Topology Course Notes (KSM1C03)

Day 23 : 30" October, 2025

T,-space —-- completely normal space -- T5-space —- perfectly normal space —-—

Ts-space

23.1 7T)-space

Definition 23.1: (7);-space)

A space X is called a T-space if it is normal and 7.

Remark 23.2: (Normal + T is not T})

As normal spaces are regular, Ty = T3. The excluded point topology on the three point set is
normal, but not even 77 (and hence, not Ty, T3, Ty either).

Proposition 23.3: (T, = T5.)

Any T} space X is also a Ty

Proof
Let A C X be a closed set, and x € X \ A. Since X is T}, we have {z} is closed as well. Since X

is normal, by Urysohn's lemma, there is a continuous function f : X — [0, 1] such that f(z) =0
and f(A) = 1. But this means that X is completley regular. As X is Tp, we have X is Ty O

Proposition 23.4: (Compact + 75 = 1))

A compact 15 space X is Tj.

Proof
Let A, B C X be disjoint closed sets. Fix some a € A. Then, for each b € B, there are open

sets Uyp, Vap such that a € Uyyp, b € V,p and U,y NV, 5. Since B is closed in a compact space,
B is compact. Thus, the cover B C UbeB Vap has finite subcover B C V, = Ule Vap,- Then,
U, = ﬂle Uap; is an open set, with a € U,. Clearly, U, NV, = 0. Now, we have a cover
A C U,ea Ua, which again admits a finite subcover A C U = U._, Ua,. We have an open set

V= ﬂizl V,,. Clearly, B C V and U NV = (). Thus, we have that X is normal. Since X is T,

we get X is T}. 0



Proposition 23.5: (Metrizable = T})

Metrizable spaces are T}.

Proof
Fix a metric space (X,d). Let A,B C X be disjoint closed sets. For each a € A, fix r, =

sd(a, B) > 0, and for each b € B, fix s, := 3d(b, A). Consider the open sets

U= U By (a,r,), Vo= U By (b, sp) .

acA beB

Clearly, AC U and B C V. If possible, suppose z € UNV. Then, for some a € A and b € B, we
have
d(a,z) <1, d(b, z) < Sp.

Without loss of generality, assume s, < r,. Then,
3r, =d(a,B) <d(a,b) <d(a,z)+d(z,0) <re+ Sy <14+ 14 =21,

a contradiction. Thus, U NV = (). Hence, X is normal. As X is T5, we have X is Tj. O

Proposition 23.6: (T3% # T, : Deleted Tychonoff plank)

The deleted Tychonoff plank X :=[0,Q] x [0,w] \ {(©Q,w)} is a T, space, which is not Tj.

Proof
Recall that the ordinal spaces [0,€2] and [0,w] are compact, T3, and hence, so is their product

T =10,9Q] x[0,w]. Thus, the Tychonoff plane T"is T and in particular, T3%. Since being completely
regular is hereditary (Check!), the subspace X C T is Ty,

Let us show that X is not normal. Consider the sets A = [0,Q2) x {w} and B = {Q} x [0,w),
which are closed in the subspace topology of X. If possible, suppose there are open sets U,V C X
suchthat ACU BCVand UNV = (. Then, for each 0 < n < w, there is some 0 < o, < Q2
such that (o, Q] x {n} C B. Now {a,}, C [0,£2) is a countable set, and hence, there is an upper
bound 8 € [0,2). Then, we have the (open) set

B.Ax0,w)= | J B.Ax{n}c | (0, x{n}cV.
0<n<w 0<n<w
Now, the basic open sets of (3 + 1,w) € A are of the form (v, ) X (n,w), where S+ 1 € (~,0) C
[0,€) is an open interval. In particular, any open neighborhood of (8 + 1,w) will contain the
set {#+ 1} X [n,w) for some n large. Consequently, any open set containing (b + 1,w) (and in
particular, the open set U) will intersect the set V. This is a contradiction to U NV = (). Thus,
X is not normal, and hence, not T}. O

Remark 23.7: (Separation axioms implications)

Let us summarize all the observations about separation axioms so far.
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23.2 Completely normal and T;-spaces

Definition 23.8: (Completely normal space)

A normal space is called a completely normal space (or hereditarily normal space) if every
subspace is again a normal space.

L

Proposition 23.9

Given a space X, the following are equivalent.

a) X is completely normal.
b) Every open subset of X is normal.

c) Given any two subsets A, B C X, with AN B

=0=AnN B, there are open sets
UV cXsuchthat ACUBCVandUNV =0.

Proof

Suppose X is completely normal. Then, clearly any open set of X is again normal. Conversely,
suppose every open set of X is normal. Let Y C X be arbitrary subspace, and let A, B C Y be
closed sets with ANB = (). Notethat A= 4" =Y NAand B=TB" =Y NB. Consider the open



set W = X \ AN B, which is normal. Now, Y N (ANB) = (YNA)N(YNB)=ANB=.
Thus, Y C W. Now, we have the closed sets C = ANW and D = B N W in the subspace
W. Then, there are open sets U,V C W (which are also open in X as W is open), such that
CcUDCcCVandUNV =0. Then, we have

A=ANY CANW CUB=BNnY CBNnWCV.

