
Topology Course Notes (KSM1C03)

Day 18 : 17th October, 2025
countability axioms in metric space -- Lebesgue number lemma

18.1 Countability axioms in metric spaces

Remark 18.1

We have the implications

Second countable First countable

Hereditarily Lindelöf

Lindelöf Separable
+Gδ-space

Recall, a space is called a Gδ-space if every closed set can be written as the intersection of countably
many open sets.

Example 18.2: (Lindelöf is not separable)

Consider an uncountable space X, and fix a point x0 ∈ X. Let T be the excluded point topology
on X : a proper subset U ( X is open if and only if x0 6∈ U . Then, the only open set containing
x0 is X itself, and hence, X is Lindelöf (in fact, compact). On the other hand, it cannot be
separable : for any set A ⊂ X, one can see that Ā = A∪{p}. Thus, there cannot be a countable
dense subset.

Example 18.3: (Separable is not Lindelöf)

Consider an uncountable space X, and fix a point x0 ∈ X. Let T be the particular point
topology on X based at x0 : a nonempty set is open if and only if it contains x0. Then, (X, T )

is separable, as the singleton {x0} is dense in X. But (X, T ) is not Lindelöf, as the open cover
{{x0, x} | x ∈ X} does not have any countable sub-cover.
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Theorem 18.4: (Metric space and countability axioms)

Suppose (X, d) is a metric space. Then, X is first countable. Moreover, the following are equiv-
alent.

a) X is second countable.

b) X is separable.

c) X is Lindelöf.

Proof
Given any x ∈ X, consider the open balls Bn := Bd

(
x, 1

n

)
. It is easy to see that {Bn} is a

countable basis at x. Thus, X is first countable.
Since any second countable space is separable and Lindelöf, clearly a) ⇒ b) and a) ⇒ c) holds.
Let us assume X is separable. Then, we have a countable subset A ⊂ X which is dense in X.
Consider the collection

B :=

{
Bd

(
a,

1

n

) ∣∣∣∣ a ∈ A, n ≥ 1

}
,

which is clearly a countable collection. Let us show that B is a basis for the topology on (X, d).
Suppose x ∈ X, and pick some arbitrary open neighborhood x ∈ U ⊂ X. Then, for some n ≥ 1,
we have

x ∈ Bd

(
x,

1

2n

)
⊂ Bd

(
x,

1

n

)
⊂ U.

Since A is dense, we have some a ∈ A ∩Bd

(
x, 1

2n

)
. Then, for any y ∈ Bd

(
a, 1

2n

)
, we have

d(x, y) ≤ d(x, a) + d(a, y) <
1

2n
+

1

2n
=

1

n
⇒ y ∈ Bd

(
x,

1

n

)
⊂ U.

Thus, Bd

(
a, 1

2n

)
⊂ U . Also, d(x, a) ≤ 1

2n
and so, x ∈ Bd

(
a, 1

2n

)
. Thus, B is a basis, showing b)

⇒ a).
Now, suppose X is Lindelöf. For each n ≥ 1, consider the collection

Un :=

{
Bd

(
x,

1

n

) ∣∣∣∣ x ∈ X

}
,

which is clearly an open cover of X. Hence, there is a countable subcover Vn ⊂ Un. Consider the
collection V =

⋃
n≥1 Vn, which is clearly a countable collection of open sets. Let us show that V

is a basis for the topology on (X, d). Fix some x ∈ X, and some open neighborhood x ∈ U ⊂ X.
Then, for some n ≥ 1 we have x ∈ Bd

(
x, 1

2n

)
⊂ Bd

(
x, 1

n

)
⊂ U . Since V2n is a cover, there is

some a ∈ X such that Bd

(
a, 1

2n

)
∈ V2n and x ∈ Bd

(
a, 1

2n

)
. Now, for any y ∈ Bd

(
a, 1

2n

)
, we have

d(x, y) ≤ d(x, a) + d(a, y) <
1

2n
+

1

2n
=

1

n
⇒ y ∈ Bd

(
x,

1

n

)
⊂ U.

Thus, x ∈ Bd

(
x, 1

2n

)
⊂ U . This shows that V is a basis, proving c) ⇒ a). �
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Proposition 18.5: (Compact in metric space)

A compact subset of a metric space is closed and bounded.

Proof
Let (X, d) be a metric space, and C ⊂ X is a compact subset. Since metric spaces are T2, clearly any
compact subset is closed. For any x0 ∈ C fixed, consider the open covering C ⊂

⋃
n≥1Bd(x0, n).

This admits a finite subcover, say, C ⊂
⋃k

i=1 Bd(x0, ni). Taking n0 := max1≤i≤k ni, we have
C ⊂ Bd(x0, n0). Thus, C is bounded. �

Example 18.6: (Closed bounded set in metric space)

In an infinite space X, consider the metric

d(x, y) :=

0, x = y,

1, x 6= y.

The induced topology is discrete, and hence, X is not compact. But clearly X is closed in itself,
and bounded as X ⊂ Bd(x0, 2).

Lemma 18.7: (Lebesgue number lemma)

Suppose (X, d) is a compact metric space, f : X → Y is a continuous map. Let V = {Vα} be
an open cover of f(X). Then, there exists a δ > 0 (called the Lebesgue number of the covering)
such that for any set A ⊂ X, we have

Diam(A) := sup
x,y∈A

d(x, y) < δ ⇒ f(A) ⊂ Vαfor some α.

Proof
For each x ∈ X, clearly, f(x) ∈ Vαx for some αx. By continuity of f , we have some δx > 0 such
that the ball x ∈ Bd(x, δx) ⊂ f−1(Vαx). Now, X =

⋃
x∈X Bd

(
x, δx

2

)
has a finite subcover, say,

X =
⋃n

i=1Bd

(
xi,

δxi
2

)
. Set

δ := min
1≤i≤n

δxi

4
.

We claim that δ is a Lebesgue number for the covering. Let A ⊂ X be a set with Diam(A) < δ.
For some a ∈ A, there exists 1 ≤ i0 ≤ n, such that a ∈ Bd

(
xi0 ,

δxi0
2

)
. Now, for any b ∈ A, we

have d(a, b) ≤ Diam(A) < δ. Then,

d(xi0 , b) ≤ d(xi0 , a) + d(a, b) <
δxi0

2
+ δ ≤

δxi0

2
+

δxi0

4
=

3δxi0

4
< δxi0

.

Thus, A ⊂ Bd(xi0 , δxi0
) ⇒ f(A) ⊂ f

(
Bd

(
xi0 , δxi0

))
⊂ Vαxi0

. �
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