
Topology Course Notes (KSM1C03)

Day 10 : 11th September, 2025
compactness -- finite product of compact

10.1 Compactness (cont.)

Theorem 10.1: (Image of compact space)

f : X → Y be a continuous map. If X is compact, then f(X) is compact.

Proof
Consider an open cover V = {Vα} of f(X) by opens of Y . Then, U = {Uα := f−1(Vα)} is an open
cover of X. Since X is compact, there is a finite subcover, say X =

⋃k
i=1 Uαk

=
⋃k

i=1 f
−1(Vαi

).
But that, f(X) ⊂

⋃k
i=1 Vαi

. Thus, f(X) is compact. �

Theorem 10.2: (Maps from compact space to T2)

Let f : X → Y be a surjective continuous map. Suppose X is compact, and Y is T2. Then, f
is an open map.

Proof
Let U ⊂ X be an open set. Then, C = X \U is closed, and hence, compact. Since f is continuous,
f(C) ⊂ Y is compact. As Y is T2, we have f(C) is closed in Y . Finally, as f is surjective, we have
f(U) = Y \ f(X \ U) = Y \ f(C), which is then open. Thus, f is an open map. �

Remark 10.3: (Non-surjective map from compact to T2)

Consider the inclusion map of the point {0} in R. Clearly, {0} is compact, but the inclusion map
is not open!

Exercise 10.4: (Compact to T2 is closed)

Suppose X is compact, Y is T2, and f : X → Y is a continuous map (not necessarily surjective).
Then, show that f is a closed map.

Theorem 10.5: (Compactness of closed interval)

The closed interval [a, b] ⊂ R is compact (in the usual topology).
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Proof
Suppose A = {Uα} is a collection open sets of R covering [a, b]. Consider the set

C = {c ∈ [a, b] | [a, c] is covered by a finite number of opens from A} .

Note that C 6= ∅, since [a, a] = {a} is clearly contained in some Uα. Let L =
∑

C be the least
upper bound. Observe that a ∈ Uα ⇒ [a, a + ε) ⊂ Uα for some e > 0. Thus, a < L ≤ b.
Now, there is some Uβ such that L ∈ Uβ. Then, there is some ε > 0 such that a < L − ε < L

and (L − ε, L] ⊂ Uβ. Also, L being the least upper bound, there is some c ∈ C such that
L − ε < c < L. Thus, [a, c] is covered by finitely many opens, say, {Uα1 , . . . , Uαk

}. But then
[a, L] = [a, c] ∪ [L− ε, L] is covered by a finite collection {Uα1 , . . . , Uαk

, Uβ}. Thus, L ∈ C.
Now, if L < b, then, there is some ε > 0 such that L < L + ε < b, and [L,L + ε] ⊂ Uβ. By a
similar argument, it follows that [a, L+ ε] is covered by finitely many opens of A. This contradicts
L be the least upper bound. Hence, L = b.
Thus, [a, b] is covered by a finitely many sub-collection of A. Since A is arbitrary, it follows that
[a, b] is compact. �

Exercise 10.6: (Real line is noncompact)

Show that R is not compact.

10.2 Product of compacts

Lemma 10.7: (Tube lemma)

Suppose Y is a compact space. Fix a point x0 ∈ X, and suppose W ⊂ X×Y is an open set such
that {x0}×Y ⊂. Then, there exists an open set x0 ∈ U ⊂ X such that {x0}×Y ⊂ U×Y ⊂ W .

Proof
For each y ∈ Y , consider a basic open set (x0, y) ∈ Uy×Vy ⊂ W . Now, {x0}×Y ⊂

⋃
y∈Y Uy×Vy.

Since Y , and hence {x0}×Y , is compact, we have a finite cover, say, {x0}×Y ⊂
⋃k

i=1 Uyi ×Vyi .
Now, set U =

⋂k
i=1 Uyi , which is an open set with x0 ∈ U . Clearly {x0} × Y ⊂ U × Y . Now, for

any (x, y) ∈ U×Y , we have (x0, y) ∈ Uyi0
×Vyi0

for some i0. Then, y ∈ Vyi0
. Also, x ∈ U ⊂ Uyi0

.
Thus, (x, y) ∈ Uyi0

× Vyi0
. In other words, we have

{x0} × Y ⊂ U × Y ⊂
k⋃

i=1

Ui × Vi ⊂ W.

�

Theorem 10.8: (Finite product of compacts are compact)

If X,Y are compact, then so is X × Y .
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Proof
Suppose W is an open cover of X × Y . For each x ∈ X, the space {x} × Y is compact, and
hence, can be covered by a finite collection, say

{x} × Y ⊂
kx⋃
i=1

Wx,i,

for Wx,i ∈ W . Then, by the tube lemma, there exists some x ∈ Ux ⊂ X such that

{x} × Y ⊂ Ux × Y ⊂
kx⋃
i=1

Wx,i.

Now, {Ux} is an open cover of X, which is also compact. Hence, we have a finite cover, say,
X =

⋃n
i=1 Uxi

. Then, clearly,

X × Y =
n⋃

i=1

Uxi
× Y ⊂

n⋃
i=1

kxi⋃
j=1

Wxi,j.

Thus, X × Y can be covered by finitely many elements of W . Hence, X × Y is compact. �
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