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order topology -- compact interval -- well-ordereing -- uncountable ordinal

13.1 Order topology and compactness

Definition 13.1: (Order topology)
Given any totally ordered set (X,≤), the order topology on X is defined as the topology
generated by the subbasis consisting of rays {x ∈ X | x < a} and {x ∈ X | a < x} for all a ∈ X.

Exercise 13.2: (Order topology basis)

Given a total order (X,≤) (with at least two points), check that the following collection

B := {(a, b) | a, b ∈ X, a < b} ,

is a basis for the order topology. Here, the intervals are defined as (a, b) := {x ∈ X | a < x < b}.

Proposition 13.3: (Order topology is T2)

Let (X,≤) be a totally ordered set equipped with the order topology. Then, X is T2.

Proof
Let a 6= b ∈ X. Without loss of generality, a < b. There are two possibilities. Suppose there is some
c such that a < c < b. Then, consider U = {x ∈ X | x < c} and V = {x ∈ X | c < x}. Clearly,
a ∈ U, b ∈ V and U ∩ V = ∅. If no such c exists, take U = {x | x < b} and V = {x | a < x}. �

Theorem 13.4: (Compact sets in ordered topology)

Suppose X is a totally ordered space, with the least upper bound property : any upper bounded
set A ⊂ X has a least upper bound. Then, for any , b ∈ X with a < b, the interval [a, b] =
{c ∈ X | a ≤ c ≤ b} is compact.

Proof
Suppose U = {Uα} be an open cover of [a, b].
For any x ∈ [a, b), we first observe that there is some y ∈ (x, b] such that [x, y] is covered by at
most two elements of U . If x has an immediate successor in X, let y = x + 1. Then, y ∈ (x, b],
and [x, y] contains exactly two points. Clearly, [x, y] can be covered by at most two open sets of
U . If there is no immediate successor, get x ∈ Uα, and some x < c ≤ b such that [x, c) ⊂ Uα.
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Since x has no immediate successor, we have some x < y < c so that [x, y] ⊂ [x, c) ⊂ Uα.
Now, consider the collection

A := {c ∈ [a, b] | [a, c] is covered by finitely many Uα.}

Observe that for a, we have some a < y ≤ b such that [a, y] is covered by at most two open sets
of U . Thus, y ∈ A. Clearly A is upper bounded by b. Let c be the least upper bound of A. We
then have, a < c ≤ b.
We show that c ∈ A. We have c ∈ Uα for some α. Then, there is some c′ such that (c′, c] ⊂ Uα.
Now, being the least upper bound, we must have some z ∈ A such that c′ < z ≤ c. Then,
[a, z] lies in finitely many opens of U . Adding Uα to that finite collection, we get a finite cover of
[a, c] = [a, z] ∪ [z, c]. Thus, c ∈ A.
Finally, we claim that c = b. If not, then there is some c < y ≤ b such that [c, y] is covered by
at most two opens from U . This implies that [a, y] = [a, c] ∪ [c, y] admits a finite sub-cover, and
hence, y ∈ A. But this contradicts c is an upper bound. Thus, c = b.
In other words, [a, b] is covered by finitely many open sets of U . �

Corollary 13.5: (Intervals are compact)

For any real numbers a < b, the interval [a, b] is compact in the usual topology of real line.

Proof
It is clear that R is a totally ordered set, equipped with the order topology. Also, R has the least
upper bound property. Hence, [a, b] is compact. �

13.2 Well-ordering

Definition 13.6: (Well-order)
A well-ordering on a set X is a total order, such that every non-empty subset has a least element.
Explicitly, it is a relation R ⊂ X × X, denote, a ≤ b if and only if (a, b) ∈ R, such that the
following hold.

a) (Reflexivity) x ≤ x for all x ∈ X.

b) (Transitivity) If x ≤ y and y ≤ z, then x ≤ z.

c) (Totality) For x, y ∈ X either x ≤ y or y ≤ x.

d) (Antisymmetric) If x ≤ y and y ≤ x, then x = y.

e) For any ∅ 6= A ⊂ X, there exists a0 ∈ A such that for all a ∈ A we have a0 ≤ a. We
call it the least element of A (which is unique, by antisymmetry)

Given a well-ordered set (X,≤), and a point x ∈ X, the section (or initial segment) is defined
as Sx := {y ∈ X | y < x}.
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Proposition 13.7: (Successor in well-order)

Given a well-ordering (X,≤), each x ∈ X (except possibly the greatest element) has an im-
mediate successor, denoted, x + 1. That is, x < x + 1, and there is no y ∈ X such that
x < y < x+ 1.

