
Topology Course Notes (KSM1C03)

Day 24 : 31st October, 2025
product of normal space

24.1 Separation axioms : More properties and counterexamples

Proposition 24.1: (T5 6⇒ T6 : The uncountable ordinal space SΩ = [0,Ω])

The uncountable ordinal space [0,Ω] is a T5-space, which is not T6.

Proof
Since [0,Ω] is a linearly ordered space, we have [0,Ω] is T5. Let us show that it is not Gδ.
Consider {Ω}, which is closed. If possible, suppose {Ω} =

⋂
n≥1On for some open neighborhoods

Ω ∈ On ⊂ [0,Ω]. Then, there is some αn ∈ [0,Ω) such that Ω ∈ (αn,Ω] ⊂ On. Since any
countable collection of [0,Ω) is bounded above, we have some β ∈ [0,Ω) such that β > αn for all
n ≥ 1. But then, {Ω} ( (β,Ω] ⊂

⋂
n≥1On. Thus, {Ω} fails to be a Gδ-set. Hence, [0,Ω] is not

T6. �

Remark 24.2

It is fact that the first uncountable ordinal SΩ = [0,Ω) is also not a Gδ-space, and hence, is not a
T6-space. Clearly, SΩ, being a linearly ordered space, is T5. Moreover, any ordinal space which is
also a Gδ-space, is necessarily countable. Thus, all uncountable ordinal spaces are T5 but not T6.

Proposition 24.3: (Product of T5 is not T5)

The product space X = [0,Ω) × [0,Ω] of two T5 spaces is not T5. In fact, the product is not
even normal. Thus, product of T4-spaces need not be T4 either.

Proof
Since linearly ordered spaces are T5, we have both [0,Ω) and [0,Ω] are T5. Let us show that it fails
to be normal. Consider

A := [0,Ω)× {Ω} , B := {(α, α) | α ∈ [0,Ω)} .

Note that A is the intersection of the closed set [0,Ω]× {Ω} ⊂ [0,Ω]× [0,Ω] with the subspace
[0,Ω) × [0,Ω]. Similarly, B is the intersection of the diagonal ∆ = {(α, α) | α ∈ [0,Ω]}, which
is closed in [0,Ω] × [0,Ω] as the space [0,Ω] is T2, with the subspace X. Clearly, A ∩ B = ∅. If
possible, suppose there are open sets U, V ⊂ X such that A ⊂ U,B ⊂ V and U ∩ V = ∅.
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For each 0 ≤ α < Ω, consider any α < β < Ω. If for all such β, we have (α, β) ∈ V , then
the limit (α,Ω) will be a limit point of V . But this contradicts (α,Ω) ∈ U and U ∩ V = ∅.
Thus, there is some α < β < Ω such that (α, β) 6∈ Ω. Let β(α) be the least such element,
which exists as [0,Ω) is well-ordered. Let us now construct a sequence {αn} ⊂ [0,Ω) as follows.
Start with α1 = 0. Then, set αn+1 = β (αn) for all n ≥ 1. By construction, α1 < α2 < . . . .
Let θ ∈ [0,Ω) be the least upper bound of the sequence, and we have θ = limn αn. Then,
limn (αn, β(αn)) = limn (αn, αn+1) = (θ, θ) ∈ B ⊂ V . But by construction, (αn, β(αn)) 6∈ V for
all n ≥ 1. This is a contradiction. Hence, A,B cannot be separated by open neighborhoods. Thus,
X is not normal, and hence, not T5. �

Proposition 24.4: (Image of T3 1
2

need not be T3 1
2

)

Continuous image of a T3 1
2
-space need not be T3 1

2
.

Proof
Recall the deleted Tychonoff plank X = [0,Ω]× [0, ω] \ {(Ω, ω)}. In X, we have seen two closed
sets A = [0,Ω)×{ω} and B = {Ω}× [0, ω), which are disjoint, but cannot be separated by open
sets. Consider the quotient map q : X → X/A. In X/A, observe that q(B) is a closed set, since
q−1(q(B)) = B is closed. Also, the point a0 = q(A) is not in q(B). If possible, suppose there are
open sets U, V ⊂ X/A such that a0 ∈ U,A ⊂ V and U ∩V = ∅. Then, A ⊂ q−1(U), B ⊂ q−1(V )

are open sets such that q−1(U)∩ q−1(V ) = q−1(U ∩ V ) = ∅. This is a contradiction. Hence, X/A

is not even regular, and in particular, not completely regular. �

24.2 Urysohn’s metrization theorem

Proposition 24.5

Let X be a copletely regular space, and B be a fixed basis of X. Assume B is infinite. Then,
there exists a family F of continuous functions X → [0, 1], with |F| ≤ |B|, such that given any
closed A ⊂ X and x ∈ X \ A, there is a function f ∈ F such that f(x) = 0 and f(A) = 1.

