
Topology Course Notes (KSM1C03)

Day 23 : 30th October, 2025
T4-space -- completely normal space -- T5-space -- perfectly normal space --
T6-space

23.1 T4-space

Definition 23.1: (T4-space)
A space X is called a T4-space if it is normal and T1.

Remark 23.2: (Normal + T0 is not T4)

As normal spaces are regular, T4 ⇒ T3. The excluded point topology on the three point set is
normal, but not even T1 (and hence, not T2, T3, T4 either).

Proposition 23.3: (T4 ⇒ T3 1
2
)

Any T4 space X is also a T3 1
2
.

Proof
Let A ⊂ X be a closed set, and x ∈ X \A. Since X is T1, we have {x} is closed as well. Since X

is normal, by Urysohn’s lemma, there is a continuous function f : X → [0, 1] such that f(x) = 0

and f(A) = 1. But this means that X is completley regular. As X is T0, we have X is T3 1
2
. �

Proposition 23.4: (Compact + T2 ⇒ T4)

A compact T2 space X is T4.

Proof
Let A,B ⊂ X be disjoint closed sets. Fix some a ∈ A. Then, for each b ∈ B, there are open
sets Ua,b, Va,b such that a ∈ Ua,b, b ∈ Va,b and Ua,b ∩ Va,b. Since B is closed in a compact space,
B is compact. Thus, the cover B ⊂

⋃
b∈B Va,b has finite subcover B ⊂ Va :=

⋃k
i=1 Va,bi . Then,

Ua :=
⋂k

i=1 Ua,bi is an open set, with a ∈ Ua. Clearly, Ua ∩ Va = ∅. Now, we have a cover
A ⊂

⋃
a∈A Ua, which again admits a finite subcover A ⊂ U :=

⋃l
i=1 Uai . We have an open set

V :=
⋂l

i=1 Vai . Clearly, B ⊂ V and U ∩ V = ∅. Thus, we have that X is normal. Since X is T2,
we get X is T4. �
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Proposition 23.5: (Metrizable ⇒ T4)

Metrizable spaces are T4.

Proof
Fix a metric space (X, d). Let A,B ⊂ X be disjoint closed sets. For each a ∈ A, fix ra :=
1
3
d(a,B) > 0, and for each b ∈ B, fix sb :=

1
3
d(b, A). Consider the open sets

U :=
⋃
a∈A

Bd (a, ra) , V :=
⋃
b∈B

Bd (b, sb) .

Clearly, A ⊂ U and B ⊂ V . If possible, suppose z ∈ U ∩ V . Then, for some a ∈ A and b ∈ B, we
have

d(a, z) < ra, d(b, z) < sb.

Without loss of generality, assume sb ≤ ra. Then,

3ra = d(a,B) ≤ d(a, b) ≤ d(a, z) + d(z, b) < ra + sb ≤ ra + ra = 2ra,

a contradiction. Thus, U ∩ V = ∅. Hence, X is normal. As X is T2, we have X is T4. �

Proposition 23.6: (T3 1
2
6⇒ T4 : Deleted Tychonoff plank)

The deleted Tychonoff plank X := [0,Ω]× [0, ω] \ {(Ω, ω)} is a T3 1
2

space, which is not T4.

Proof
Recall that the ordinal spaces [0,Ω] and [0, ω] are compact, T2, and hence, so is their product
T = [0,Ω]×[0, ω]. Thus, the Tychonoff plane T is T4 and in particular, T3 1

2
. Since being completely

regular is hereditary (Check!), the subspace X ⊂ T is T3 1
2
.

Let us show that X is not normal. Consider the sets A = [0,Ω) × {ω} and B = {Ω} × [0, ω),
which are closed in the subspace topology of X. If possible, suppose there are open sets U, V ⊂ X

such that A ⊂ U,B ⊂ V and U ∩ V = ∅. Then, for each 0 ≤ n < ω, there is some 0 ≤ αn < Ω

such that (αn,Ω]×{n} ⊂ B. Now {αn}n ⊂ [0,Ω) is a countable set, and hence, there is an upper
bound β ∈ [0,Ω). Then, we have the (open) set

(β,Ω]× [0, ω) =
⋃

0≤n<ω

(β,Ω]× {n} ⊂
⋃

0≤n<ω

(αn,Ω]× {n} ⊂ V.

