
Topology Course Notes (KSM1C03)

Day 14 : 19th September, 2025
uncountable ordinal -- filter -- ultrafilter lemma -- Tychonoff's theorem

14.1 Properties of SΩ

Proposition 14.1: (Properties of SΩ)

Suppose SΩ is given the order topology.

a) For any set A ⊂ SΩ, the union
⋃

a∈A Sa is either a section (and hence countable), or all
of SΩ.

b) Any countable set of SΩ is bounded

c) SΩ is sequentially compact.

d) SΩ is limit point compact.

e) SΩ is not compact.

f) SΩ is first countable.

Proof
a) If A admits an upper bound, then it admits a least upper bound, say, b. We claim that⋃

a∈A Sa = Sb. Indeed, for any x < a ∈ A, we have x < a ≤ b and so x ∈ Sb. On the
other hand, for any x < b, we have x is not an upper bound of A, and so, x < a ≤ b for
some a ∈ A. Then, x ∈ Sa.

Otherwise, assume A is not bounded. Suppose
⋃

a∈A Sa is not all of SΩ. Pick some b ∈
SΩ \

⋃
a∈A Sa. Now, b is not an upper bound of A (as A is not upper bounded). So,

b < a ∈ A. But then b ∈ Sa, a contradiction.

b) For a countable set A ⊂ SΩ, the subset
⋃

a∈A Sa+1 is countable, and hence, not all of SΩ.
Then, A ⊂

⋃
a∈A Sa+1 = Sb for some b. Clearly, b is an upper bound of A.

c) WLOG, suppose {xn} be a sequence of distinct elements in SΩ. Consider

xnk
= min {xn | n ≥ k} .

Then, clearly xn1 < xn2 < . . . . Now, {xnk
} being countable set, is bounded, and hence

admits a least upper bound, say b. Clearly b 6∈ {xnk
}, as the subsequence is strictly
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increasing. For any open set b ∈ U ⊂ SΩ, we have b ∈ (x, b] ⊂ U . Now, x is not an upper
bound of {xnk

}, and hence, a < xnk0
< b for some k0. But then a < xnl

< b for any
l ≥ k0. In other words, xnl

∈ U for all l ≥ k0. Thus, xnk
→ b.

d) Since SΩ is sequentially compact, it is limit point compact.

e) For each x ∈ SΩ, consider the open sections Sx+1 := {y ∈ X | y < x+ 1}, which are
open. Here x + 1 is the successor of x. Clearly, SΩ =

⋃
x∈SΩ

Sx+1. If possible, suppose,
there is a finite subcover, SΩ =

⋃n
i=1 Sxi+1. But the right-hand side is a finite union of

countable sets, and hence countable, whereas SΩ is uncountable. This is a contradiction.

f) For any x ∈ SΩ, we have the section Sx = {a | a < x} is countable. Consider the open
sets {Ua = (a, x+ 1) | a < x}, which are all open neighborhoods of x. It is clear that this
is a countable basis at x (Check!).

�

Proposition 14.2: (S̄Ω is not first countable)

The space S̄Ω = SΩ ∪ {Ω} is not first countable at Ω.

Proof
Observe that the basic open sets containing Ω are of the form (x,Ω] for x ∈ SΩ. If possible,
suppose, there is countable neighborhood basis at Ω, say, {Ui}. We then have Ω ⊂ (xi,Ω] ⊂ Ui

for some xi ∈ SΩ. Now,
⋃
Sxi

= Sb for some b ∈ SΩ. Consider the basic open set (b+1,Ω]. There
is some Ω ∈ (xi,Ω] ⊂ Ui ⊂ (b+1,Ω]. But then b+1 ≤ xi, a contradiction. Hence, S̄Ω is not first
countable at Ω. �

14.2 (Ultra)Filters

Definition 14.3: (Filter and ultrafilter)
Given a set X, a filter on it is a collection F ⊂ P(X) of subsets such that the following holds.

a) ∅ 6∈ F .

b) For any A,B ⊂ X, we have A ∩B ∈ F if and only if A,B ∈ F .

A filter F on a set X, is called an ultrafilter if for any A ⊂ X either A ∈ F or X \ A ∈ F .

Exercise 14.4: (Filter equivalent definition)

Given any collection F ⊂ P(X) of subsets, the following are equivalent.

a) For any A,B ⊂ X, we have A ∩B ∈ F if and only if A,B ∈ F

b) F satisfies the following.

i) F is closed under finite intersection, i.e, F1, . . . , Fn ∈ F implies ∩n
i=1Fn ∈ F .

ii) F is closed under supersets, i.e, if A ∈ F , then B ∈ F whenver B ⊃ A.
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Example 14.5: (Principal ultrafilter)

For any x ∈ X fixed, consider the collection

F = {A ⊂ X | x ∈ A} .

It is easy to see that F is an ultrafilter on X, Such ultrafilters are called the principal ultrafilter .
Any ultrafilter which is not principal, is called a free ultrafilter .

Theorem 14.6: (Ultrafilter lemma)

Every filter on a set X is contained in an ultrafilter.

Proof
Let F be a filter on X. Consider the collection

F := {G | G is a filter on X, and F ⊂ G} .

