
Topology Course Notes (KSM1C03)

Day 17 : 16th October, 2025
properties of Lindelöf spaces -- separable spaces

17.1 Properties of Lindelöf spaces

Proposition 17.1: (Image of Lindelöf spaces)

A continuous image of a Lindelöf space is again Lindelöf

Proof
Suppose f : X → Y is a continuous surjection, and X is Lindelöf. Consider an open cover
Y =

⋃
α Vα. Then, we have an open cover X =

⋃
α f

−1 (Uα), which admits a countable sub-cover,
X =

⋃∞
i=1 f

−1(Uαi
). Then, Y = f(X) =

⋃∞
i=1 Uαi

. Thus, Y is Lindelöf. �

Lindelöf spaces are not well-behaved when considering product or subspaces.

Example 17.2: (R` is Lindelöf)

Let us show that the lower limit topology R` on R is Lindelöf. Suppose {Uα} is an open cover.
For each x, we have [x, rx) ⊂ Uαx , for some rx ∈ Q. Clearly, R` =

⋃
x[x, rx). Let us consider

the space C =
⋃

x(x, rx). We claim that R \C is countable. Indeed, for each u, v ∈ R \C, with
u < v, we must have ru < rv, since otherwise we get u < v < rv ≤ ru and then, v ∈ (u, ru) ⊂ C

a contradiction. Thus, we have an injective map

R \ C → Q
u 7→ ru.

But then R \ C is countable, as Q is countable. Say, R \ C = {ui}∞i=1. On the other hand,
considering C =

⋃
x∈R(x, rx) as a collection of open sets in the usual topology of R, we have a

countable subcover C =
⋃∞

i=1(xi, rxi
). Thus, we have a countable cover,

R` =
∞⋃
i=1

[ui, rui
) ∪

∞⋃
i=1

[xi, rxi
) ⊂

⋃
Uαui

∪
⋃

Uαxi
.

Hence, R` is Lindelöf.
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Example 17.3: (R` × R` is not Lindelöf)

Let us now show that the product X = R`×RI (also known as Sorgenfrey plane) is not Lindelöf.
Consider the subset A = {(x,−x) | x ∈ R} ⊂ X. It is easy to see that A is open. Next, for
each x ∈ R, consider the open set Ux = [x, x + 1) × [−x,−x + 1) ⊂ X. It follows that
A ∩ Ux = {(x,−x)}. Now, consider the open cover

X = (X \ A) ∪
⋃
x∈R

Ux.

This cannot have a countable subcover, since A is uncountable.

Definition 17.4: (Hereditarily Lindelöf)
A space X is called hereditarily Lindelöf if every subspace A ⊂ X is Lindelöf.

Proposition 17.5: (Hereditarily Lindelöf if and only if open subsets are Lindelöf)

A space X is hereditarily Lindelöf if and only if every open subspace U ⊂ X is Lindelöf.

Proof
One direction is trivial. So, suppose every open subspace of X is Lindelöf. Consider an arbitrary
subset A ⊂ X, with the subspace topology. Suppose, we have an open cover A =

⋃
α Uα, where

Uα = A ∩ Vα for Vα ⊂ X open. Now, U =
⋃

α Vα is a open cover, which admits a countable
subcover, say U =

⋃∞
i=1 Vαi

. But then, A = A ∩ U =
⋃∞

i=1A ∩ Vαi
=

⋃∞
i=1 Uαi

. Thus, A is
Lindelöf. Since A was arbitrary, we have X is hereditarily Lindelöf. �

Example 17.6: (S̄Ω is not hereditarily Lindelöf)

Recall the space X = S̄Ω = SΩ ∪ {Ω}, which was shown to be compact, and hence, Lindelöf.
Now, for each a ∈ SΩ, consider the open sets Ua = (a, a+2) = {a+ 1}. Since SΩ is uncountable,
we have the uncountable discrete space A =

⋃
a∈SΩ

(a, a + 2) =
⋃

a∈SΩ
{a+ 1}. Clearly, this is

not Lindelöf. Thus, S̄Ω is not hereditarily Lindelöf.

17.2 Separable space

Definition 17.7: (Separability)
Given A ⊂ X, we say A is dense in X if X = Ā. A space X is called separable if there exists a
countable dense subset.

Exercise 17.8: (Dense set and open set)

Show that A ⊂ X is dense if and only for any nonempty open set U ⊂ X we have U ∩ A 6= ∅.

