
Topology Course Notes (KSM1C03)

Day 19 : 21st October, 2025
T2 1

2
-space -- completely T2 space -- Arens square

19.1 T2 1
2
-space and completely Hausdorff space

Definition 19.1: (T2 1
2
-space)

A space X is called a T2 1
2
-space (or a Urysohn space) if given any two distinct points x, y ∈ X,

there exists disjoint closed neighbrohoods of them, i.e, there are closed sets A,B ⊂ X such that
x ∈ Å ⊂ A, y ∈ B̊ and A ∩B = ∅.

Remark 19.2: T2 1
2
⇒ T2

Alternatively, we can define T2 1
2
-space as follows : given any two distinct x, y ∈ X, there exists

open sets U, V ⊂ X, such that x ∈ U, y ∈ V , and Ū ∩ V̄ = ∅. Thus, it is immediate that
T2 1

2
⇒ T2.

Example 19.3: (T2 6⇒ T2 1
2
)

Let us consider the double origin plane. Let X be R2, with an additional point 0∗. For any x ∈ X

with x 6= 0, 0∗, declare the open neighborhoods of x to be the usual open sets x ∈ U ⊂ R2\{0}.
For the origin 0, declare the basic open neighborhoods

Un :=

{
(x, y) ∈ R2

∣∣∣∣ x2 + y2 <
1

n
, y > 0

}
∪ {0} , n ≥ 1,

and similarly, for 0∗, declare the basic open neighborhoods to be

Vn :=

{
(x, y) ∈ R2

∣∣∣∣ x2 + y2 <
1

n
, y < 0

}
∪ {0∗} , n ≥ 1.

It is easy to see that these basic open sets form a basis for a topology on X. With this topology,
X is called the double origin plane. It is easy to see that X is T2. But for any two open
neighborhoods of 0 and 0∗, there is always some point of the form (x, 0) with x 6= 0, which is
a limit point of both open sets. Thus, 0 and 0∗ cannot be separated by closed neighborhoods.
Hence, X is not a T2 1

2
-space.
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Definition 19.4: (Completely Hausdorff space)
A space X is said to be a completely Hausdorff space (or a functionally Hausdorff space), if
given any two distinct points x, y ∈ X, there exists a continuous function f : X → [0, 1] such
that f(x) = 0 and f(y) = 1.

Remark 19.5

Suppose, given x 6= y ∈ X, we have a continuous map f : X → R such that f(x) 6= f(y).
Without loss of generality, assume f(x) < f(y). Consider the function

g : R −→ R

t 7−→


f(x), t ≤ f(x),

t, f(x) ≤ t ≤ f(y),

f(y), f(y) ≤ t.

By the pasting lemma, g is continuous. Then, h = g ◦ f : X → [f(x), f(y)] is a continuous map.
By composing with a suitable homeomorphism [f(x), f(y)] → [0, 1], we can then get a continuous
map F : X → [0, 1] such that F (x) = 0 and F (y) = 1.

Exercise 19.6

Suppose Y is a completely T2 space. Given a space X, suppose for any x 6= y ∈ X, there
is a continuous map f : X → Y such that f(x) 6= f(y). Verify that X is completely T2. In
particular, subspaces and products of completely T2 spaces are again completely T2.

Proposition 19.7: (Metric space is completely T2)

A metrizable space X is completely T2. Consequently, given a space Y and a continuous injective
map ι : Y ↪→ X, we have X is completely T2. A space which admits a continuous injective map
into a metrizable space is called a submetrizable space.

Proof
Any metrizable space X is T2. Thus, we only need to show that it is regular. Suppose d is a metric
on X inducing the topology. Then, ε := d(x, y) 6= 0. Consider the function,

f(z) = d(x, z) + (ε− d(z, y)) , z ∈ X.

Since distance function is continuous, it follows that f : X → R is a continuous function. Also,
f(y) = 2ε 6= 0 = f(x). But then we can get a continuous map h : X → [0, 1] such that h(x) = 0

and h(y) = 1. Thus, X is completely T2. �

Proposition 19.8: (Completely T2-spaces are T2 1
2
)

A completely T2-space is T2 1
2
.
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Proof
Let X be completely T2. For any distinct x, y ∈ X, get a continuous function f : X → [0, 1] such
that f(x) = 0, f(y) = 1. Then, consider the closed sets A := f−1([0, 1

4
]), B := f−1([3

4
, 1]), which

are clearly disjoint. Also, x ∈ f−1

([
0,

1

4

))
︸ ︷︷ ︸

open in X

⊂ A, and so, x ∈ Å. Similarly, y ∈ B̊. Thus, X is a

T2 1
2
-space. �

Example 19.9: (Arens square)

Consider Q := (0, 1) ∩ Q, and let Q = tq∈QQq be a disjoint union of dense subsets Qq ⊂ Q,
indexed by q ∈ Q. As an explicit example, index each prime number as {pq | q ∈ Q}, and then
consider

Qq =

{
a

piq

∣∣∣∣ 1 ≤ a ≤ piq, gcd(a, pq) = 1, i ≥ 1

}
.