Set U =UNY,V =V nNY, which are open in Y, and clearly disjoint. Also, A Cc U',B C V',
Thus, Y is normal. Since Y was arbitrary, we have X is completely normal.

Next, let us assume X is completely normal. Let A, B C X be arbitrary, with ANB =0 = ANB.
Consider W = X \ AN B. Then, W is normal. Also, ANB =0 = Ac X\ B cC W, and
similarly, B C W. Consider C' = W N A and D = W N B, which are closed in . Note that
CND=WnANDB = (. Then, there are open sets U,V C W (which are open in X, as
W is open), such that C C U,D C V.and UNV = . Clearly A Cc C Cc U,BC D C V.
Conversely, suppose given any two sets A, B C X with AN B =0 = AN B, we have open sets
UV C X such that AC U,B C V,UNV = . Let us show that X is completely normal. Fix
some subspace Y C X, and closed sets A, B C Y with ANB =(. Then, A=YNA B=YNB.
Now, AN B = f_lﬂ(BﬂY) = (f_lﬁY)ﬁB = AN B =0, and similarly, AN B = 0. Then,
there are open sets U,V C X such that A C U,B C V and UNV = (). But then, consider
U=YNUV =Y NV, which are open in Y. Clearly, ACY’',BC V' and U NV’ =0. Thus,
Y is normal. Since Y was arbitrary, we have X is completely normal. 0

Definition 23.10: (75-space)

A completely normal, T} space is called a T5-space.

Remark 23.11: (T, # T5: Tychonoff plank)

Clearly Ty = T}. But the Tychonoff plank is a Tj-space, which is not T5, since the (open) subspace
deleted Tychonoff plank is not normal.

Theorem 23.12: (Order topology = T%)

Any order topology is T5.

Proof
Let (X, <) be a totally ordered space, equipped with the order topology. Clearly X is T5. Without
loss of generality, assume that |X| > 2, so that even if X has end-points, they are distinct.

Let A, B C X be arbitrary sets, with AN B =0 = AN B.

Step 1: Consider the set Y = X \ (AU B). On Y, let us define an equivalence relation : z ~ y if
and only if the closed interval

min {z,y} ,max{x,y}] = {z € X | min{z,y} <z <max{z,y}}

is contained in Y. Then, the equivalence classes represent the largest connected intervals in Y. By
axiom of choice, let us choose a representative, say, f(C') from each of the class C'.




Step 2: For each a € A, which is not the right end-point of X (if it exists at all), let us define
a < q, as follows.

a) If a has an immediate successor in X, choose that to be ¢,.

b) If a has no immediate successor, then for any a < z, we have [a,x) contains a point of
X. That is, a is then a right accumulation point. We consider two possibilities.

i) Suppose a is a right accumulation point of A. Choose any ¢, € A such that
a < g, and (a,q,) N B = (). This is possible since AN B = .

i) Suppose a is a right accumulation point of X, but not of A. In this case, consider
7 ={2€ AUB| 2> x}. Since ANB = (), we have some interval [z,a)NZ =
(). Consequently, it follows that x is least upper bound of a unique component,
say, C of Y. Let us take ¢, to be the chosen point f(C).

Observe that [a, q,) is always disjoint from B. Similarly, for each a € A, which is not the left
end-point of X, we choose p, < a as follows.

a) If a has an immediate predecessor in X, choose that to be p,.

b) If a has no immediate predecessor in X, then a is a left accumulation point. We consider
two possibilities.

i) If a is an accumulation point of A, choose p, < a such that (p,,a) N B = 0.

ii) If a is not an accumulation point of A, then as argued earlier, a is greatest lower
bound of a unique component, say, C' of Y. Take p, to be the chosen point f(C).

Note that a point a € A cannot be simultaneous both the end-points, since |X| > 2. Reversing
the role of A and B, for each b € B, we choose p, < b < ¢, accordingly as well. Finally, for any
r € AU B, let us define the interval

Iw - (pwan) or, (pacyx]v or, [x7Qw)a

as necessary. Clearly, for a € A, we have I, is an open neighborhood of a, disjoint from B.
Similarly, for b € B, we have [, is an open neighborhood of b, disjoint from A.