Now, the basic open sets of (β+1, ω) ∈ A are of the form (γ, δ)× (n, ω), where β+1 ∈ (γ, δ) ⊂
[0,Ω) is an open interval. In particular, any open neighborhood of (β + 1, ω) will contain the
set {β + 1} × [n, ω) for some n large. Consequently, any open set containing (b + 1, ω) (and in
particular, the open set U) will intersect the set V . This is a contradiction to U ∩ V = ∅. Thus,
X is not normal, and hence, not T4. �

Remark 23.7: (Separation axioms implications)

Let us summarize all the observations about separation axioms so far.
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23.2 Completely normal and T5-spaces

Definition 23.8: (Completely normal space)
A normal space is called a completely normal space (or hereditarily normal space) if every
subspace is again a normal space.

Proposition 23.9

Given a space X, the following are equivalent.

a) X is completely normal.

b) Every open subset of X is normal.

c) Given any two subsets A,B ⊂ X, with Ā ∩ B = ∅ = A ∩ B̄, there are open sets
U, V ⊂ X such that A ⊂ U,B ⊂ V and U ∩ V = ∅.

Proof
Suppose X is completely normal. Then, clearly any open set of X is again normal. Conversely,
suppose every open set of X is normal. Let Y ⊂ X be arbitrary subspace, and let A,B ⊂ Y be
closed sets with A∩B = ∅. Note that A = A

Y
= Y ∩ Ā and B = B

Y
= Y ∩ B̄. Consider the open
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set W = X \ Ā ∩ B̄, which is normal. Now, Y ∩
(
Ā ∩ B̄

)
=

(
Y ∩ Ā

)
∩ (Y ∩ B̄) = A ∩ B = ∅.

Thus, Y ⊂ W . Now, we have the closed sets C = Ā ∩ W and D = B̄ ∩ W in the subspace
W . Then, there are open sets U, V ⊂ W (which are also open in X as W is open), such that
C ⊂ U,D ⊂ V and U ∩ V = ∅. Then, we have

A = Ā ∩ Y ⊂ Ā ∩W ⊂ U,B = B̄ ∩ Y ⊂ B̄ ∩W ⊂ V.

Set U ′ = U ∩ Y, V ′ = V ∩ Y , which are open in Y , and clearly disjoint. Also, A ⊂ U ′, B ⊂ V ′.
Thus, Y is normal. Since Y was arbitrary, we have X is completely normal.

Next, let us assume X is completely normal. Let A,B ⊂ X be arbitrary, with Ā∩B = ∅ = A∩ B̄.
Consider W = X \ Ā ∩ B̄. Then, W is normal. Also, A ∩ B̄ = ∅ ⇒ A ⊂ X \ B̄ ⊂ W , and
similarly, B ⊂ W . Consider C = W ∩ Ā and D = W ∩ B̄, which are closed in W . Note that
C ∩ D = W ∩ Ā ∩ B̄ = ∅. Then, there are open sets U, V ⊂ W (which are open in X, as
W is open), such that C ⊂ U,D ⊂ V and U ∩ V = ∅. Clearly, A ⊂ C ⊂ U,B ⊂ D ⊂ V .
Conversely, suppose given any two sets A,B ⊂ X with Ā ∩ B = ∅ = A ∩ B̄, we have open sets
U, V ⊂ X such that A ⊂ U,B ⊂ V, U ∩ V = ∅. Let us show that X is completely normal. Fix
some subspace Y ⊂ X, and closed sets A,B ⊂ Y with A∩B = ∅. Then, A = Y ∩ Ā, B = Y ∩ B̄.
Now, Ā ∩ B = Ā ∩ (B ∩ Y ) = (Ā ∩ Y ) ∩ B = A ∩ B = ∅, and similarly, A ∩ B̄ = ∅. Then,
there are open sets U, V ⊂ X such that A ⊂ U,B ⊂ V and U ∩ V = ∅. But then, consider
U ′ = Y ∩ U, V ′ = Y ∩ V , which are open in Y . Clearly, A ⊂ Y ′, B ⊂ V ′ and U ′ ∩ V ′ = ∅. Thus,
Y is normal. Since Y was arbitrary, we have X is completely normal. �

Definition 23.10: (T5-space)
A completely normal, T1 space is called a T5-space.

Remark 23.11: (T4 6⇒ T5: Tychonoff plank)

Clearly T5 ⇒ T4. But the Tychonoff plank is a T4-space, which is not T5, since the (open) subspace
deleted Tychonoff plank is not normal.

