
Topology Course Notes (KSM1C03)

Day 16 : 26th September, 2025
locally compact space -- compactification

16.1 Local compactness

Definition 16.1: (Neighborhood)
Given a space X, a neighborhood of a point x ∈ X is any set N ⊂ X such that x ∈ N ⊂ N .

Definition 16.2: (Locally compact space)
A space X is called locally compact at x ∈ X if for any given open nbd x ∈ U , there exists a
compact neighborhood x ∈ C ⊂ U . The space X is called locally compact if it is so at every
point x ∈ X.

Proposition 16.3: (Locally compact Hausdorff)

Suppose X is a Hausdorff space. Then the following are equivalent.

a) X is locally compact.

b) For any x ∈ X and any open nbd x ∈ U ⊂ X, there exists an open nbd x ∈ V ⊂ U ⊂
X, such that V̄ ⊂ U and V̄ is compact.

c) Every x ∈ X has a cpt nbd.

Proof
That b) implies local compactness is clear, even without the Hausdorff assumption. Now, suppose
X is locally compact, T2. For an open nbd x ∈ U ⊂ X, we have some compact nbd x ∈ C ⊂ U .
By the definition of nbd, we have some open nbd x ∈ V ⊂ C ⊂ U . Now, since X is T2, we have
C is closed. Hence,

V ⊂ C ⇒ V̄ ⊂ C̄ = C ⊂ U.

Also, closed subsets of compact is always compact. Thus, V̄ is compact. Thus, a) implies b).
Again a) ⇒ c) is clear from the definition. Suppose c) holds. Let x ∈ U ⊂ X be an open nbd,
and x ∈ C ⊂ X be a compact nbd. Clearly x ∈ W = U ∩ int(C) is an open nbd. It follows that
K = C \W is a closed subset of the compact set C, and hence, K is compact. Now, x 6∈ K. Since
X is T2, we have open sets x ∈ A,K ⊂ B, such that A∩B = ∅ Set V = W ∩A = U∩ int(C)∩A,
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which is an open nbd x ∈ V ⊂ U . We observe

V ⊂ W ⊂ C ⇒ V̄ ⊂ C̄ = C.

U

C

B

x
V K

C̊

Consequently, V̄ is compact, being a closed subset of a compact set. Also, V ⊂ A and Ā∩B = ∅
(as A ∩B = ∅, and B is open). Thus,

V̄ ⊂ C ∩ (X \B) = C \B = (K tW ) \B = W \B ⊂ W ⊂ U.

This proves b), and hence a). �

Example 16.4: (R is locally compact)

Since R is Hausdorff, it is enough to check that for any x ∈ R, we have [x−1, x+1] is a compact
nbd. Similarly, any Rn is also locally compact. As for Q ⊂ R, for any open set U = (−ε, ε) ∩Q
it follows that Ū = [−ε, ε]∩Q is not compact, as it is not sequentially compact. Thus, Q (which
is T2) is not locally compact.

16.2 Compactification

Definition 16.5: (Compactification)

Given a space X, a compactification of X is a continuous injective map ι : X ↪→ X̂, such that
X̂ = ι(X) is a compact space. We shall identify X ⊂ X̂ as a subspace, and understand X̂ as
the compactification.

Example 16.6: (Compactification of compact space)

Suppose X is compact. Then Id : X → X is trivially a compactification. In fact, if X̂ is a
Hausdorff compactification of X, then necessarily X̂ = X (Check!).

Proposition 16.7: (Alexandroff compactification)

Given any noncompact space (X, T ), there exists a compactification X̂ = X t {∞}, where ∞
is a point not in X (also denoted as X?).