Exercise 17.9: (Second countablity and seperability)

Show that a second countable space is separable. Check that R with the cofinite topology is
separable, but not second countable.
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Proposition 17.10: (Image of separable space)

Let f : X → Y be countinuous surjection. If X is separable, then so is Y .

Proof
Suppose A ⊂ X is a countable dense subset. Since f is continuous, we have, f(Ā) ⊂ f(A) ⇒
f(A) ⊃ f(X) = Y ⇒ f(A) = Y . Thus, f(A) is dense in Y , which is clearly countable. Hence, Y
is separable. �

Proposition 17.11: (Product of separable spaces)

Suppose {Xα}α∈I is a countable collection of separable spaces. Then, the product X = ΠXα is
separable.

Proof
Fix countable dense subsets Aα ⊂ Xα. Fix some aα ∈ Aα. Then, consider the collection

A = {(xα) ∈ ΠAα | xα = aα for all but finitely many α ∈ I} .

By construction, A is countable. Let us show that A is dense in X. Let U ⊂ X be a basic open
sets. Then, U = ΠαUα, where Uα = Xα for all α ∈ I \ {α1, . . . , αk}. Since Xα = Aα, we have
bαi

∈ Uαi
∩Aαi

for i = 1, . . . , k. Set bα = aα for all α ∈ I \{α1, . . . , αk}. Then, clearly b ∈ U ∩A.
Thus, Ā = X. Hence, X is separable. �

Example 17.12: (Subspaces of separable space)

Subspaces of a separable space need not be separable! Consider an uncountable set X, and fix
a point x0 ∈ X. Equip X with the particular point topology based at x0 (i.e, a nonempty set
is open in X if and only if it contains x0). Then, {x0} is dense in X, and thus X is separable.
On the other hand, the set X \ {x0} is an uncountable discrete subspace, and hence, cannot be
separable.

Definition 17.13: (Nowhere dense subset)
A subset A ⊂ X is called nowhere dense if int(Ā) = ∅.

Example 17.14

Z ⊂ R is nowhere dense, and so is the Cantor set (which is uncountable). If X has discrete
topology, no subset A ⊂ X is nowhere dense. The set A := Z∪ ((0, 1) ∩Q) ⊂ R is not nowhere
dense.

Exercise 17.15: (Nowhere dense discrete subspace of R)

Show that any discrete subspace A ⊂ R is nowhere dense. In particular,
{

1
n

∣∣ n ≥ 1
}

is nowhere
dense.
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Theorem 17.16: (Nowhere dense equivalence)

Let A ⊂ X is given. The following are equivalent.

a) int(Ā) = ∅.

b) For any nonempty open set ∅ 6= UsubsetX, we have A ∩ U is not dense in U (in the
subspace topology).

c) X \ Ā is dense in X.

Proof
Suppose int(Ā) = ∅. Fix some ∅ 6= U ⊂ X open set. Then, U 6⊂ Ā. Pick some y ∈ U \ Ā.
Since Ā is closed, we have V := U \ Ā is open in X, and hence, open in U as well. Now, clearly
V ∩ (U ∩ A) = ∅, and hence, y 6∈ U ∩ A

U . Thus, U ∩ A is not dense in U .
Conversely, suppose A ∩ U is not dense in U for any nonempty open set U ⊂ X. If possible,
suppose int(Ā) 6= ∅. Then, there exists some nonempty open set U ⊂ Ā. Pick y ∈ U and some
arbitrary open neighborhood y ∈ V ⊂ U . Since U is open in X, we have V is open in X as well.
Now, V ⊂ U ⊂ Ā ⇒ V ∩ A 6= ∅ (since V ∩ A = ∅ ⇒ V ∩ Ā = ∅ for V open). Thus, we have
∅ 6= V ∩A = (V ∩U)∩A = V ∩ (U ∩A). Since V was an arbitrary open neighborhood of y in U ,
we have y is an adherent point of U ∩A (in the subspace topology). Thus, we have A ∩ U

U
= U ,

a contradiction. Hence, int(Ā) = ∅.
Let us now assume that X \ Ā is dense in X. Then, for any nonempty open set U ⊂ X, we must
have U ∩ (X \ Ā) 6= ∅ ⇒ U 6⊂ Ā. But then, int(Ā) = ∅. Conversely, suppose int(Ā) = ∅. Then,
for any nonempty open set U ⊂ X, we have U 6⊂ Ā ⇒ U ∩ (X \ Ā). But this means X \ Ā is
dense in X. �
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