
Topology Course Notes (KSM1C03)

Day 22 : 29th October, 2025
normal space -- Urysohn's lemma

22.1 Normal space

Definition 22.1: (Normal space)
A space X is called a normal space if given any two disjoint closed sets A,B ⊂ X, there exists
disjoing open sets separting them, i.e, there are open sets U, V ⊂ X such that A ⊂ U,B ⊂ V

and U ∩ V = ∅

Remark 22.2

It is easy to see that normal spaces are regular. But completely regularity does not follow. Consider
the space X = {−1, 0, 1}, with the topology T = {∅, X, {−1} , {1} , {−1, 1}}. This space is the
excluded point topology on the three point set. It is easy to see that X is normal, since there are
no disjoint nonempty closed sets! Indeed, the closed sets are {∅, X, {0} , {0, 1} , {0,−1}}. Now,
consider A = {0, 1} and the point x = −1 ∈ X \ A. If possible, suppose f : X → [0, 1] is a
continuous map, with f(x) = 0 and f(A) = 1. But then, {0} = f−1

[
0, 1

2

)
must be open, a

contradiction. Thus, X is not completely regular.

Proposition 22.3: (Normality by closed neighborhood)

X is normal if and only if given any closed set A and an open set U ⊂ X, with A ⊂ U , there
exists an open set V ⊂ X such that A ⊂ V ⊂ V̄ ⊂ U .

Proof
Suppose X is normal. Let A ⊂ X be closed and U ⊂ X be open, with A ⊂ U . Then, B = X \U
is a closed set, disjoint from A. We have open sets P,Q ⊂ X such that A ⊂ P,B ⊂ Q and
P ∩Q = ∅. Note that

P ⊂ X \Q ⇒ P̄ ⊂ X \Q = X \Q ⊂ X \B = U.

That is, we have A ⊂ P ⊂ P̄ ⊂ U .
Conversely, suppose for any closed A and open U , with A ⊂ U , we have some open V such that
A ⊂ V ⊂ V̄ ⊂ U . Let A,B be disjoint closed sets. Then, A ⊂ X \ B, which is open. Get
open set U such that A ⊂ U ⊂ Ū ⊂ X \ B. Let us take V := X \ U , which is open. Then,
Ū ⊂ X \B ⇒ B ⊂ X \ Ū = V . Clearly, U ∩ V ⊂ Ū ∩ V = ∅ ⇒ U ∩ V = ∅. Thus, X is a normal
space. �

1



Exercise 22.4: (Normality is equivalent to separation by closed neighborhoods)

Check that a space X is normal if and only if for any closed sets A,B ⊂ X with A ∩ B, there
are closed sets P,Q ⊂ X such that A ⊂ P̊ ⊂ P,B ⊂ Q̊ ⊂ Q and P ∩Q = ∅.

Theorem 22.5: (Urysohn’s Lemma)

A space X is normal if and only if given disjoint closed sets A,B ⊂ X, there exists a continuous
function f : X → [0, 1] such that f(A) = 0 and f(B) = 1.

Proof
Let X be a normal space. Fix two closed sets A,B ⊂ X with A ∩B = ∅.

Step 1: Let us consider the dyadic rationals D =
{

m
2n

∣∣ m,n ≥ 0, m odd
}
∩ (0, 1) in [0, 1]. For

each r ∈ D, using the normality, we shall inductively construct an open set Ur ⊂ X and a closed
Vr ⊂ X, satisfying the following.

i) A ⊂ Ur and Vr ⊂ X \B for all r ∈ D.

ii) Ur ⊂ Vr for all r ∈ D.

iii) Vr ⊂ Us whenever r < s in D.

Here are the first few steps of the induction.

A ⊂ Bc

A ⊂ U 1
2

⊂ V 1
2

⊂ Bc

A ⊂ U 1
4

⊂ V 1
4

⊂ U 1
2

⊂ V 1
2

⊂ U 3
4

⊂ V 3
4

⊂ Bc

Let us describe this formally. We induct over n ≥ 1 where n appears as the exponent of 2 in m
2n

∈ D,
where 1 ≤ m < 2k+1 are odd numbers. For notational convenience, let us denote U1 = Bc and
V0 = A.

Base case n = 1: We just have one value 1
2

in this case. Since A ⊂ Bc, by normality, we
have an open set U 1

2
and a closed set V 1

2
= U 1

2
such that A ⊂ U 1

2
⊂ V 1

2
.

Inductive assumption n = k: Suppose, we for some k ≥ 1, we have constructed the open
and closed sets for all m

2l
∈ D with l ≤ k.

