Topology Course Notes (KSM1C03)

Day 11 : 16" September, 2025

sequential compactness —- limit point compactness -- first countability

11.1 Sequential and limit point compactness

Definition 11.1: (Sequentially compact)

A space X is called sequentially compact if every sequence {z,} has a convergent subsequence.
A subset Y C X is sequentially compact if every sequence {y,} in Y has a subsequence, that

converges to some y € Y.

Theorem 11.2: (Sequentially compact is equivalent to compact in metric space)

Suppose (X, d) is a metric space. Then, Y C X is sequentially compact if and only if Y is
compact.

Proof
Suppose Y is compact. Then, Y is closed and bounded. Consider a sequence {z,} in Y.

If possible, suppose {x,} has no convergent subsequence in Y. Then, {z,} is an infinite
sequence (i.e., there are infinitely many distinct elements). Now, for each y € Y, there exists
a ball y € B, = By(y,0,) C X such that B, contains at most finitely many {z,} (as no
subsequence of {z,} converge to y). We have Y C {J,cy By, which admits a finite subcover,
say, Y C |J;_, By, But this implies Y contains at most finitely many {z,, }, which is a contradiction.

Conversely, suppose every sequence in Y has a subsequence converging in Y. Consider an open
cover U = {U,} of Y by opens of X.

= Let us first show that for any § > 0, the collection {By(a,d) | a € A} has a finite sub-cover.
Suppose not. Then, there is 1 € A such that A ¢ Bgy(x1,6). Pick 23 € A\ By(z1,9).
Then, A ¢ By(z1,9) U By(x2,0). Inductively, we have a sequence {x,} in A. Now, by
construction, d(z;,z;) > § for all i # j. Consequently, {z,} has no convergent subsequence,
a contradiction. Indeed, if z,, — = € A, then d(z,, ,z) < g for all Kk > N. But then,
d(a:nkl,a:nk2) < ¢ for any ky # ky > N.

= Next we claim that there exists a 6 > 0 such that for any y € Y, we have By(y,d) C U,
for some «. Suppose not. Then, for each n > 1, there exists some ¥y, € Y such that
Bi(yn, %) ¢ U, for each «. Passing to a subsequence, we have ,, — yo € A. Now, yo € V,
for some «, and so, yo € Ba(yo,€) C V. There exists some Ny > 1 such that y,, € Bi(yo, 5)



for all n > N;. Also, there is Ny > 1 such that NLQ < §. Then, for any n > max { Ny, N, },
and for any d(y,,y) < = we have,

d(yo, y) < d(Yo, yn) + d(yn,y) < €.
Thus, By(yn, 2) C Ba(yo, €) C V, for all n > max {Ny, N>}, a contradiction.

= Finally, pick the ¢ from the last step. Then, we have a cover A C |J;_; Bq(z;,0) with z; € A.
But each of these balls are contained in some V,,. So, we have A C |J;_, V..

O

Definition 11.3: (Limit point compactness)

A space X is called limit point compact (or weakly countably compact) if every infinite set
A C X has a limit point in X

Exercise 11.4: (Sequential compact implies limit point compact)

Show that a sequentially compact space is limit point compact.

Proposition 11.5: (Compact implies limit point compact)

A compact space is limit point compact.

Proof
Suppose X is a compact space which is not limit point compact. Then, there exists an infinite set

A which has no limit point. In particular, A is closed, as it contains all of its limit points (which
are none). Also, for every z € X, there is an open set x € U, C X such that AN (U, \ {z}) = 0.
Observe that we have a covering X = (X \ A) UJ,c4 Uz, which admits a finite subcover, say,
X =(X\A)ulU., U,,. Now, A C U, U,,. But this implies A is finite, as ANU,, \ {z;} = 0.
This is a contradiction. 0J

Example 11.6: (Limit point comact but neither compact nor sequentially compact)

Consider the space X = N x {0, 1}, where give N the discrete topology, and {0, 1} the indiscrete
topology. Consider the sequence z,, = (n,0). Then, it does not have a convergent subsequence
(otherwise, the first component projection will give convergent subsequence, as continuity implies
sequential continuity). Also, X is not compact either, as the open cover U,, = {(n,0), (n,1)}
has no finite subcover. On the other hand, X is limit point compact. Indeed, say A C X is
infinite, and, without loss of generality, pick some (a,0) € A. Then, check that (a, 1) is a limit
point of A. Indeed, any open set containing (a, 1) contains the open set {(a,0), (a,1)}, which
obviously intersects A in a different point (a,0).

Definition 11.7: (First countable)

Given = € X, a neighborhood basis is a collection {U,} of open neighborhoods of z such that
given any open neighborhood x € U C X, there exists some U, such that x € U, C U. We say
X is first countable at x if there exists a countable neighborhood basis {U;} of x. The space X
is called first countable if it is first countable at every point.




Remark 11.8: (Decreasing neighborhood basis)

Suppose {U;} is a countable neighborhood basis of x € X. Set V} = Uy, Vo =U; Ny, ..., V,; =
Vo1 NU; = (), Uj. Clearly, we have

ViDVeD--->x.

We claim that {V}} is a neighborhood basis of z as well. Let z € U C X be an open neighborhood.
Then, thereissome x € U; C U. But thenx € V; C U; C U as well. Thus, we can always assume
that a countable neighborhood basis is decreasing. Note : in a discrete space {U,, = {z}} is a

non-strictly decreasing countable neighborhood basis of .

Example 11.9: (Metric space is first countable)

Any metric space (X, d) is first countable. The converse is evidently not true, as any indiscrete

space is also first countable.

Proposition 11.10: (Compact first countable is sequentially compact)

Suppose X is a first countable compact space. Then X is sequentially compact.

Proof
Let {x,} be a sequence in X with no convergent subsequence. Then {x,} must be an infinite

set. Without loss of generality, assume each z,, are distinct (just extract such a subsequence). For
each © € X, fix some neighborhood basis U,. Now, since no subsequence of {z,} converges to
x, there must be some U, € U such that only finitely many {z,} is contained in U,. Otherwise,
using the countability of I/, we can extract a subsequence converging to x. Now, we have a cover
X = UzexU,, which admits a finite subcover, say, X = U} ,U,,. But this implies the sequence
{z,,} is finite, a contradiction. O



