linearly ordered space, is T5. Moreover, any ordinal space which is

also a Gs-space, is necessarily countable. Thus, all uncountable ordinal spaces are T5 but not 7.

Proposition 24.3: (Product of T} is not Tj)

The product space X = [0,9Q) x [0,Q] of two T spaces is not T5. In fact, the product is not
even normal. Thus, product of Ty-spaces need not be T} either.

Proof
Since linearly ordered spaces are T, we have both [0,2) and [0, 2] are T5. Let us show that it fails

to be normal. Consider
A=10,Q)x{Q}, B:={(o,a)|lac(0,Q)}.

Note that A is the intersection of the closed set [0, 2] x {Q} C [0,9] x [0,€] with the subspace
[0,Q) x [0,9]. Similarly, B is the intersection of the diagonal A = {(«a, @) | a € [0,9Q]}, which
is closed in [0,Q] x [0, as the space [0,(] is T3, with the subspace X. Clearly, AN B = (. If
possible, suppose there are open sets U,V C X suchthat ACU, BCVand UNV = 0.
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For each 0 < a < , consider any a@ < < . If for all such 5, we have (o, ) € V, then
the limit (o, Q) will be a limit point of V. But this contradicts (a,Q2) € U and UNV = 0.
Thus, there is some o < < Q such that (o, 3) & Q. Let S(a) be the least such element,
which exists as [0, §2) is well-ordered. Let us now construct a sequence {a,,} C [0,€2) as follows.
Start with oy = 0. Then, set a,,.1 = [ () for all n > 1. By construction, oy < ag < ....
Let & € [0,92) be the least upper bound of the sequence, and we have 6 = lim, a,,. Then,
lim,, (a,, B(an)) = limy, (o, ant1) = (6,0) € B C V. But by construction, (., 8(ay,)) ¢ V for
all n > 1. This is a contradiction. Hence, A, B cannot be separated by open neighborhoods. Thus,
X is not normal, and hence, not T5. O

Proposition 24.4: (Image of T3% need not be TS%

Continuous image of a T3%-space need not be T3%.

Proof
Recall the deleted Tychonoff plank X = [0,€] x [0,w] \ {(Q,w)}. In X, we have seen two closed

sets A =[0,9Q2) x {w} and B = {Q} x [0,w), which are disjoint, but cannot be separated by open
sets. Consider the quotient map ¢ : X — X/A. In X/A, observe that ¢(B) is a closed set, since
q¢ '(q(B)) = B is closed. Also, the point ay = q(A) is not in ¢(B). If possible, suppose there are
open sets U,V C X /A suchthatag € UyACVand UNV = 0. Then, A C ¢ *(U),B C ¢ *(V)
are open sets such that ¢ 1 (U)Ng (V) = ¢ }(UNV) = 0. This is a contradiction. Hence, X/A
is not even regular, and in particular, not completely regular. 0

24.2 Urysohn’s metrization theorem

Proposition 24.5

Let X be a copletely regular space, and B be a fixed basis of X. Assume B is infinite. Then,
there exists a family F of continuous functions X — [0, 1], with |F| < |B|, such that given any
closed A C X and z € X \ A, there is a function f € F such that f(z) =0 and f(A) = 1.

Proof
Given any pair of sets (U,V) € B x B, call it good if there is a continuous map f : X — [0, 1]

such that f(U) = 0 and f(X \ V) = 1. Denote by G the collection of good pairs. Clearly,



|G| < |B x B| = |B|. For each good pair (U, V) € G, choose a function fi;y/, and denote the
family F = {fuv | (U,V) € B}. Again, |F| = |G| < |B|. We claim that F separates any closed
set and a disjoint point.

Let A C X be a closed set, and © € X \ A be a point. Get a basic open set V' € B such that
r € V. .C X\ A. By complete regularity, there is a continuous map f : X — [0, 1] such that
f(@) =0and f(X\V) =1 Now, z € f71[0,3) is an open neighborhood, so there is a basic
open set U € B such that z € U C f~! [0, 1). Construct the function g : X — [0, 1] by

). fly) >

N

By pasting lemma, ¢ is continuous. Moreover, g(U) = 0,g(X \ V) = 1. Thus, (U,V) € G is
a good pair. But then we have a fyy € F. Clearly, fyy separates x and A, since x € U and
VCX\A=ACX\V. O

Corollary 24.6

Let X be a second countable, completely regular space. Then there is a countable collection F
of functions such that any closed set A C X and any point z € X \ A can be separated by
some function f € F.

Theorem 24.7: (Tychonoff embedding theorem)

Let X be a Tychonoff space (i.e, T3%), and B be a fixed basis. Then, X is homeomorphic to a
subspace of the cube C = [0, 1]/8

Proof
Get a family F of functions, with |F| < |B|. We prove an embedding X < [0, 1]/, which is
sufficient. Indeed, we have a map § : X — [0, 1]71 defined by

T (§(x) = f(z), feF, wzeX

By the properties of the product topology, § is continuous. As the space X is T}, it follows that
JF separates points, and consequently, § is injective. We show that § is open onto its image.

Let O C X be open, and y € §(O). Pick x € F'(y) N O. Since F separates points and closed
sets, there is some f € F such that f(z) = 0 and f(X \ O) = 1. Consider W = 7;%([0,1)),
which is open in the cube. Moreover, W N F(X) C F(O). Indeed, for any z € Z, with F(z) € W,
we must have f(z) # 1 = 2 ¢ X\ O = z € O, and thus, §(z) € F(O). In particular,
flz)=0=y=Fx) e W =yecWnNFX)C FO). As y was arbitrary, we have F(O) is open.
But then § is a homeomorphism onto its image. In particular, X can be identified as a subspace of
[0, 1]F11f | F| < B, then one can canonically see [0, 1]71 as a subspace of [0, 1]/5!. This concludes
the proof. O



Theorem 24.8: (Urysohn’s metrization theorem)

Any T3, second countable space is metrizable.

Proof

Since X is second countable, it is Lindelof. A regular, Lindel6f space is normal. Thus, X is T},
and hence, T3%. But then by the Tychonoff embedding theorem, X can be identified as a subspace
of [0,1], where w = |N|. Now, [0, 1]“ is a metric space (being the countable product of metric
spaces). Hence, X is a metric space. 0



