Topology Course Notes (KSM1C03)

Day 21 : 24 October, 2025

Tychonoff corkscrew property -- completely regular space

21.1 Regular space and T3 space (cont.)

Proposition 21.1: (Continuous map from S, is eventually constant)

Given any continuous map f : Sq — R, there exists some o € Sq such that f(z) = ¢ for all
x > «. Consequently, f can only have countably many distinct values.

Proof
If possible, suppose there exists some € > 0 such that for any a € S, there exists some [f(«) > «

with | f(a) — f(B)| > €. Otherwise, for each n > 1, there exists some «, such that for all 8 > «,,
we have |f(8) — f(an)| < 2. If the sequence {av,} is finite (i.e, there are finitely many points),
then just take 6 = max a,. It follows that for any 5 > 0, we have |f(5) — f(0)| < % for all n. In
particular, f(B8) = f(0) for all b > 6, proving the claim. If the sequence is not finite, without loss
of generality, assume a; < ay < .... Now, recall that [0,(2) is sequentially convergent. Hence,
without loss of generality, the sequence {a,,} converges to some 6 € [0,€2), and 6 > «; for all i.
Then, by continuity of f we have f(0) = lim,, f(a,,). Now, for any 8 > 6, we have

[F(B) = FO) < [f(B) = flam)| + [f(an) = F(O)] = 0, n — oo

Thus, f(B) = f(0) for any S > 6, again proving the claim.

Thus, let us now assume that there exists some ¢ > 0 such that for any a € Sq there exists
some G(a) > a with |f(a) — f(5)| > €. Starting with oy = 0, we can construct an increasing
sequence o < a; < ..., where each «; is inductively obtained as some 5(c;_1). Now, {c;} is a
countable set, and hence, upper bounded. Suppose 6 € S, is the least upper bound of {c;}. Now,
by continuity, we have some § < # such that
€ €
FU6.0) € (F6) = 5.6) +5)

Since 0 is the least upper bound of the strictly increasing sequence «;, there exists some § < a;, <
6. Now, for a; < aj41 < 6. But then, |f(a;41) — f(e;)| < €, a contradiction.

Hence, we have that there is some a € S such that f(z) is constant for all x > «. O



Proposition 21.2: (73 # Completely 75 : Tychonoff Corkscrew)

The Tychonoff corkscrew is T3, but not completely 75.

Proof
For any point other than ., one can easily construct a basis of open sets which are regular (i.e,

int(O) = O). Indeed, if the point is not on any of the “slits”, we can take product of intervals.
For a point on the slit, we might need to take the intervals in two different planks, but we can
still get a basis of regular open sets. For a., the image of the basic open neighborhoods are
open (Check!), and they are clearly regular open sets. Similar argument works for . Thus, the

Tychonoff corkscrew is a regular space. In fact, it is Ty as every point is closed, and hence, T5.

Let us now show that the space is not completely T5. Suppose f is a real-valued continuous
function. Observe that for n # 0, on each of the horizontal lines Ag x {n} x {k}, the function
f is constant on an interval of the form [—a, a] about €. Same argument works for the z-axis as
well, and we get a deleted neighborhood about {(€,w, k)} where f is constant. Now, there are
countable infinitely many such intervals, on each of which f is constant. Indeed, on each stage,
there are countable infinitely many horizontal lines (counting two lines for the z-axis), and there
are countable infinitely many stages (the positive z-axes are getting counted twice, which is not
an issue). Again, using the well-ordering, we can get a common « such that f is constant on each

of the [—a,a] x {£n} x {k} and on ([—a,a] x {w} \ {(Q,w)}) x {k}, for all k € Z.

Fix some —( € [—a, ), and the corresponding 8 € (€2, a]. Then, denote the same points (i.e,
their equivalence classes) in different stages as

_Bk:(_ﬁawak)a ﬁk:<5awak)'

Next, get the sequences

_Bin = <_57 :t’l’l,, k‘i) ) ﬁin = (57 :l:na k) .

Clearly, as +£n — w, we have
=B, = =B Ba— 85 B, B
where the last convergence follows since the north edge of the fourth quadrant is identified with
the south edge of the first quadrant of the stage just below! Now, f (—ijm) =f (@m) Hence,
by continuity,
f(=B%) =lim f (=5;) = lim f (8;) = F(B"),
and also,
f(=p%) =lm f (=p%,) =lim f (B%,) = f (67).
But then, inductively we see that f(4/3*) are all constant. This implies that f is constant on the
union of deleted intervals

7= J ([~a.a] x {w}\ {(Q.w)}) x {k}.

kEZ
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€ T (in fact, taking ay; = £3% will do) such that lim; ., a; =
ay and lim; ,_ a; = a_. This follows since the basic open neighborhoods of {c,,,} contains all

We can now get a sequence {a;}



the stages after (resp. below) a certain ‘height’. By continuity of f, we have f(ay) = f(a-).

Thus, Tychonoff corkscrew is not functionally 75, as no continuous function is able to distinguish

the points a... O
21.2 Completely regular space

Definition 21.3: (Completely regular space)

A space X is called a completely regular space if given any closed set A C X and a point
xr € X \ A, there exists a continuous function f : X — [0, 1] such that f(z) =0 and f(A) = 1.

Remark 21.4

It is immediate that a completely regular space is regular.

Definition 21.5: (7;:-space)

A space X is called a TS%—space (or a Tychonoff space) if it is completely regular, and Tp.

Remark 21.6

It is immediate that a T31-space is completely 75, and hence, Ty Also, Ty = Tsis clear as well.
Moreover, one can check that a completely regular space is T3% if and only if it is 75. Thus, one
can define T3%—space as a completely regular, Hausdorff space.

Proposition 21.7: (Metrizable = Tychonoff)

Metrizable spaces are Tychonoff.

Proof
Say (X, d) is a metric space. Let A C X be closed, and p € X \ A be a point. Consider the map

_ d(p, z)
flz) = dp2) 1 d(Az) r e X.

It is easy to see that f : X — R is continuous, and f(p) =0, f(A) = 1. Thus, X is completely
regular, and hence, Tychonoff. O

Proposition 21.8: (73 # T;1 : Tychonoff corkscrew)

The Tychonoff corkscrew X is T3 but not Tj;.

Proof
We have seen that X is T3 but not completely 75. Since Tgé implies completely 75, it follows that
X is not Ty1. O

Proposition 21.9: (Completely T, # T, : Half-disc topology)

The half-disc topology X is a completely 75 space, which is not T3%.




We have seen X is completely T, (as it was submetrizable), but not regular (in fact not even

semiregular). Hence, X cannot be Ty1. O