Proof
For any x ∈ X, consider the set

Ux := {y ∈ X | x < y} .

If x is not the greatest element of X, then Ux 6= ∅, and hence, has a least element. This least
element is the successor (Check!). �

Theorem 13.8: (Well-ordering principle)

Every set admits a well-ordering.

Remark 13.9: (Construction of uncountable well-order)

The well-ordering principle (also known as Zermelo’s theorem named after Ernst Zermelo) is equiv-
alent to the axiom of choice. On the other hand, explicitly constructing an uncountable well-order
is possible without using the (full strength of) axiom of choice!

Theorem 13.10: (Construction of an uncountable well-order)

There exists an uncountable well-ordered set.

Proof
Consider N with the usual order, and observe that any subset A ⊂ N is a well-ordering with this
ordering. Consider the set

A := {(A,≺) | A ∈ P(N),≺ is a strict well-order on A} .

Since P(N) is uncountable, and since every subset admits at least one well-order, clearly, A is
uncountable. Let us define a relation

(A,≺A) ∼ (B,≺B) ⇔ ((A,≺A)) is order-isomorphic to (B,≺B).

Then, ∼ is an equivalence relation on A (check!). On the equivalence classes, define a new relation

[A,≺A] � [B,≺B] ⇔ (A,≺A) is order-isomorphic to some section of (B,≺B).

Then, � is a well-defined (strict) well-ordering on Ω := A/∼ (Check! (It is tricky!)). �

Proposition 13.11: (Construction of SΩ)

There exists a well-ordering, denoted SΩ (or, ω1, known as the first uncountable ordinal), such
that

i) SΩ is uncountable, and
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ii) for each x ∈ SΩ the section Sx := {y ∈ SΩ | y < x} is countable.

Proof
Suppose (A,≤) is an uncountable well-ordered set. Then, on B = A×{0, 1}, the dictionary order is
again a well-ordering (check!). Observe that for any x = (a, 1), the section Sx = {y ∈ B | y < x}
is uncountable. Consider the set

S := {x ∈ B | Sx is uncountable} .

This is non-empty, and hence, admits a least element Ω ∈ S. Denote

SΩ := {x ∈ B | x < Ω} .

Clearly SΩ itself is uncountable, as Ω ∈ S. But that for any x ∈ SΩ, we have the section Sx is
countable. Since SΩ is a section of a well-ordering, it is itself well-ordered (check!). �

We shall denote
S̄Ω := SΩ ∪ {Ω} ,

and give it the obvious ordering : for any x ∈ SΩ set x < Ω. Note that SΩ is a section in S̄Ω, so that
the notation is consistent.

Theorem 13.12: (S̄Ω is compact)

The space S̄Ω = SΩ ∪ {Ω} is compact.

Proof
Let m0 be the least element of SΩ. On S̄Ω = SΩ ∪ {Ω}, extend the ordering by setting x < Ω for
all x ∈ SΩ. Observe that this is a total order. And moreover, S̄Ω = [m0,Ω] is a closed interval.
Let us check the least upper bound property. Say A ⊂ S̄Ω. If Ω ∈ A, then clearly, Ω is the least
upper bound of A. WLOG, assume Ω 6∈ A, that is, A ⊂ SΩ. We have two possibilities. If A is
bounded in SΩ, consider the set

X = {b ∈ SΩ | b is an upper bound of A} .

As X is nonempty, there exists a least element, say, b0 ∈ X. By definition, it is the least upper
bound of A. Suppose A is unbounded in SΩ. Clearly, Ω is an upper bound of A. We claim that Ω is
the least upper bound. If not, then there is some upper bound x < Ω, which implies A is bounded
by x ∈ SΩ, a contradiction. Thus, S̄Ω has the least upper bound property. So, S̄Ω is compact. �
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