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13.1 Order topology and compactness

Definition 13.1: (Order topology)

Given any totally ordered set (X, <), the order topology on X is defined as the topology
generated by the subbasis consisting of rays {x € X |z <a}and {z € X | a <z} foralla € X.

Exercise 13.2: (Order topology basis)

Given a total order (X, <) (with at least two points), check that the following collection

B:={(a,b) | a,be X, a<b},

is a basis for the order topology. Here, the intervals are defined as (a,b) = {x € X | a < x < b}.

Proposition 13.3: (Order topology is T3)

Let (X, <) be a totally ordered set equipped with the order topology. Then, X is T5.

Proof
Let a # b € X. Without loss of generality, a < b. There are two possibilities. Suppose there is some

¢ such that @ < ¢ < b. Then, consider U = {x € X |z <c} and V = {z € X | ¢ < z}. Clearly,
acUbeVand UNV = 0. If nosuch c exists, take U = {z |z < b} and V ={z |a < z}. O

Theorem 13.4: (Compact sets in ordered topology)

Suppose X is a totally ordered space, with the least upper bound property : any upper bounded
set A C X has a least upper bound. Then, for any ,b € X with a < b, the interval [a,b] =
{c€ X | a <c<b}is compact.

Proof

Suppose U = {U,} be an open cover of [a, b].

For any = € [a,b), we first observe that there is some y € (z,b] such that [z,y] is covered by at
most two elements of U. If = has an immediate successor in X, let y = 2+ 1. Then, y € (z,b],
and [z, y] contains exactly two points. Clearly, [z,y] can be covered by at most two open sets of
U. If there is no immediate successor, get z € U, and some x < ¢ < b such that [z,¢) C U,.



Since = has no immediate successor, we have some x < y < ¢ so that [z, y] C [z,¢) C U,.
Now, consider the collection

A :={c€[a,b] | [a,c] is covered by finitely many U,.}

Observe that for a, we have some a < y < b such that [a, y| is covered by at most two open sets
of U. Thus, y € A. Clearly A is upper bounded by b. Let ¢ be the least upper bound of A. We
then have, a < ¢ < b.

We show that ¢ € A. We have ¢ € U, for some . Then, there is some ¢ such that (¢, c] C U,.
Now, being the least upper bound, we must have some z € A such that ¢ < z < ¢. Then,
[a, 2] lies in finitely many opens of U. Adding U, to that finite collection, we get a finite cover of
la,c] = [a,z] U][z,¢]. Thus, c € A.

Finally, we claim that ¢ = b. If not, then there is some ¢ < y < b such that [c,y] is covered by
at most two opens from U. This implies that [a,y] = [a, ] U [¢,y] admits a finite sub-cover, and
hence, y € A. But this contradicts ¢ is an upper bound. Thus, ¢ = b.

In other words, [a, b] is covered by finitely many open sets of U. O

Corollary 13.5: (Intervals are compact)

For any real numbers a < b, the interval [a, b] is compact in the usual topology of real line.

Proof
It is clear that R is a totally ordered set, equipped with the order topology. Also, R has the least

upper bound property. Hence, [a,b] is compact. [l

13.2 Well-ordering

Definition 13.6: (Well-order)

A well-ordering on a set X is a total order, such that every non-empty subset has a least element.
Explicitly, it is a relation R C X x X, denote, a < b if and only if (a,b) € R, such that the
following hold.

a) (Reflexivity) x < z for all x € X.

b) (Transitivity) If x <y and y < 2, then x < 2.

c) (Totality) For z,y € X either z <y ory < x.

d) (Antisymmetric) If x <y and y < z, then z = y.

e) For any ) # A C X, there exists ag € A such that for all @ € A we have g < a. We
call it the least element of A (which is unique, by antisymmetry)

Given a well-ordered set (X, <), and a point € X, the section (or initial segment) is defined
as S, ={ye X |y<uz}




Proposition 13.7: (Successor in well-order)

Given a well-ordering (X, <), each x € X (except possibly the greatest element) has an im-
mediate successor, denoted, z + 1. That is, * < x + 1, and there is no y € X such that
r<y<axz+l1l.

Proof
For any z € X, consider the set

Us:={yeX|z<y}.

If 2 is not the greatest element of X, then U, # ), and hence, has a least element. This least

element is the successor (Check!). O

Theorem 13.8: (Well-ordering principle)

Every set admits a well-ordering.

Remark 13.9: (Construction of uncountable well-order)

The well-ordering principle (also known as Zermelo's theorem named after Ernst Zermelo) is equiv-
alent to the axiom of choice. On the other hand, explicitly constructing an uncountable well-order
is possible without using the (full strength of) axiom of choice!

Theorem 13.10: (Construction of an uncountable well-order)

There exists an uncountable well-ordered set.

Proof
Consider N with the usual order, and observe that any subset A C N is a well-ordering with this

ordering. Consider the set
A:={(A,<)| AeP(N),< is a strict well-order on A}.

Since P(N) is uncountable, and since every subset admits at least one well-order, clearly, A is

uncountable. Let us define a relation
(A,<4) ~ (B,<B) < ((A,<4)) is order-isomorphic to (B, <p).
Then, ~ is an equivalence relation on A (check!). On the equivalence classes, define a new relation
[A, <] < [B,<pg] < (A, <.4) is order-isomorphic to some section of (B, <p).

Then, < is a well-defined (strict) well-ordering on € :== A/ (Check! (It is tricky!)). O

Proposition 13.11: (Construction of Sg)

There exists a well-ordering, denoted Sg, (or, wy, known as the first uncountable ordinal), such
that

i) Sq is uncountable, and



ii) for each x € Sq the section S, = {y € Sq | y < x} is countable.

Proof
Suppose (A, <) is an uncountable well-ordered set. Then, on B = Ax {0, 1}, the dictionary order is

again a well-ordering (check!). Observe that for any = (a, 1), the section S, = {y € B |y < z}
is uncountable. Consider the set

S = {x € B| S, is uncountable} .
This is non-empty, and hence, admits a least element €2 € S. Denote
Sog={reB|z<Q}.

Clearly Sq itself is uncountable, as 2 € S. But that for any © € S, we have the section S, is
countable. Since S, is a section of a well-ordering, it is itself well-ordered (check!). O

We shall denote
SQ = SQ U {Q} s

and give it the obvious ordering : for any = € S, set = < ). Note that S, is a section in Sq, so that
the notation is consistent.

Theorem 13.12: (S, is compact)

The space Sq = Sq U {Q2} is compact.

Proof

Let mg be the least element of S,. On Sq = Sq U {Q}, extend the ordering by setting z < ) for
all z € Sq. Observe that this is a total order. And moreover, Sq = [myg, (2] is a closed interval.
Let us check the least upper bound property. Say A C Sq. If Q € A, then clearly, 2 is the least
upper bound of A. WLOG, assume 2 &€ A, that is, A C Sq. We have two possibilities. If A is
bounded in Sq, consider the set

X ={be€ Sq|bis an upper bound of A}.

As X is nonempty, there exists a least element, say, by € X. By definition, it is the least upper
bound of A. Suppose A is unbounded in Sq. Clearly, €2 is an upper bound of A. We claim that 2 is
the least upper bound. If not, then there is some upper bound x < €2, which implies A is bounded
by x € S, a contradiction. Thus, Sq has the least upper bound property. So, Sq is compact. [J



