
Topology Course Notes (KSM1C03)

Day 20 : 23rd October, 2025
regular space -- T3 space -- half-disc topology -- Tychonoff plank -- Tychonoff
corkscrew

20.1 Regular space and T3-space

Definition 20.1: (Regular space)
A space X is called regular if given any closed set A ⊂ X and any point x ∈ X \A, there exists
open sets U, V ⊂ X such that

x ∈ U, A ⊂ V, U ∩ V = ∅.

Proposition 20.2: (Regularity via closed neighborhood base)

Given a space X, the following are equivalent.

a) X is regular.

b) Given any x ∈ X and open neighborhood x ∈ U ⊂ X, there exists a closed neighborhood
x ∈ C̊ ⊂ C ⊂ U .

c) Given any x ∈ X and open neighborhood x ∈ U ⊂ X, there exists an open neighborhood
x ∈ V ⊂ V̄ ⊂ U .

In other words, regularity is equivalent to the fact that closed neighborhoods of any point forms
a local base at that point.

Proof
Suppose X is regular. Let x ∈ U ⊂ X be an open neighborhood. Then A = X \U is a closed set,
and x 6∈ A. By regularity, there are open sets P,Q ⊂ X such that

x ∈ P, A ⊂ Q, P ∩Q = ∅.

Note that
P ∩Q = ∅ ⇒ P ⊂ X \Q ⇒ P̄ ⊂ X \Q = X \Q ⊂ X \ A = U.

Thus, we have a closed neighborhood x ∈ P ⊂ P̄ ⊂ U . This proves a) ⇒ b).
Let us show b) ⇒ c). Suppose x ∈ U ⊂ X is given. Then, by b), we have some closed neighborhood
x ∈ C̊ ⊂ C ⊂ U . But then taking V = C̊, we have x ∈ V ⊂ V̄ ⊂ C̄ = C ⊂ U . This proves b) ⇒
c).
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Finally, suppose c) holds. Let A ⊂ X be closed, and x 6∈ A be a point. Then, x ∈ U := X \A. By
c), there is an open neighborhood such that x ∈ V ⊂ V̄ ⊂ U . Consider P = V and Q = X \ V̄ .
Then, x ∈ V = P , and A = X \U ⊂ X \ V̄ = Q. Clearly, P ∩Q = ∅. Thus, X is regular, proving
a). �

Definition 20.3: (T3-space)
A space X is called a T3-space if X is regular and T0.

Example 20.4: (Regularity does not imply T3)

Consider X = {0, 1} with the indiscrete topology. Then, X is a regular space (in fact any
indiscrete space is regular). But X is not T0. Thus, X is not T3.

Proposition 20.5: (T3 is equivalent to regular, T2)

A space X is T3 if and only if it is regular, T2.

Proof
Suppose X is regular, T2. Since T2 ⇒ T0, we have X is T3. Conversely, suppose X is T3. Let
us show that X is T2. Let x 6= y ∈ X. Since X is T0, there is an open set U ⊂ X, such that,
without loss of generality, x ∈ U and y 6∈ U . Then, there is an open neighborhood such that
x ∈ V ⊂ V̄ ⊂ U . Take W := X \ V̄ . Then, y ∈ X \U ⊂ X \ V̄ = W . Clearly, V ∩W = ∅. Thus,
X is T2. �

Proposition 20.6: (T3 ⇒ T2 1
2
)

A T3-space is T2 1
2
.

Proof
Let x 6= y ∈ X. Since X is T2, we have open sets U, V ⊂ X such that

x ∈ U, y ∈ V, U ∩ V = ∅.

But then there are open sets A,B ⊂ X such that x ∈ A ⊂ Ā ⊂ U and y ∈ B ⊂ B̄ ⊂ V . Clearly,
Ā ∩ B̄ = ∅. Thus, X is T2 1

2
. �

Example 20.7: (T2 1
2
6⇒ T3 : Arens square is T2 1

2
, but not regular)

Recall that the Arens square X is a T2 1
2
-space. Let us show that X is not regular. For the

point (0, 0), consider an open neighborhood Un. But then for any basic open neighborhood
(0, 0) ∈ Um ⊂ Un, we must have that Um contains points with y-coordinate value 1

4
. Thus,

Um 6⊂ Un. This means that the closed neighborhoods at (0, 0) does not form a local base.
Hence, X is not regular.

Exercise 20.8

Check that the double origin plane is not T3.
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Example 20.9: (Half-disc topology)

Consider the upper half plane H = {(x, y) | y > 0} and the x-axis L = {(x, 0) | x ∈ R}. On
the set X := H ∪ L, consider the following topology.

• For any (x, y) ∈ H, consider the usual neighborhoods from R2 as the neighborhood basis.

• For (x, 0) ∈ L, consider the open neighborhoods as {x} ∪ (H ∩ U), where U ⊂ R2 is a
usual open neighborhood of (x, 0).

H

L

This space X is called the half-disc topology .

Proposition 20.10: (Completely T2 6⇒ Regular : Half-disc topology)

The half-disc topology X is completely T2, but not regular.