Clearly, Qq is dense in Q, and they are disjoint. Now, consider A = Q \
⋃

q∈QQq. Just modify,
say, Q′

1
2

= Q 1
2
∪ A. We still have disjoint dense sets.

Let us now consider the set

X = {(0, 0), (1, 0)} ∪
⋃
q∈Q

{q} ×Qq ⊂ R2

(
1
2
, r
)Wn

Un Vn

(1, 0)(0, 0) 1
4

1
2

3
4

Let us topologize X by declaring basic open neighborhoods for each point.

• For (0, 0), declare basic open neighborhoods as the collection

Un := {(0, 0)} ∪
{
(x, y) ∈ X

∣∣∣∣ 0 < x <
1

4
, 0 < y <

1

n

}
, n ≥ 1

• For (1, 0), declare basic open neighborhoods as the collection

Vn := {(1, 0)} ∪
{
(x, y) ∈ X

∣∣∣∣ 34 < x < 1, 0 < y <
1

n

}
, n ≥ 1

• For any
(
1
2
, r
)
∈ 1

2
×Q 1

2
, , declare basic open neighborhoods as the collection

Wn(r) :=

{
(x, y)

∣∣∣∣ 14 < x <
3

4
, |y − r| < 1

n

}
, n ≥ 1.

• Let X \ {(0, 0), (1, 0)} ∪
{

1
2

}
×Q 1

2
inherit the usual subspace topology from R2.

These neighborhoods form a basis for a topology on X. This space is called the Arens square.
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Proposition 19.10: (T2 1
2
6⇒ Completly T2 : Arens square space)

Arens square is T2 1
2
-space, but not completely T2.

Proof
Let us consider the points a = (0, 0) and some b =

(
1
2
, r
)
. Fix some m,n ≥ 1 such 0 < 2

m
<

r − 1
n
< r + 1

n
< 1. Then, it is easy to see that Um ∩Wn = ∅. Similar argument can be applied

to b and a′ = (1, 0). For any point c = (q, s) with q 6= 1
2
, observe that the y-coordinate s cannot

be repeated as
(
1
2
, s
)
, since we started with a disjoint partition. Thus, using the denseness, we can

again get some closed neighborhoods. Hence, the Arens square is a T2 1
2
-space.

Let us show that it is not completely T2. If possible, suppose f : X → [0, 1] is a continuous map,
where X is the Arens square, such that f(0, 0) = 0 and f(1, 0) = 1. Since f is continuous, we
must have some m,n ≥ 1 such that

(0, 0) ∈ Un ⊂ f−1

[
0,

1

4

)
, (1, 0) ∈ Vm ⊂ f−1

(
3

4
, 1

]
.

Let us fix some r ∈ Q 1
2
, with r < min

{
1
n
, 1
m

}
. This is possible since Q 1

2
is dense in Q. Now,

f
(
1
2
, r
)

cannot be in both
[
0, 1

4

)
and

(
3
4
, 1
]
. Without loss of generality, we can assume that exists

some open interval U ⊂ [0, 1] such that

f

(
1

2
, r

)
∈ U,

[
0,

1

4

]
∩ Ū = ∅.

Then, the pre-images f−1
[
0, 1

4

]
and f−1Ū are disjoint closed neighborhoods of (0, 0) and

(
1
2
, r
)

respectively. Now, Un ⊂ f−1
[
0, 1

4

)
⊂ f−1

[
0, 1

4

]
. Since r < 1

n
, it follows (Check!) that Un∩Wk 6= ∅

for any k ≥ 1. This contradicts f−1
[
0, 1

4

]
∩ Ū = ∅. Hence, the Arens quare is not completely T2.

�

Remark 19.11: (Totally disconnected spaces may not be completely T2)

It is easy to see that Q, which is a totally disconnected set, is completetly T2. Indeed, for any
r, s ∈ Q, with r < s, get some irrational r < x < s. Then,

f(t) =

0, t < x

1, x < t,

is a continuous function, with f(r) = 0, f(s) = 1. But in general, a totally disconnected space
need not be completely T2.
Indeed, we have seen that the Arens square X is not completely T2. Let us show that it is totally
disconnected. Firstly, observe that the second component projection π : X → [0, 1] ∩ Q is a
continuous map (but the first component projection is not continuous). Now, any two points of
X cannot share the same second component, and thus π is injective. Hence, if a connected set
A ⊂ X contains more than one point, π(A) will be a connected set of [0, 1] ∩Q, with more than
one point, a contradiction. Thus, X is totally disconnected.
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