Theorem 23.12: (Order topology ⇒ T5)

Any order topology is T5.

Proof
Let (X,≤) be a totally ordered space, equipped with the order topology. Clearly X is T2. Without
loss of generality, assume that |X| ≥ 2, so that even if X has end-points, they are distinct.

Let A,B ⊂ X be arbitrary sets, with Ā ∩B = ∅ = A ∩ B̄.

Step 1: Consider the set Y = X \ (A∪B). On Y , let us define an equivalence relation : x ∼ y if
and only if the closed interval

[min {x, y} ,max {x, y}] := {z ∈ X | min {x, y} ≤ z ≤ max {x, y}}

is contained in Y . Then, the equivalence classes represent the largest connected intervals in Y . By
axiom of choice, let us choose a representative, say, f(C) from each of the class C.

4



Step 2: For each a ∈ A, which is not the right end-point of X (if it exists at all), let us define
a < qa as follows.

a) If a has an immediate successor in X, choose that to be qa.

b) If a has no immediate successor, then for any a < x, we have [a, x) contains a point of
X. That is, a is then a right accumulation point. We consider two possibilities.

i) Suppose a is a right accumulation point of A. Choose any qa ∈ A such that
a < qa and (a, qa) ∩B = ∅. This is possible since A ∩ B̄ = ∅.

ii) Suppose a is a right accumulation point of X, but not of A. In this case, consider
Z := {z ∈ A ∪B | z > x}. Since A∩ B̄ = ∅, we have some interval [x, a)∩Z =

∅. Consequently, it follows that x is least upper bound of a unique component,
say, C of Y . Let us take qa to be the chosen point f(C).

Observe that [a, qa) is always disjoint from B. Similarly, for each a ∈ A, which is not the left
end-point of X, we choose pa < a as follows.

a) If a has an immediate predecessor in X, choose that to be pa.

b) If a has no immediate predecessor in X, then a is a left accumulation point. We consider
two possibilities.

i) If a is an accumulation point of A, choose pa < a such that (pa, a) ∩B = ∅.

ii) If a is not an accumulation point of A, then as argued earlier, a is greatest lower
bound of a unique component, say, C of Y . Take pa to be the chosen point f(C).

Note that a point a ∈ A cannot be simultaneous both the end-points, since |X| ≥ 2. Reversing
the role of A and B, for each b ∈ B, we choose pb < b < qb accordingly as well. Finally, for any
x ∈ A ∪B, let us define the interval

Ix = (px, qx) or, (px, x], or, [x, qx),

as necessary. Clearly, for a ∈ A, we have Ia is an open neighborhood of a, disjoint from B.
Similarly, for b ∈ B, we have Ib is an open neighborhood of b, disjoint from A.

Step 3: Say, a ∈ A and b ∈ B are fixed. Without loss of generality, assume a < b. Let us show
that Ia ∩ Ib = ∅. Suppose not. Then, Ia ∩ Ib = (pb, qa) 6= ∅, and in particular, pb < qa. Clearly
b 6∈ Ia, as Ia ∩ B = ∅, and similarly, a 6∈ Ib. Thus, it follows that a ≤ pb and qa ≤ b. Now, if qa
was the immediate successor of a, then, Ia ∩ Ib = (pb, qa) = ∅. Thus, a must be defined by the
other two cases (in particular, a is a right accumulation point). By the same argument, pb is not
the immediate predecessor of b, and consequently b is a left accumulation point. Now pb 6∈ B, as
otherwise Ia ∩ B 6= ∅, and similarly, qa 6∈ A. Thus, by previous step, pb is not an accumulation
point of B and qa is not an accumulation point of A. Hence, there are components C1, C2 ⊂ Y

such that (a, qa) ⊂ C1 and (pb, b) ⊂ C2, where qa = f(C1) and pb = f(C2). Now,

∅ 6= Ia ∩ Ib = (a, qa) ∩ (pb, b) ⊂ C1 ∩ C2.
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Since C1, C2 are equivalence classes, the only possibility is C1 = C2, whence,
qa = f(C1) = f(C2) = pb. But then, Ia ∩ Ib = ∅, a contradiction.

Step 4: As a final step, consider the open sets

U :=
⋃
a∈A

Ia, V :=
⋃
b∈B

Ib.

Clearly, A ⊂ U,B ⊂ V . Moreover, U ∩ V = ∅ by the previous step. Thus, X is perfectly normal.
In particular, any linearly ordered space is T5. �

Corollary 23.13: (Ordinal spaces are T5)

Every ordinal space is T5. In particular, [0, ω], [0,Ω], [0,Ω) are all T5.

