
Topology Course Notes (KSM1C03)

Day 21 : 24th October, 2025
Tychonoff corkscrew property -- completely regular space

21.1 Regular space and T3 space (cont.)

Proposition 21.1: (Continuous map from SΩ is eventually constant)

Given any continuous map f : SΩ → R, there exists some α ∈ SΩ such that f(x) = c for all
x ≥ α. Consequently, f can only have countably many distinct values.

Proof
If possible, suppose there exists some ε > 0 such that for any α ∈ SΩ there exists some β(α) > α

with |f(α)− f(β)| ≥ ε. Otherwise, for each n ≥ 1, there exists some αn such that for all β > αn,
we have |f(β)− f(αn)| < 1

n
. If the sequence {αn} is finite (i.e, there are finitely many points),

then just take θ = maxαn. It follows that for any β > θ, we have |f(β)− f(θ)| < 1
n

for all n. In
particular, f(β) = f(θ) for all b > θ, proving the claim. If the sequence is not finite, without loss
of generality, assume α1 < α2 < . . . . Now, recall that [0,Ω) is sequentially convergent. Hence,
without loss of generality, the sequence {αn} converges to some θ ∈ [0,Ω), and θ ≥ αi for all i.
Then, by continuity of f we have f(θ) = limn f(αn). Now, for any β > θ, we have

|f(β)− f(θ)| ≤ |f(β)− f(αn)|+ |f(αn)− f(θ)| → 0, n → ∞.

Thus, f(β) = f(θ) for any β > θ, again proving the claim.

Thus, let us now assume that there exists some ε > 0 such that for any α ∈ SΩ there exists
some β(α) > α with |f(α)− f(β)| ≥ ε. Starting with α0 = 0, we can construct an increasing
sequence α0 < α1 < . . . , where each αj is inductively obtained as some β(αj−1). Now, {αj} is a
countable set, and hence, upper bounded. Suppose θ ∈ SΩ is the least upper bound of {αj}. Now,
by continuity, we have some δ < θ such that

f ((δ, θ]) ⊂
(
f(θ)− ε

2
, f(θ) +

ε

2

)
.

Since θ is the least upper bound of the strictly increasing sequence αj, there exists some δ < αj0 ≤
θ. Now, for αj < αj+1 ≤ θ. But then, |f(αj+1)− f(αj)| < ε, a contradiction.
Hence, we have that there is some α ∈ SΩ such that f(x) is constant for all x ≥ α. �
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Proposition 21.2: (T3 6⇒ Completely T2 : Tychonoff Corkscrew)

The Tychonoff corkscrew is T3, but not completely T2.

Proof
For any point other than α±, one can easily construct a basis of open sets which are regular (i.e,
int(Ō) = O). Indeed, if the point is not on any of the “slits”, we can take product of intervals.
For a point on the slit, we might need to take the intervals in two different planks, but we can
still get a basis of regular open sets. For α+, the image of the basic open neighborhoods are
open (Check!), and they are clearly regular open sets. Similar argument works for α−. Thus, the
Tychonoff corkscrew is a regular space. In fact, it is T0 as every point is closed, and hence, T3.

Let us now show that the space is not completely T2. Suppose f is a real-valued continuous
function. Observe that for n 6= 0, on each of the horizontal lines AΩ × {n} × {k}, the function
f is constant on an interval of the form [−α, α] about Ω. Same argument works for the x-axis as
well, and we get a deleted neighborhood about {(Ω, ω, k)} where f is constant. Now, there are
countable infinitely many such intervals, on each of which f is constant. Indeed, on each stage,
there are countable infinitely many horizontal lines (counting two lines for the x-axis), and there
are countable infinitely many stages (the positive x-axes are getting counted twice, which is not
an issue). Again, using the well-ordering, we can get a common α such that f is constant on each
of the [−α, α]× {±n} × {k} and on ([−α, α]× {ω} \ {(Ω, ω)})× {k}, for all k ∈ Z.

Fix some −β ∈ [−α,Ω), and the corresponding β ∈ (Ω, α]. Then, denote the same points (i.e,
their equivalence classes) in different stages as

−βk = (−β, ω, k) , βk = (β, ω, k) .

Next, get the sequences

−βk
±n = (−β,±n, k) , βk

±n = (β,±n, k) .

Clearly, as ±n → ω, we have

−βk
±n → −βk, βk

n → βk, βk
−n → βk−1,

where the last convergence follows since the north edge of the fourth quadrant is identified with
the south edge of the first quadrant of the stage just below! Now, f

(
−βk

±n

)
= f

(
βk
±n

)
. Hence,

by continuity,
f(−βk) = lim f

(
−βk

n

)
= lim f

(
βk
n

)
= f(βk),

and also,
f(−βk) = lim f

(
−βk

−n

)
= lim f

(
βk
−n

)
= f

(
βk−1

)
.

But then, inductively we see that f(±βk) are all constant. This implies that f is constant on the
union of deleted intervals

I =
⋃
k∈Z

([−α, α]× {ω} \ {(Ω, ω)})× {k} .

We can now get a sequence {ai}∞i=−∞ ∈ I (in fact, taking a±i = ±βi will do) such that limi→∞ ai =

α+ and limi→−∞ ai = α−. This follows since the basic open neighborhoods of {αpm} contains all
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the stages after (resp. below) a certain ‘height’. By continuity of f , we have f(α+) = f(α−).
Thus, Tychonoff corkscrew is not functionally T2, as no continuous function is able to distinguish
the points α±. �

21.2 Completely regular space

Definition 21.3: (Completely regular space)
A space X is called a completely regular space if given any closed set A ⊂ X and a point
x ∈ X \A, there exists a continuous function f : X → [0, 1] such that f(x) = 0 and f(A) = 1.

Remark 21.4

It is immediate that a completely regular space is regular.

Definition 21.5: (T3 1
2
-space)

A space X is called a T3 1
2
-space (or a Tychonoff space) if it is completely regular, and T0.

Remark 21.6

It is immediate that a T3 1
2
-space is completely T2, and hence, T2 1

2
. Also, T3 1

2
⇒ T3 is clear as well.

Moreover, one can check that a completely regular space is T3 1
2

if and only if it is T2. Thus, one
can define T3 1

2
-space as a completely regular, Hausdorff space.

Proposition 21.7: (Metrizable ⇒ Tychonoff)

Metrizable spaces are Tychonoff.

Proof
Say (X, d) is a metric space. Let A ⊂ X be closed, and p ∈ X \ A be a point. Consider the map

f(x) :=
d(p, x)

d(p, x) + d(A, x)
, x ∈ X.

It is easy to see that f : X → R is continuous, and f(p) = 0, f(A) = 1. Thus, X is completely
regular, and hence, Tychonoff. �

Proposition 21.8: (T3 6⇒ T3 1
2

: Tychonoff corkscrew)

The Tychonoff corkscrew X is T3 but not T3 1
2
.

Proof
We have seen that X is T3 but not completely T2. Since T3 1

2
implies completely T2, it follows that

X is not T3 1
2
. �

Proposition 21.9: (Completely T2 6⇒ T3 1
2

: Half-disc topology)

The half-disc topology X is a completely T2 space, which is not T3 1
2
.
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Proof
We have seen X is completely T2 (as it was submetrizable), but not regular (in fact not even
semiregular). Hence, X cannot be T3 1

2
. �
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