Proof
Given any pair of sets (U, V ) ∈ B × B, call it good if there is a continuous map f : X → [0, 1]

such that f(U) = 0 and f(X \ V ) = 1. Denote by G the collection of good pairs. Clearly,
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|G| ≤ |B × B| = |B|. For each good pair (U, V ) ∈ G, choose a function fU,V , and denote the
family F = {fU,V | (U, V ) ∈ B}. Again, |F| = |G| ≤ |B|. We claim that F separates any closed
set and a disjoint point.

Let A ⊂ X be a closed set, and x ∈ X \ A be a point. Get a basic open set V ∈ B such that
x ∈ V ⊂ X \ A. By complete regularity, there is a continuous map f : X → [0, 1] such that
f(x) = 0 and f(X \ V ) = 1. Now, x ∈ f−1

[
0, 1

2

)
is an open neighborhood, so there is a basic

open set U ∈ B such that x ∈ U ⊂ f−1
[
0, 1

2

)
. Construct the function g : X → [0, 1] by

g(y) =

0, f(y) ≤ 1
2
,

2
(
f(y)− 1

2

)
, f(y) ≥ 1

2
.

By pasting lemma, g is continuous. Moreover, g(U) = 0, g(X \ V ) = 1. Thus, (U, V ) ∈ G is
a good pair. But then we have a fU,V ∈ F . Clearly, fU,V separates x and A, since x ∈ U and
V ⊂ X \ A ⇒ A ⊂ X \ V . �

Corollary 24.6

Let X be a second countable, completely regular space. Then there is a countable collection F
of functions such that any closed set A ⊂ X and any point x ∈ X \ A can be separated by
some function f ∈ F .

Theorem 24.7: (Tychonoff embedding theorem)

Let X be a Tychonoff space (i.e, T3 1
2
), and B be a fixed basis. Then, X is homeomorphic to a

subspace of the cube C = [0, 1]|B|

Proof
Get a family F of functions, with |F| ≤ |B|. We prove an embedding X ↪→ [0, 1]|F|, which is
sufficient. Indeed, we have a map F : X → [0, 1]|F| defined by

πf (F(x)) = f(x), f ∈ F , x ∈ X.

By the properties of the product topology, F is continuous. As the space X is T1, it follows that
F separates points, and consequently, F is injective. We show that F is open onto its image.

Let O ⊂ X be open, and y ∈ F(O). Pick x ∈ F−1(y) ∩ O. Since F separates points and closed
sets, there is some f ∈ F such that f(x) = 0 and f(X \ O) = 1. Consider W := π−1

f ([0, 1)),
which is open in the cube. Moreover, W ∩ F(X) ⊂ F(O). Indeed, for any z ∈ Z, with F(z) ∈ W ,
we must have f(z) 6= 1 ⇒ z 6∈ X \ O ⇒ z ∈ O, and thus, F(z) ∈ F(O). In particular,
f(x) = 0 ⇒ y = F(x) ∈ W ⇒ y ∈ W ∩F(X) ⊂ F(O). As y was arbitrary, we have F(O) is open.
But then F is a homeomorphism onto its image. In particular, X can be identified as a subspace of
[0, 1]|F|. If |F| < B, then one can canonically see [0, 1]|F| as a subspace of [0, 1]|B|. This concludes
the proof. �
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Theorem 24.8: (Urysohn’s metrization theorem)

Any T3, second countable space is metrizable.

Proof
Since X is second countable, it is Lindelöf. A regular, Lindelöf space is normal. Thus, X is T4,
and hence, T3 1

2
. But then by the Tychonoff embedding theorem, X can be identified as a subspace

of [0, 1]ω, where ω = |N|. Now, [0, 1]ω is a metric space (being the countable product of metric
spaces). Hence, X is a metric space. �
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