23.3 Perfectly normal and T6-spaces

Definition 23.14: (Perfectly normal space)
A space X is called a perfectly normal space if given closed sets A,B ⊂ X with A ∩ B = ∅,
there is a continuous function f : X → [0, 1] such that f−1(0) = A and f−1(1) = B. That is,
a function precisely separates any two disjoint closed sets.

Theorem 23.15: (Vedenissoff’s theorems)

Given a space X, the following are equivalent.

a) X is perfectly normal.

b) X is normal, and every closed set of C can be written as a countable intersection of
closed sets (i.e, X is a Gδ-space).

c) Every closed set A ⊂ X is the zero set of a continuous function, i.e, there is a continuous
function f : X → R such that A = f−1(0).

Proof
Suppose X is perfectly normal. Then clearly X is normal, as functional separation leads to
separation by open neighborhoods. Let C ⊂ X be an arbitrary closed set. We show that C is a
Gδ-set, i.e, countable intersection of open sets of X. We have a continuous function f : X → [0, 1]

such that f−1(0) = C and f−1(1) = ∅. Then, we have open sets Un := f−1
[
0, 1

n

)
. Clearly,

C =
⋂

n≥1 Un. Thus, X is a normal, Gδ-space.

Next, suppose X is a normal, Gδ-space. Let A ⊂ X be a closed set. Then, A =
⋂

n≥1 Un for
some open sets Un ⊂ X. Without loss of generality, we can assume that Un+1 ⊂ Un for each
n ≥ 1. Now, for each n ≥ 1, we have disjoint closed sets A and Bn := X \ Un. Then, as X is
normal, by Urysohn’s lemma we have a continuous map fn : X → [0, 1] such that fn(A) = {0}
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and fn(Bn) = {1}. Consider a function f : X → [0, 1] defined by

f(x) :=
∑
n≥1

fn(x)

2n+1
, x ∈ X.

It follows that f is continuous. Clearly, f(A) = 0. Suppose x 6∈ A. Then, x 6∈ Un0 for some n0.
So, x ∈ Bn0 ⊂ Bn for all n ≥ n0, and hence, fn(x) = 1 for n ≥ 1. We have

f(x) ≥
∑
n≥n0

fn(x)

2n+1
=

∑
n≥n0

1

2n+1
=

1

2n0+1

(
1 +

1

2
+

1

22
+ . . .

)
=

1

2n0
> 0.

Hence, f−1(0) = A. As A was arbitrary closed set, this proves c).

Finally, suppose every closed set is the 0-set of some continuous function. Let A,B ⊂ X be closed
set with A∩B = ∅. We have f, g : X → R such that f−1(0) = A and g−1(0) = B. As A∩B = ∅,
we have f + g is nonvanishing. Consider the continuous function h = f

f+g
. Clearly, h : X → [0, 1].

Also, h(x) = 0 ⇔ f(x) = 0 ⇔ x ∈ A, and h(x) = 1 ⇔ f(x) = f(x) + g(x) ⇔ g(x) = 0 ⇔ x ∈
B. Thus, h−1(0) = A and h−1(1) = B. Hence, X is perfectly normal. �

Proposition 23.16: (T6 ⇒ T5)

Any subspace of a perfectly normal space is again perfectly normal. Consequently, a perfectly
normal space is completely normal.

Proof
Let X be a perfectly normal space. Say, Y ⊂ X is arbitrary subset, and A ⊂ Y be closed. Then,
A = Y ∩ Ā. We have a continuous function such that Ā = f−1(0). Then, the restriction g := f |Y
is again continuous, and clearly, g−1(0) = f−1(0)∩ Y = Ā∩ Y = A. Thus, Y is perfectly normal,
and hence, normal. In particular, X is completely normal. �

Definition 23.17: (T6-space)
A space is called a T6-space if it is perfectly normal, and T1.

Proposition 23.18: (Metrizable ⇒ T6)

Any metrizable space is T6.

Proof
Fix a metric d on X. Given any closed sets A,B ⊂ X with A ∩ B = ∅, we have the continuous
map

f(x) :=
d(x,A)

d(x,A) + d(x,B)
, x ∈ X.

Then, f−1(0) = A and f−1(B). Clearly X is T2 (and hence, T1). Thus, X is T6. �
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