Topology Course Notes (KSM1C03)

Day 18 : 17" October, 2025

countability axioms in metric space —-— Lebesgue number lemma

18.1 Countability axioms in metric spaces

Remark 18.1

We have the implications

Second countable =———=> First countable

Hereditarily Lindelof

Lindelof Separable

Recall, a space is called a Gs-space if every closed set can be written as the intersection of countably
many open sets.

Example 18.2: (Lindeldf is not separable)

Consider an uncountable space X, and fix a point g € X. Let T be the excluded point topology
on X : a proper subset U C X is open if and only if o & U. Then, the only open set containing
xo is X itself, and hence, X is Lindelof (in fact, compact). On the other hand, it cannot be
separable : for any set A C X, one can see that A= AU{p}. Thus, there cannot be a countable
dense subset.

Example 18.3: (Separable is not Lindelof)

Consider an uncountable space X, and fix a point x5 € X. Let T be the particular point
topology on X based at x : a nonempty set is open if and only if it contains zo. Then, (X, T)
is separable, as the singleton {z} is dense in X. But (X, 7)) is not Lindeléf, as the open cover
{{zo,x} | © € X} does not have any countable sub-cover.




Theorem 18.4: (Metric space and countability axioms)

Suppose (X, d) is a metric space. Then, X is first countable. Moreover, the following are equiv-
alent.

a) X is second countable.
b) X is separable.

c) X is Lindelof.

Proof

Given any x € X, consider the open balls B, = B, (:1:, %) It is easy to see that {B,} is a
countable basis at x. Thus, X is first countable.

Since any second countable space is separable and Lindeldf, clearly a) = b) and a) = c) holds.
Let us assume X is separable. Then, we have a countable subset A C X which is dense in X.

o {uf-)

which is clearly a countable collection. Let us show that B is a basis for the topology on (X, d).

Consider the collection

aEA,nZl},

Suppose x € X, and pick some arbitrary open neighborhood x € U C X. Then, for some n > 1,

1 1
x € By <x,—) C By (m,—) cU.
2n n

Since A is dense, we have some a € AN By (x, %) Then, for any y € By (a, %) we have

we have

1 1 1 1
< = =yeBya - .
d(z,y) <d(z,a) +d(a,y) < o + 5 n y € By (:zc, n) cU

Thus, By (a, %) Cc U. Also, d(z,a) < % and so, x € By (a, %) Thus, B is a basis, showing b)
= a).
Now, suppose X is Lindelof. For each n > 1, consider the collection

1
U, = {Bd (x,—) a:GX},
n

which is clearly an open cover of X. Hence, there is a countable subcover V,, C U,,. Consider the

collection V = Un>1 V., which is clearly a countable collection of open sets. Let us show that V
is a basis for the to_pology on (X, d). Fix some x € X, and some open neighborhood x € U C X.
Then, for some n > 1 we have € By (z,5) C Bq(x,%) C U. Since Vy, is a cover, there is
some a € X such that By (a,5-) € V2, and © € By (a, 5-). Now, for any y € By (a, 5-), we have

1 1 1 1
< — === Byl z — .
d(x,y)_d(x,a)+d(a,y)<2n+2n n:>y€ d(m,n)CU
Thus, z € By (x, %) C U. This shows that V is a basis, proving c) = a). O




Proposition 18.5: (Compact in metric space)

A compact subset of a metric space is closed and bounded.

Proof
Let (X, d) be a metric space, and C' C X is a compact subset. Since metric spaces are 75, clearly any

compact subset is closed. For any z, € C fixed, consider the open covering C' C |~ Ba(zo,n).
This admits a finite subcover, say, C' C Ule Ba(xg,n;). Taking ng = maxj<;<xn;, we have
C' C By(xg,np). Thus, C' is bounded. O

Example 18.6: (Closed bounded set in metric space)

In an infinite space X, consider the metric

0, ==y,

d(z,y) = Lt

The induced topology is discrete, and hence, X is not compact. But clearly X is closed in itself,
and bounded as X C By(xo, 2).

Lemma 18.7: (Lebesgue number lemma)

Suppose (X, d) is a compact metric space, f : X — Y is a continuous map. Let V = {V,} be
an open cover of f(X). Then, there exists a § > 0 (called the Lebesgue number of the covering)
such that for any set A C X, we have

Diam(A) = sup d(z,y) <0 = f(A) C V,for some a.
z,yeA

Proof
For each = € X, clearly, f(x) € V,, for some . By continuity of f, we have some ¢, > 0 such
that the ball z € By(z,6,) C f~'(Va,). Now, X = (J,cx Ba (2, %) has a finite subcover, say,
X =", By (:c “7) Set

O

0 = min —*.
1<i<n 4

We claim that § is a Lebesgue number for the covering. Let A C X be a set with Diam(A) < 9.
5u;

For some a € A, there exists 1 < iy < n, such that a € By (%0, TO) Now, for any b € A, we
have d(a,b) < Diam(A) < §. Then,

3 < ] — < ‘0 ‘0 —= ‘0 ..
d(wig,b) < d(wiy, @) +d(a,b) < T+ +0 < —2 4+ — T < s,
Thus, A C Bd(l’io,(smio) = f(A) Cf (Bd (xi(]?éxio)) C Vag%_ 0



