
Topology Course Notes (KSM1C03)

Day 15 : 25th September, 2025
Zorn's lemma -- well-ordering principle -- ultrafilter lemma

15.1 A digression : Zorn’s Lemma and applications

Definition 15.1: (Partial ordering)
A relation ≤ on a set X is called a partial order if it satisfies the following.

1. x ≤ x for all x ∈ X.

2. x ≤ y, y ≤ z ⇒ x ≤ z

3. x ≤ y, y ≤ x ⇒ x = y

The tuple (X,≤) is called a partially ordered set (or a poset). A point x ∈ X is called a maximal
element if for any y ∈ X with x ≤ y, we have x = y.

Definition 15.2: (Chain)
A subset C of a poset (X,≤) is called a chain if C is totally ordered with respect to ≤, i.e, for
any c1, c2 ∈ C, either c1 ≤ c2 or c2 ≤ c1 holds.

Lemma 15.3: (Zorn’s lemma)

Given a non-empty poset (X,≤), suppose every chain has an upper bound in X. Then, X has
a maximal element.

Theorem 15.4: (Basis of a vector space)

Given a field K, any non-zero vector space V over K admits a basis.

Proof
Consider the collection

B := {B ⊂ V | B is linearly independent over K} .

Note that B 6= ∅, since for any 0 6= v ∈ V , we have B = {v} ∈ B. Define

B1 ≤ B2 ⇔ B1 ⊂ B2, B1, B2 ∈ B

which is clearly a partial order. Let us consider a chain C = {Bi}i∈I in (B,≤). Consider the set
B =

⋃
i∈I Bi. We check that B is linearly independent. Say, b1, . . . , bk ∈ B. Since C is a chain,
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without loss of generality, we have b1, . . . , bk ∈ Bi0 for some i0 ∈ I. But then clearly {b1, . . . , bk}
is linearly independent. Hence, B ∈ B. By construction, we have Bi ≤ B for all i ∈ I. Thus, B is
an upper bound of C. Then, we have a maximal element, say, B ∈ B. We claim that B is a basis
of V . If not, then B fails to span V . Thus, we must have some

v0 ∈ V \ Span 〈B〉 .

Consider the set B0 = Bt{v0}. Clearly, B0 is linearly independent, and B ( B0. Thus contradicts
the maximality of B. Hence, V = Span 〈B〉. Thus, V admits a basis. �

Theorem 15.5: (Well-ordering principle)

Every nonempty set S admits a well-ordering.

Proof
Consider the collection

W = {(W,≤W ) | ∅ 6= W ⊂ S, and ≤W is a well-ordering on W} .

Clearly W 6= ∅, since for any x ∈ S, we have the singleton set {x} is trivially well-ordered. Let us
define (A,≤A) � (B,≤B) if and only if

i) A ⊂ B,

ii) ≤A is the restriction of ≤B (i.e, a1 ≤A a2 if and only if a1 ≤B a2), and

iii) for any b ∈ B \ A we have b >B a for all a ∈ A.

It is easy to see that � is a total order on W (Check!). Suppose C = {(Wα,≤α)}α∈I is a chain in
(W ,�). Consider

W =
⋃
α∈I

Wα.

Let us define ≤W as follows. For any w1, w2 ∈ W , using the chain condition, we have w1, w2 ∈ Wα0

for some α0 ∈ I. Then, define
w1 ≤W w2 ⇔ w1 ≤α0 w2.

Again from the chain condition, it follows that ≤W is well-defined (Check!). Moreover, it is easy
to see that ≤W is a total order (Check!). Let us show that ≤W is actually a well-order. Say,
∅ 6= A ⊂ W is given. Then, A ∩Wα 6= ∅ for some α ∈ I. Now, (Wα,≤α) being a well-order, we
have a least element m0 = minA ∩Wα. We claim that m0 is the least element of A in the order
≤W . If not, then there is some a ∈ A, with a <W m0. Now, a ∈ Wβ for some β ∈ I. From the
chain condition, we have two cases.

1. If Wβ ≤ Wα, then we have a ∈ Wβ ⊂ Wα. But then a ∈ Wα ∩A ⇒ m0 ≤α a ⇒ m0 ≤W a,
a contradiction.

2. Say, Wα ≤ Wβ. We again have two possibilities.

(a) Say, a ∈ Wβ \Wα. Then, by the definition of �, we have a ≥β x for all x ∈ Wα. In
particular, a ≥β m0 ⇒ a ≥W m0, a contradiction.
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(b) Say, a ∈ Wα. But then m0 ≤α a ⇒ m0 ≤W a, again a contradiction.

Thus, it follows that m0 = minA in the order ≤W . Thus, (W,≤W ) ∈ W . Clearly, it is an upper
bound of the chain C (Check!). Now, by Zorn’s lemma, there exists a maximal element, say,
(W,≤W) ∈ W . We claim that W = S. If not, then there exists x ∈ S \W. Consider

W0 = W t {x} .

Define an order ≤0 on W0 by extending the order ≤W, and declaring w <0 x for all w ∈ W. Then,
(W0,≤0) is a well-order, which moreover satisfies (W,≤W) ≺ (W0,≤0) (Check!). This violates
the maximality. Hence, W = S, and thus, S admits a well-ordering. �

Theorem 15.6: (Ultrafilter lemma)

A filter F on a set X is contained in an ultrafilter on X.

Proof
Consider the collection

F := {F | F is a filter on X, and F ⊂ F .}

Then, F 6= ∅ as F ∈ F. Order F by inclusion, i.e, F1 ≤ F2 if and only if F1 ⊂ F2. Clearly (F,≤)

is a poset. Consider a chain C = {Fi}i∈I in (F,≤). Consider

F =
⋃
i∈I

Fi.

Clearly F ⊂ F . Let us check that F is a filter on X.

i) Since ∅ 6∈ Fi for all i ∈ I, we have ∅ 6∈ F .

ii) For any A,B ∈ F , by the chain condition, we have A,B ∈ Fi0 for some i0 ∈ I. But then
A ∩B ∈ Fi0 ⇒ A ∩B ∈ F .

iii) Say A ∈ F , and B ⊃ A. Now, A ∈ Fi for some i ∈ I, and then, B ∈ Fi ⇒ B ∈ F .

Thus, F is a filter on X, containing F , and clearly, it is an upper bound of C. Then, by Zorn’s
lemma, there exists some maximal element, say, U ∈ F. We claim that U is an ultrafilter on X,
which evidently contains F . If not, then there exists some set S ⊂ X such that

S 6∈ U , and X \ S 6∈ U .

Then, the collection U0 = U ∪ {S} has finite intersection property (Check!). But then there is a
filter, say, F0 ⊃ U0 ) U , a contradiction to maximality. Hence, U is an ultrafilter, containing F .�

Here are some more applications, that you can try to do if you want! Or have a look at this note
by Keith Conrad.

Exercise 15.7: (Existence of spanning tree)

Using Zorn’s lemma, show that every connected (undirected) graph has a spanning tree.
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Exercise 15.8: (Existence of maximal ideal)

Let R be a commutative ring with 1. Using Zorn’s lemma, show that every ideal I ⊂ R is
contained in a maximal ideal.

Exercise 15.9: (Description of nilradical)

Let R be a commutative ring with 1. Using Zorn’s lemma, show that⋂
p ⊂ R is a prime ideal

= {x ∈ R | xn = 0 for some n ≥ 1} ,

which is also known as the nilradical of R.

4