Proof
Consider the space X̂ = X t {∞}, along with the topology

T∞ := T ∪ {{∞} ∪ (X \ C) | C ⊂ X is closed and compact} .
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Let us verify that T∞ is a topology.

i) ∅ ∈ T ⊂ T∞

ii) X̂ = {∞} ∪ (X \ ∅) ∈ T∞, since ∅ ⊂ X is a closed, compact subset.

iii) For any Uα = {∞}∪(X\Cα), where Cα ⊂ X is closed compact, we have
⋃

Uα = {∞}∪
(X \

⋂
αCα). Since arbitrary intersection of closed is closed, and arbitrary intersection

of compact is compact, we have
⋂

αCα ⊂ X is closed, compact. Thus,
⋃

α Uα ∈ T∞.
Since finite union of closed (resp. compact) sets are closed (resp. compact), we see that⋂

i=1 Ui ∈ T∞, if Ui = {∞} ∪ (X \ Ci) for some Ci ⊂ X closed, compact.

iv) Since T is a topology, it is closed under arbitrary union and finite intersection.

v) Finally, let us consider some U ⊂ X open, and some V = {∞} ∪ (X \ C) for C ⊂ X

closed, compact. We have U ∩ V = U \ C, which is open in X. Also,

U ∪ V = {∞} ∪ (X \ C) ∪ U = {∞} ∪ (X \ (C \ U)) .

Since C \ U is a closed subset of a compact set, it is again closed, compact. Thus,
U ∩ V ∈ T∞.

Thus, T∞ is indeed a topology. It is easy to see that the inclusion ι : X ↪→ X̂ is a homeomorphism
onto the image (Check!). Also, for ∞, any open neighborhood clearly intersects X, since X itself
is not compact. Thus, X̂ = ι(X). Finally, let us check that X̂ is compact. Indeed, for any open
cover U = {Uα}, choose some ∞ ∈ Uα0 . Then, Uα0 = {∞}∪(X \C), where C ⊂ X is closed and
compact. We have U is an open cover of X, and so, we have a finite subcover, say C ⊂

⋃k
i=1 Uαi

.
Then, {Uαi

, i = 0, . . . , k} is a finite subcover of X̂. �

Remark 16.8: (Alexandroff compactification of compact space)

If X is compact to begin with, then the Alexandroff compactification still produces a compact
space X̂ = X t {∞}, which contains X as a subspace. But here {∞} is an isolated point, and
X̄ = X ( X̂. Thus, by our definition, it is not exactly a compactification!

Exercise 16.9: (One-point compactification and Alexandroff compactification)

Consider the space
X = {p, q, x1, x2, . . . , y1, y2, . . . } .

Give the subspace {x1, x2, . . . , y1, y2, . . . } the discrete topology. For p, declare the open neigh-
borhoods as {p}∪A, where A ⊂ {y1, y2, . . . } is cofinite. For q, declare the open neighborhoods
as {q} ∪ B, where B ⊂ {x1, x2, . . . , y1, y2, . . . } is cofinite. Check that X is compact with this
topology. Now, consider Y = {p, x1, x2, . . . , y1, y2, . . . }, which is noncompact (Check!). Clearly,
Y = X. Thus, X is a compactification of Y . We claim that X is not the Alexandroff compact-
ification of Y . Indeed, consider the set K = {p, y1, y2, . . . } ⊂ Y , which is compact (Check!).
Also, K is closed in Y . But, {q} ∪ (Y \K) = {q, x1, x2, . . . } is not open in X.
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Theorem 16.10: (One-point compactification of locally compact Hausdorff space)

Let X be a noncompact space. Then, the one-point compactification X̂ is T2 if and only if X
is locally compact, T2.

Proof
Suppose X̂ is T2. Then, X ⊂ X̂ is clearly T2. Also, for any x ∈ X, we have open sets x ∈ U,∞ ∈ V

such that U ∩ V = ∅. Then, U ⊂ X, and V = {∞} ∪ (X \ C), where C ⊂ X is a compact (and
also closed, as X is T2). Then, x ∈ U ⊂ C, that is, C is a compact neighborhood of x. Since X

is T2, it follows that X is locally compact.
Conversely, suppose X is locally compact, T2. We only need to show that for any x ∈ X, there
open sets x ∈ U,∞ ∈ V such that U ∩ V = ∅. Since X is T2, we have an open set x ∈ U ⊂ X

such that Ū is compact (and hence closed). Then, we have V = X \ Ū is an open nbd of ∞ in
X̂. Clearly, U ∩ V = ∅. Thus, X̂ is T2. �
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