Induction step n = k + 1: We need to get the sets labeled by
{

1
2k+1 ,

3
2k+1 , . . . ,

2k+1−1
2k+1

}
. But

these appear in the middle of two sets already defined. As an example, for any 1 ≤ m =

2l + 1 < 2k+1, we already have defined Vm−1

2k+1
= V l

2k
⊂ U l+1

2k
= U m+1

2k+1
(after reducing the

fractions l
2k

and l
2k

as needed, and noting, V0 = A,U1 = B are the edge cases). Using
normality, we get open and closed sets satisfying Vm−1

2k+1
⊂ U m

2k+1
⊂ V m

2k+1
⊂ U m

2k+1
.
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Since every dyadic rational appears like this, we can construct the collection {Ur, Vr}r∈D with the
desired properties.

Step 2: Let us now define a function f : X → [0, 1] as follows.

a) Set f(x) = 1 if x 6∈ Ur for all r ∈ D.

b) For any other x, define
f(x) = inf {r ∈ D | x ∈ Ur} .

In particular, since A ⊂ Ur for all r, we see that f(x) = 0 for x ∈ A. Similarly, as
Ur ⊂ Vr ⊂ X \B ⇒ B ⊂ X \ Ur for all r, we see that f(x) = 1 for x ∈ B. Thus, f satisfies the
desired properties. We need to show that f is continuous.

Step 3: Let us prove the continuity of the function defined in the previous step. We consider three
cases.

a) Suppose f(x) = 0. If possible, suppose x 6∈ Ur0 for some r0 ∈ D. Then, for any r ∈ D

with 0 < r < r0, we must have x 6∈ Ur, as we have Ur ⊂ Vr ⊂ Ur0 . But this means
f(x) = inf {r ∈ D | x ∈ Ur} ≥ r0 > 0, a contradiction. Thus, f(x) = 0 ⇒ x ∈ Ur for all
r ∈ D. Now, for any open set [0, ε) ⊂ [0, 1], we have some r ∈ D ∩ (0, ε). Then, for any
y ∈ Ur, we have f(x) ≤ r < ε. In other words, x ∈ Ur ⊂ f−1[0, ε). Thus, f is continuous
at x whenever f(x) = 0.

b) Suppose f(x) = 1. If possible, suppose x ∈ Vr0 for some r0 ∈ D. But then, x ∈ Ur

for any r ∈ D with r0 < r, and hence, f(x) ≤ r0 < 1, a contradiction. Thus, we have
f(x) = 1 ⇒ x 6∈ Vr for all r ∈ D. Now, for any open set (1− ε, 1] ⊂ [0, 1], we have some
s ∈ D with 1− ε < s < 1. Consider the open set W = X \ Vs. Clearly, x ∈ W . Then, for
any r < s in D, we have Ur ⊂ Vr ⊂ Us ⊂ Vs. Thus, it follows that for any y 6∈ Vs ⇒ y 6 Us

we have f(y) ≥ r > 1− ε. In other words, x ∈ W ⊂ f−1(1− ε, 1]. Thus, f is continuous
at x whenever f(x) = 1.

c) Finally, suppose 0 < f(x) < 1. Set δ := f(x), and get an open set (δ − ε, δ + ε) ⊂
(0, 1) ⊂ [0, 1]. Next, get r1, r2 ∈ D satisfying δ − ε < r1 < δ < r2 < δ + ε. Since D is
dense in (0, 1), this is always possible. Consider the open set W = Ur2 \ Vr1 . Note that
f(x) = δ < r2 ⇒ x ∈ Ur2 . Also, for any r ∈ D with r1 < r < δ, we have Vr1 ⊂ Ur. Thus,
x ∈ Vr1 ⇒ y ∈ Ur ⇒ f(y) ≤ r < δ, a contradiction. Thus, x ∈ W . Now, for any r < r1,
we have Ur ⊂ Vr1 , and thus, y ∈ W ⇒ f(y) ≥ r1. Also, y ∈ W ⊂ Ur2 ⇒ f(y) ≤ r2.
Thus, for any y ∈ W we have f(y) ∈ [r1, r2] ⊂ (δ − ε, δ + ε). In other words, x ∈ W ⊂
f−1(δ − ε, δ + ε). Thus, f is continuous at x whenever 0 < f(x) < 1.

Hence, we have proved that f : X → [0, 1] is a continuous map. This concludes the theorem. �

Remark 22.6: (Onion Lemma!)

The construction in Uryshon’s lemma has a resemblance of peeling an onion layer by layer: the
space X is the onion, and any Ur \ Vs for s < r behaves like a layer. The function constructed in
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the lemma is called the Urysohn’s function (for the sets A,B).
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