Step 3: Say, a € A and b € B are fixed. Without loss of generality, assume a < b. Let us show
that I, N I, = ). Suppose not. Then, I, NI, = (py, qa) # B, and in particular, p, < g,. Clearly
b1, as I, N B =, and similarly, a & I,. Thus, it follows that a < p, and ¢, < b. Now, if ¢,
was the immediate successor of a, then, I, N I, = (ps, ¢u) = . Thus, a must be defined by the
other two cases (in particular, a is a right accumulation point). By the same argument, p; is not
the immediate predecessor of b, and consequently b is a left accumulation point. Now p, ¢ B, as
otherwise I, N B =# (), and similarly, q, ¢ A. Thus, by previous step, p, is not an accumulation
point of B and ¢, is not an accumulation point of A. Hence, there are components C;,Cy C Y
such that (a,q,) C Cy and (py, b) C Cy, where g, = f(C7) and p, = f(C3). Now,

0#£1,N 1T, = (a,q,) N (pp,b) C C1 N Ch.



Since C;,C5 are equivalence classes, the only possibility is C; = (3 whence,
qo = f(C1) = f(C3) = py. But then, I, N I, = 0, a contradiction.

Step 4: As a final step, consider the open sets

U:=|J L, V=]

acA beB

Clearly, A Cc U, B C V. Moreover, U NV = () by the previous step. Thus, X is perfectly normal.
In particular, any linearly ordered space is T5. 0

Corollary 23.13: (Ordinal spaces are T5)

Every ordinal space is T5. In particular, [0,w], [0, €], [0, £2) are all T5.

23.3 Perfectly normal and Ts-spaces

Definition 23.14: (Perfectly normal space)

A space X is called a perfectly normal space if given closed sets A, B C X with AN B = 0,
there is a continuous function f : X — [0,1] such that f~!(0) = A and f~!(1) = B. That is,
a function precisely separates any two disjoint closed sets.

Theorem 23.15: (Vedenissoff’s theorems)

Given a space X, the following are equivalent.
a) X is perfectly normal.

b) X is normal, and every closed set of C' can be written as a countable intersection of
closed sets (i.e, X is a Gs-space).

c) Every closed set A C X is the zero set of a continuous function, i.e, there is a continuous
function f : X — R such that A = f~1(0).

Proof
Suppose X is perfectly normal. Then clearly X is normal, as functional separation leads to

separation by open neighborhoods. Let C' C X be an arbitrary closed set. We show that C' is a
Gis-set, i.e, countable intersection of open sets of X. We have a continuous function f : X — [0, 1]
such that f7(0) = C and f~'(1) = 0. Then, we have open sets U, = f~[0,2). Clearly,
C =(),>; Un- Thus, X is a normal, Gs-space.

Next, suppose X is a normal, Gs-space. Let A C X be a closed set. Then, A = ﬂn>1 U,, for
some open sets U, C X. Without loss of generality, we can assume that U,,; C Unifor each
n > 1. Now, for each n > 1, we have disjoint closed sets A and B, = X \ U,. Then, as X is
normal, by Urysohn's lemma we have a continuous map f, : X — [0,1] such that f,(A) = {0}



and f,,(B,) = {1}. Consider a function f : X — [0, 1] defined by

f(x) ::Zj;iz(i)’ reX.

n>1

It follows that f is continuous. Clearly, f(A) = 0. Suppose x & A. Then, z ¢ U,, for some ny.
So, z € B, C B, for all n > ng, and hence, f,(z) =1 for n > 1. We have

fal) -~ 1 1 L 1 _ !
f(x)ZZQnJrl_ZQ”Jrl_Qno-H 1+§+§+'” _%>0'

n>ng n>ng

Hence, f~1(0) = A. As A was arbitrary closed set, this proves c).

Finally, suppose every closed set is the 0-set of some continuous function. Let A, B C X be closed
set with ANB = (. We have f,g: X — Rsuch that f~'(0) = Aand g7'(0) = B. As ANB = 0),
we have f + g is nonvanishing. Consider the continuous function h = ﬁ. Clearly, h : X — [0,1].
Also, h(z) =0 & f(x) =0z € A, and h(z) =1 & f(z) = f(x) + g9(x) © g(z) =0 x €
B. Thus, h7*(0) = A and h™*(1) = B. Hence, X is perfectly normal. O

Proposition 23.16: (7 = 15)

Any subspace of a perfectly normal space is again perfectly normal. Consequently, a perfectly
normal space is completely normal.

Proof
Let X be a perfectly normal space. Say, Y C X is arbitrary subset, and A C Y be closed. Then,

A=Y NA. We have a continuous function such that A = f~1(0). Then, the restriction g :== f|y
is again continuous, and clearly, g71(0) = f71(0)NY = ANY = A. Thus, Y is perfectly normal,
and hence, normal. In particular, X is completely normal. 0

Definition 23.17: (7;-space)

A space is called a Tj-space if it is perfectly normal, and T7.

Proposition 23.18: (Metrizable = T5)

Any metrizable space is T§.

Proof
Fix a metric d on X. Given any closed sets A, B C X with AN B = (), we have the continuous

map

d(x, A)
= X.
M) = A vdwsy  °©
Then, f71(0) = A and f~(B). Clearly X is Ty (and hence, T3). Thus, X is Tg. O