Proof
Observe that the inclusion map ι : X ↪→ R2 is continuous. Since R2 is a metric space, it is
completely T2. Consequently, it follows that X is again completely T2. Indeed, for any x 6= y ∈ X,
we have g : R2 → [0, 1] continuous such that f(x) = 0 and f(y) = 1. Then, f := g◦ι : X → [0, 1]

gives a functional separation.
Let us now show that X is not regular (and hence not T3 either). For any point (x, 0) ∈ L, consider
the half disc D = H ∩B ((x, 0), ε) of radius ε > 0 and center (x, 0). Then, U = {(x, 0)}∪D is an
open set. These open sets clearly form a neighborhood basis at (x, 0). Observe that

∫
Ū contains

all the points on the diameter of the half disc. Hence, we cannot find neighborhood basis of regular
open sets at (x, 0) (recall : an open set O is regular if int(Ō) = O). Thus, the half-disc topology
is not regular. �

Example 20.11: (Tychonoff Plank)

Recall the first infinite ordinal ω and the first uncountable ordinal SΩ. We get the well-ordered
“intervals” [0, ω] (which you can think of as {0, 1, 2, . . . , ω}), and [0,Ω] (which you can think
of as SΩ = SΩ ∪ {Ω}). These are topological spaces equipped with the order topology, and in
particular, they are compact. The Tychonoff plank is the product [0,Ω]× [0, ω]. You can imagine
this as the first quadrant of a coordinate grid : the x-axis corresponds to the first uncountable
ordinal, whereas the y-axis corresponds to the first infinite ordinal. The deleted Tychonoff plank
is the space [0,Ω]× [0, ω] \ {(Ω, ω)}

Example 20.12: (Corkscrew construction)

For the ordinal ω or Ω, we have the totally ordered sets

Aω := [−0,−1, . . . , ω, . . . , 1, 0], AΩ := [−0,−1, . . . ,−ω, . . . ,Ω, . . . , ω, . . . , 1, 0],
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equipped with the order topology. Here, the negative of an element is a new element (so, −0

and 0 different!). Taking product, we get a “coordinate plane”, with all four quadrants a copy
of Tychonoff plank.

(Ω, ω) (0, ω)

(Ω, 0)

(Ω,−0)

(−0, ω)

(0, 0)

(0,−0)(−0,−0)

(−0, 0)

1st2nd

3rd 4th

Delete the “origin” (Ω, ω). Now, take countable infinitely many copies of these planes (indexed
by Z), and stack them vertically. Next, cut all the planes along the positive x-axis. Then, along
the cut, identify the north edge of the fourth quadrant of one plane to the south edge of the first
quadrant of the plane just below. This is an identification space; since the origin was removed
from all the planes, there is no issue about well-definedness.

This construction can be formalized as follows. For each k ∈ Z, consider the following spaces

T 1
k = ([Ω, 0]× [ω, 0] \ {(Ω, ω)})× {k}, T 2

k = ([−0,Ω]× [ω, 0] \ {(Ω, ω)})× {k},
T 3
k = ([−0,Ω]× [−0, ω] \ {(Ω, ω)})× {k}, T 4

k = ([Ω, 0]× [−0, ω] \ {(Ω, ω)})× {k}.

These are copies of the deleted Tychonoff planks, representing the four quadrants at the kth-
stage. Let us identify the edges to make the corkscrew (see the picture above). We consider the
set X =

⋃
k∈Z (T

1
k ∪ T 2

k ∪ T 3
k ∪ T 4

k ), and on it define an equivalence relation as follows. For any
x ∈ X, set x ∼ x. Then, for each k ∈ Z, consider the following collection of relations (and their
reverse, to make it symmetric).

i) x ∼ y for x = (Ω, n, k) ∈ T 1
k and y = (Ω, n, k) ∈ T 2

k (identify the west-side of the first
quadrant T 1

k with the east-side of the second quadrant T 2
k , along the positive y-axis).

ii) x ∼ y for x = (−α, ω, k) ∈ T 2
k and y = (−α, ω, k) ∈ T 3

k (identify the south-side of the
second quadrant T 2

k with the north-side of the third quadrant T 3
k , along the negative

x-axis).

iii) x ∼ y for x = (Ω,−n, k) ∈ T 3
k and y = (Ω,−n, k) ∈ T 4

k (identify the east-side of
the third quadrant T 3

k with the west-side of the fourth quadrant T 4
k , along the negative

y-axis).
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iv) x ∼ y for x = (α, ω, k) ∈ T 4
k and y = (α, ω, k − 1) ∈ T 1

k−1 (identify the north-side of
the fourth quadrant T 4

k with the south-side first quadrant T 1
k−1 of the plane below,

along the positive x-axis).

The quotient space X/∼ looks like a corkscrew. This construction can be performed with other
‘coordinate plane’ whenever it makes sense!

Example 20.13: (Tychonoff Corkscrew)

Before performing the corkscrew construction as above with the Tychonoff planks, let us now
add two extra points {α±}, and consider the space

Z = {α+, α−} ∪
⋃
k∈Z

(
T 1
k ∪ T 2

k ∪ T 3
k ∪ T 4

k

)
.

The topology on Z is defined as follows. For any point (±α,±n, k), an open neighborhood
basis is obtained from the induced topology of the deleted Tychonoff plank. Thus, basic open
neighborhoods are products of intervals. For the point α+, a basic open neighborhood consist
of all of

⋃
k>i (T

1
k ∪ T 2

k ∪ T 3
k ∪ T 4

k ) for some i ∈ Z, i.e, everything above ith-stage. Similarly,
for α−, open neighborhoods consist of all of

⋃
k<i (T

1
k ∪ T 2

k ∪ T 3
k ∪ T 4

k ) for some i ∈ Z, i.e,
everything below ith-stage. It is easy to see that these collections of neighborhood bases forms a
basis for a topology on Z. Let us now perform the identification as above, the points {α±} are
identified only to themselves,i.e, α+ ∼ α+, α− ∼ α−, and no other point. The quotient space
Z/∼ is called the Tychonoff corkscrew .
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