Topology Course Notes (KSM1C03)

Day 17 : 16" October, 2025

properties of Lindeldf spaces -- separable spaces

17.1 Properties of Lindelof spaces

Proposition 17.1: (Image of Lindelof spaces)

A continuous image of a Lindelof space is again Lindelof

Proof
Suppose f : X — Y is a continuous surjection, and X is Lindel6f. Consider an open cover

Y =, Va- Then, we have an open cover X = |J,, f~! (U,), which admits a countable sub-cover,
X =2, fH(Us,). Then, Y = f(X) =X, U,,. Thus, Y is Lindelsf. 0

Lindelof spaces are not well-behaved when considering product or subspaces.

Example 17.2: (R, is Lindelof)

Let us show that the lower limit topology R, on R is Lindeléf. Suppose {U,} is an open cover.
For each z, we have [z,7,) C U,,, for some r, € Q. Clearly, R, = |J,[z,7;). Let us consider
the space C' = | J,(x, 7). We claim that R\ C' is countable. Indeed, for each u,v € R\ C, with
u < v, we must have r,, < r,, since otherwise we get u < v < r, < r, and then, v € (u,r,) C C

a contradiction. Thus, we have an injective map

R\C—-Q

U > Ty
But then R\ C' is countable, as Q is countable. Say, R\ C' = {u;};-,. On the other hand,

considering C' = J, (2, 7,) as a collection of open sets in the usual topology of R, we have a
countable subcover C' = | ;= (z;,75,). Thus, we have a countable cover,

R, = G[uhrui) U G[‘ri?rfci) - U Uaui U UUaxi-
i=1 i=1

Hence, R, is Lindelof.




Example 17.3: (R, x R, is not Lindelof)

Let us now show that the product X = R, x R; (also known as Sorgenfrey plane) is not Lindeldf.
Consider the subset A = {(z,—x) | v € R} C X. It is easy to see that A is open. Next, for
each z € R, consider the open set U, = [z, + 1) X [—z,—z + 1) C X. It follows that
ANU, ={(x,—x)}. Now, consider the open cover

X=x\AHulJu.

zeR

This cannot have a countable subcover, since A is uncountable.

Definition 17.4: (Hereditarily Lindeldf)
A space X is called hereditarily Lindelof if every subspace A C X is Lindelof.

Proposition 17.5: (Hereditarily Lindelof if and only if open subsets are Lindeldf)

A space X is hereditarily Lindelof if and only if every open subspace U C X is Lindelof.

Proof
One direction is trivial. So, suppose every open subspace of X is Lindelof. Consider an arbitrary

subset A C X, with the subspace topology. Suppose, we have an open cover A = |, U,, where
Uy, =ANYV, for V, C X open. Now, U = |J, V, is a open cover, which admits a countable
subcover, say U = |J;=; V. But then, A = ANU = U2, ANV, = U2 Us,. Thus, A is
Lindelof. Since A was arbitrary, we have X is hereditarily Lindelof. O

Example 17.6: (S is not hereditarily Lindelof)

Recall the space X = Sq = Sq U {Q2}, which was shown to be compact, and hence, Lindelof.
Now, for each a € S, consider the open sets U, = (a,a+2) = {a + 1}. Since Sq is uncountable,
we have the uncountable discrete space A = (J,cg (a;a + 2) = J,eg, {a + 1}. Clearly, this is
not Lindelof. Thus, Sq is not hereditarily Lindelof.

17.2 Separable space

Definition 17.7: (Separability)

Given A C X, we say A is dense in X if X = A. A space X is called separable if there exists a
countable dense subset.

Exercise 17.8: (Dense set and open set)

Show that A C X is dense if and only for any nonempty open set U C X we have U N A # ().

Exercise 17.9: (Second countablity and seperability)

Show that a second countable space is separable. Check that R with the cofinite topology is
separable, but not second countable.




Proposition 17.10: (Image of separable space)

Let f: X — Y be countinuous surjection. If X is separable, then so is Y.

Proof

Suppose A C X is a countable dense subset. Since f is continuous, we have, f(A) C f(A) =
flA) D f(X)=Y = f(A) =Y. Thus, f(A) is dense in Y, which is clearly countable. Hence, Y
is separable. O

Proposition 17.11: (Product of separable spaces)

Suppose {Xq},c; is a countable collection of separable spaces. Then, the product X = I1.X,, is
separable.

Proof
Fix countable dense subsets A, C X,. Fix some a, € A,. Then, consider the collection

A ={(z,) € A, | x4 = a, for all but finitely many a € I} .

By construction, A is countable. Let us show that A is dense in X. Let U C X be a basic open
sets. Then, U = I1,U,, where U, = X, for all o € I\ {a1,...,a}. Since X, = A,, we have
ba; € Us,NA,, fori=1,... k.Setb, = a, foralla € I\{ay,...,ax}. Then, clearly b € UNA.
Thus, A = X. Hence, X is separable. O

Example 17.12: (Subspaces of separable space)

Subspaces of a separable space need not be separable! Consider an uncountable set X, and fix
a point ¢y € X. Equip X with the particular point topology based at x, (i.e, a nonempty set
is open in X if and only if it contains z). Then, {z¢} is dense in X, and thus X is separable.
On the other hand, the set X \ {x¢} is an uncountable discrete subspace, and hence, cannot be
separable.

Definition 17.13: (Nowhere dense subset)

A subset A C X is called nowhere dense if int(A) = 0.

.

Example 17.14

Z C R is nowhere dense, and so is the Cantor set (which is uncountable). If X has discrete
topology, no subset A C X is nowhere dense. The set A := ZU((0,1) N Q) C R is not nowhere
dense.

Exercise 17.15: (Nowhere dense discrete subspace of R)

Show that any discrete subspace A C R is nowhere dense. In particular, {1 | n > 1} is nowhere

dense.




Theorem 17.16: (Nowhere dense equivalence)

Let A C X is given. The following are equivalent.

a) int(A) = 0.

b) For any nonempty open set () # UsubsetX, we have AN U is not dense in U (in the
subspace topology).

c) X\ Ais densein X.

Proof

Suppose int(A) = (). Fix some ) # U C X open set. Then, U ¢ A. Pick some y € U \ A.
Since A is closed, we have V := U \ A is open in X, and hence, open in U as well. Now, clearly
VN (UNA) =0, and hence, y QWU. Thus, U N A is not dense in U.

Conversely, suppose A N U is not dense in U for any nonempty open set U C X. If possible,
suppose int(A) # (). Then, there exists some nonempty open set U C A. Pick y € U and some
arbitrary open neighborhood y € V' C U. Since U is open in X, we have V is open in X as well.
Now, VCUCA=VNA# (sinceVNA=0=VNA=0{forV open). Thus, we have
DA£VNA=(VNU)NA=VN(UNA).Since V was an arbitrary open neighborhood of y in U,
we have y is an adherent point of U N A (in the subspace topology). Thus, we have AnT = U,
a contradiction. Hence, int(A) = 0.

Let us now assume that X \ A is dense in X. Then, for any nonempty open set U C X, we must
have UN (X \ A) # 0 = U ¢ A. But then, int(A) = 0. Conversely, suppose int(A) = (). Then,
for any nonempty open set U C X, we have U ¢ A = U N (X \ A). But this means X \ A is
dense in X. U



