Topology Course Notes (KSM1C03)

Day 22 : 29" October, 2025

normal space —— Urysohn's lemma

22.1 Normal space

~
A space X is called a normal space if given any two disjoint closed sets A, B C X, there exists
disjoing open sets separting them, i.e, there are open sets U,V C X suchthat AC U, B CV
andUNV =10

Remark 22.2

It is easy to see that normal spaces are regular. But completely regularity does not follow. Consider
the space X = {—1,0,1}, with the topology 7 = {0, X, {—1},{1},{—1,1}}. This space is the
excluded point topology on the three point set. It is easy to see that X is normal, since there are
no disjoint nonempty closed sets! Indeed, the closed sets are {0, X,{0},{0,1},{0,—1}}. Now,
consider A = {0,1} and the point x = —1 € X \ A. If possible, suppose f : X — [0,1] is a
continuous map, with f(z) = 0 and f(A) = 1. But then, {0} = f~'[0,3) must be open, a
contradiction. Thus, X is not completely regular.

Proposition 22.3: (Normality by closed neighborhood)

X is normal if and only if given any closed set A and an open set U C X, with A C U, there
exists an open set V C X suchthat ACcV cV CU.

Proof
Suppose X is normal. Let A C X be closed and U C X be open, with A C U. Then, B= X \U

is a closed set, disjoint from A. We have open sets P,() C X such that A C P,B C @ and
PN @ = 0. Note that

PCcX\Q=PcCcX\Q=X\QCcX\B=U.

That is, we have AC P C P C U.

Conversely, suppose for any closed A and open U, with A C U, we have some open V such that
A CV CV CU. Let A B be disjoint closed sets. Then, A C X \ B, which is open. Get
open set U such that A C U C U C X \ B. Let us take V := X \ U, which is open. Then,
UCX\B=BCX\U=V.Clearly, UNV CcUNV =0=UNV = 0. Thus, X is a normal
space. O



Exercise 22.4: (Normality is equivalent to separation by closed neighborhoods)

Check that a space X is normal if and only if for any closed sets A, B C X with AN B, there

are closed sets P, () C X such thatACfo’CP,BCQOCQand PNQ=0.

Theorem 22.5: (Urysohn’s Lemma)

A space X is normal if and only if given disjoint closed sets A, B C X, there exists a continuous
function f: X — [0,1] such that f(A) =0 and f(B) = 1.

Proof
Let X be a normal space. Fix two closed sets A, B C X with AN B = 0.

Step 1: Let us consider the dyadic rationals D = {2 | m,n >0, m odd} N (0,1) in [0,1]. For
each r € D, using the normality, we shall inductively construct an open set U, C X and a closed
V. C X, satisfying the following.

i) ACcU,and V., C X\ Bforallr € D.
i) U, CV, forallreD.
iii) V. C Us whenever r < sin D.

Here are the first few steps of the induction.

A c Be

A C U, ¢ W C B¢

ACU%CV%CU%CV%CU%CV%CBC
Let us describe this formally. We induct over n > 1 where n appears as the exponent of 2 in 3% € D,
where 1 < m < 2%t are odd numbers. For notational convenience, let us denote U; = B° and
Vo = A.

Base case n = 1: We just have one value % in this case. Since A C B¢, by normality, we

have an open set U% and a closed set V% = U_% such that A C U% C V%.

Inductive assumption n = k: Suppose, we for some k > 1, we have constructed the open
and closed sets for all 7 € D with [ < k.

Induction step n = k£ + 1: We need to get the sets labeled by {leﬂ, 2,5;1 et 2’;}51 . But

these appear in the middle of two sets already defined. As an example, for any 1 < m =
20 + 1 < 2% we already have defined V-1 = V. C Ui = Umss (after reducing the
2k+1 2k ok ok+1

fractions zik and 2% as needed, and noting, Vo = A,U; = B are the edge cases). Using

normality, we get open and closed sets satisfying V% CUm C V2kri1 CU.m_
2
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Since every dyadic rational appears like this, we can construct the collection {U,,V,}, ., with the
desired properties.

Step 2: Let us now define a function f: X — [0, 1] as follows.
a) Set f(z)=1ifx g U, forall r € D.

b) For any other z, define
f(x)=inf{re D |z eU,}.

In particular, since A C U, for all r, we see that f(z) = 0 for x € A. Similarly, as
U CV,CX\B= BcCX\U, for all , we see that f(z) =1 for z € B. Thus, f satisfies the
desired properties. We need to show that f is continuous.

Step 3: Let us prove the continuity of the function defined in the previous step. We consider three
cases.

a) Suppose f(x) = 0. If possible, suppose x & U,, for some ro € D. Then, for any r € D
with 0 < r < 19, we must have = &€ U,, as we have U, C V, C U,,. But this means
flz)=inf{r € D |z € U,} >ry > 0, a contradiction. Thus, f(z) =0 =z € U, for all
r € D. Now, for any open set [0,¢) C [0, 1], we have some € D N (0,¢). Then, for any
y € U,, we have f(z) <r < e. In other words, z € U, C f~[0,¢€). Thus, f is continuous
at = whenever f(z) = 0.

b) Suppose f(x) = 1. If possible, suppose = € V,, for some rq € D. But then, z € U,
for any r € D with 7y < r, and hence, f(z) < ry < 1, a contradiction. Thus, we have
f(z)=1= x ¢V, for all r € D. Now, for any open set (1 — ¢, 1] C [0, 1], we have some
s € D with 1 — e < s < 1. Consider the open set W = X \ V,. Clearly, x € W. Then, for
any r < sin D, we have U, C V,, C U, C Vj. Thus, it follows that for any y € V, = y U,
we have f(y) > r > 1—¢. In other words, € W C f~!(1 —¢,1]. Thus, f is continuous
at = whenever f(z) = 1.

c) Finally, suppose 0 < f(x) < 1. Set § = f(x), and get an open set (0 —€,0 +¢€) C
(0,1) C [0,1]. Next, get 71,79 € D satisfying §d —€ <11 < <71y < J+¢€ Since D is
dense in (0, 1), this is always possible. Consider the open set W = U,, \ V,,. Note that
f(z) =90 <ry=x€U,. Also, for any r € D with r; <r < §, we have V,, C U,. Thus,
reV, =yeU = f(y) <r <4, acontradiction. Thus, x € W. Now, for any r < rq,
we have U, C V,,, and thus, y € W = f(y) > r;. Also, y e W C U,, = f(y) < ra.
Thus, for any y € W we have f(y) € [r1,72] C (0 —€,0 + €). In other words, x € W C
f7Y0 —€,0 +¢). Thus, f is continuous at z whenever 0 < f(z) < 1.

Hence, we have proved that f : X — [0, 1] is a continuous map. This concludes the theorem. [J

Remark 22.6: (Onion Lemma!)

The construction in Uryshon's lemma has a resemblance of peeling an onion layer by layer: the
space X is the onion, and any U, \ V; for s < r behaves like a layer. The function constructed in




the lemma is called the Urysohn’s function (for the sets A, B).