It follows that every chain (ordered by inclusion) in F admits a maximal element, given by the
union. Then, by Zorn’s lemma, F admits a maximal element, say, F . Since F is a maximl filter, it
is an ultrafilter, which contains F by construction. �

Definition 14.7: (Convergence of filter)
Given a filter U on a space X, we say U converges to a point x ∈ X, if for any open neighborhood
x ∈ U , we have U ∈ U .

Theorem 14.8: (Ultrafilter and compactness)

A space X is compact if and only if every ultrafilter on X converges to at least one point.

Proof
Suppose X is a compact space. Let U be an ultrafilter on X. If possible, suppose U does not
converge to any point in X. Then, for each x ∈ X, there exists an open nbd x ∈ Ux such that
Ux 6∈ U . Since U is ultrafilter, this means X \ Ux ∈ U . Now, X =

⋃
x∈X Ux admits a finite

sub-cover, say, X =
⋃k

i=1 Uxi
. This, means

∅ = X \X =
k⋂

i=1

(X \ Uxi
) ∈ U ,

as U is closed under finite intersection. This is a contradiction as ∅ 6∈ U .
Conversely, suppose X is not compact. Then, there exists an open cover, U = {Uα} such that
there is no finite sub-cover. Consider the collection

F := {Fα = X \ Uα} .

Note that for any finite collection, we have ∩k
i=1Fαi

= X \
⋃k

i=1 Uαi
6= ∅. In other words, F

has finite intersection property. Then, we can close F under finite intersections, and then under
supersets, to get a filter, say, F ⊃ F . But F is contained in some ultrafilter, say U ⊃ F. Now, for
any x ∈ X, we have X ∈ Uα for some α. Then, Fα = X \ Uα ∈ U ⇒ Uα 6∈ U. Thus, U does not
converge to any x ∈ X, a contradiction. �
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14.3 Tychonoff’s Theorem

Theorem 14.9: (Tychonoff’s Theorem)

Given a collection {Xα} of compact spaces, the product X = ΠXα, with the product topology,
is a compact space.

Proof
Suppose U is an ultrafilter on X. For the projection map πα : X → Xα, we have the ultrafilter

Uα := (πα)∗ U =
{
A ⊂ Xα

∣∣ (πα)
−1(A) ∈ U

}
on Xα. Since Xα is compact, Uα converges to some point in Xα. By the axiom of choice, we have
some x = (xα) ∈ X such that Uα converges to xα for each α. Let us show that U converges to
x. Observe that for any open neighborhood x ∈ U ⊂ X, we have U is generated by the sub-basic
open sets of the form {π−1

α (V ) | V ⊂ Xα}. Since a filter is closed under finite intersection and
supersets, if we are able to show that any sub-basic open neighborhood of x is an element of U , we
are done. But for any V ⊂ Xα open, with x ∈ π−1

α (V ) precisely when xα ∈ V . Since Uα converges
to xα, we have V ∈ Uα ⇒ π−1

α (V ) ∈ U . Hence, U converges to x. Since U is an arbitrary ultrafilter,
we have X is compact. �

Proposition 14.10: (Axiom of choice from Tychonoff)

Suppose Tychonoff’s theorem is true. Then, axiom of choice holds.

Proof
Let {Xα} be an arbitrary collection nonempty sets. Since a set cannot be an element of itself, we
have new sets Yα = Xα t {Xα}. For simplicity, denote pα = {Xα} ∈ Yα. Now, give a topology on
Yα as

Tα = {∅, {pα} , Xα, Yα}

. Clearly (Yα, Tα) is a compact space, having only finitely many open sets. Consider the product
Y = ΠαYα. Now, for each α, we have the sub-basic open set

Uα := {y ∈ Y | πα(y) = pα} = π−1
α (pα),

since {pα} is open in Yα. We claim that {Uα} has not finite sub-cover. If possible, suppose,
Y =

⋃n
i=1 Uαi

. Then, make finitely many choices : xi ∈ Xαi
, and define x by setting πα(x) = pα

for α 6∈ {a1, . . . , αn} and παi
(x) = xi for 1 ≤ i ≤ n. Then, clearly x 6∈

⋃n
i=1 Uαi

, a contradiction.
Thus, the collection {Uα} admits no finite sub-cover. By Tychonoff’s theorem, Y is compact. Hence,
{Uα} is not a covering of Y . So, there exists some y ∈ Y \

⋃
α Uα. Observe that πα(y) ∈ Xα, as

yα 6= pα. Thus, y ∈ ΠXα. This is precisely the axiom of choice. �

Proposition 14.11: (Compact but not sequentlly compact)

The product space X = [0, 1][0,1] = Π0≤t≤1[0, 1] is compact, but not sequentially compact.
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Proof
It follows from Tychonoff’s theorem that the product space X = [0, 1][0,1] is compact, since each
[0, 1] is so. For each n ≥ 1, consider the function αn : [0, 1] → {0, 1} defined by

αn(x) = the nth digit in the binary expansion of x.

Clearly, {αn} is a sequence in X. If possible, suppose, αnk
→ α ∈ X. Then, for each x ∈ [0, 1], we

must have αnk
(x) → α(x). Consider any point x such that αnk

(x) is 0 or 1 according as k is even
or odd. Clearly the sequence αnk

(x) cannot converge, a contradiction. Thus, X is not sequentially
compact. �
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