
Topology Course Notes (KSM1C03)

Day 9 : 10th September, 2025
path connectedness -- path component -- locally connected -- locally path
connected -- compactness

9.1 Path connectedness (cont.)

Proposition 9.1: (Image of path connected set)

Let f : X → Y be continuous. Then, for any path connected subset A ⊂ X, we have f(A) ⊂ Y

path connected. In particular, if X is path connected, then so is f(X).

Proof
Pick x, y ∈ f(A). Then, x = f(a) and y = f(b) for some a, b ∈ A. Get a path γ : [0, 1] → A

joining a to b. Then, h = f ◦ γ : [0, 1] → f(A) is a path in f(A) joining x to y. Thus, f(A) is
path connected. �

Exercise 9.2: (Product of path connected)

Let {Xα} be a family of path connected spaces. Show that the product space X = ΠXα is path
connected. Give an example to show that X may not be path connected equipped with the box
topology.

Definition 9.3: (Path component)
Given x ∈ X, the path component of X containing x is the largest possible path connected set
of X containing x.

Proposition 9.4: (Existence of path component)

Given x ∈ X, the path component of X can be defined as

P(x) := {y ∈ X | there is a path f : [0, 1] → X with f(0) = x and f(1) = y} .

Equivalently,
P(x) :=

⋃
{P ⊂ X | x ∈ P, P is path connected} .

Proof
Let us check the first part. Firstly, note that P(x) is path connected. Indeed, given any two
y, z ∈ P(x), we have two paths f : [0, 1] → P(x) and g : [0, 1] → P(x) joining, respectively, x to

1



y and x to z. We can construct the concatenated path h as follows

h(t) =

f(1− 2t), 0 ≤ t ≤ 1
2
,

g(2t− 1), 1
2
≤ t ≤ 1.

Check that h is continuous! Clearly, h is a then a path connecting y to z. Thus, P(x) is path
connected.

Now, suppose A is the union of all path connected sets of X containing x. For any y, z ∈ A, we
have y ∈ P and z ∈ Q for some path connected sets x ∈ P,Q ⊂ X. Then, we can get a path
joining y to x and then from x to z, which is in P ∪Q ⊂ A. Thus, A is path connected, which is
clearly the larges such set containing x. Hence, the second definition of P(x) is also true. �

Exercise 9.5: (Path component equivalence relation)

Define a relation x ∼ y if and only if x, y are in the same path component. Check that ∼ is an
equivalence relation, and the equivalence classes are precisely the path components of X.

9.2 Locally connected and locally path connected spaces

Definition 9.6: (Locally connected)
A space X is called locally connected at x ∈ X if given any open neighborhood x ∈ U , there
exists a (possibly smaller) open neighborhood x ∈ V ⊂ U , such that V is connected. The space
is called locally connected if it is locally connected at every point x ∈ X.

Theorem 9.7

A space X is locally connected if and only if for all open set U ⊂ X, all the components of U
are open.

Proof
Suppose X is locally connected. Pick some U ⊂ X open, and a component C ⊂ U . Now, for any
x ∈ C ⊂ U , by local connectedness, there is a connected open set x ∈ V ⊂ U . Since x ∈ V ∩ C,
we see that V ∪C is connected. But C is the larges connected set containing x. Thus, x ∈ V ⊂ C,
proving that x ∈ C̊. Thus, C is open.

Conversely, suppose for any open U ⊂ X, each component of U is open. Fix some x and some
open neighborhood x ∈ U . Consider the component of x in U to be C. Then, C is open. Hence,
X is locally connected. �

Definition 9.8: (Locally path connected)
A space X is called locally path connected at x ∈ X if given any open neighborhood x ∈ U ,
there exists a (possibly smaller) open neighborhood x ∈ V ⊂ U , such that V is path connected.
The space is called locally path connected if it is locally path connected at every point x ∈ X.
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Theorem 9.9

A space X is locally path connected if and only if for all open set U ⊂ X, all the path components
of U are open.

Theorem 9.10

The path components of X lies in a single component. If X is locally path connected, then the
path components and the components coincide.

Proof
Suppose P is a path component, which is path connected, and hence, connected. But then P can
only lie in a single component.

Suppose X is locally path connected. Then, every path components of X is open. Let C be a
component. For some x ∈ C, consider P to be the path component of x. Then, x ∈ P ⊂ C.
If P 6= C, then consider Q to be the union of every other path components of points of C \ P .
Again, we have Q ⊂ C. Now, we have a separation C = P t Q by nontrivial open sets, which
contradicts the fact that C is connected. Hence, P = C. Thus, path components of X coincide
with the components. �

9.3 Compactness

Definition 9.11: (Covering)
Given a set X, a collection A ⊂ P(X) of subsets of X is called a covering of X if we have
X =

⋃
A∈A A. Given a topological space (X, T ), we say A is an open cover (of X) A is a

covering of X and if each A ∈ A is an open set. A sub-cover of A is a sub-collection B ⊂ A,
which is again a covering, i.e, X =

⋃
B∈B B.

Definition 9.12: (Compact space)
A space X is called compact if every open cover of X has a finite sub-cover. A subset C ⊂ X

is called compact if C is compact as a subspace.

Example 9.13: (Finite space is compact)

Any finite topological space is compact, since there can be at most finitely many open sets in
X. An infinite discrete space is not compact.

Proposition 9.14: (Compact subspace)

A subset C ⊂ X is compact if and only if given any collection A = {Aα} of open sets of X,
with C ⊂

⋃
Aα, we have a finite sub-collection {Aα1 , . . . , Aαk

} such that C ⊂
⋃k

i=1 Aαi
.

Proof
Suppose C is compact (as a subspace). Consider a cover A = {Aα} of C by opens of X. Then,
A′ = {Aα ∩ C} is an open cover of C in the subspace topology. Since C is compact, we have a
finite sub-cover, say, {Aα1 ∩ C, . . . , Aαk

∩ C}. But then C ⊂
⋃k

i=1Aαi
.
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Conversely, suppose given any cover of C by open sets of X, we have a finite sub-cover. Choose
any open cover of C (in the subspace topology), say, U = {Uα ⊂ C}. Now, each Uα = C ∩ Vα

for some open Vα ⊂ X. Then, C ⊂
⋃

Vα is a cover, which has finite sub-cover, C ⊂
⋃k

i=1 Vαi
.

Clearly, C =
⋃k

i=1C ∩ Vαi
=

⋃k
i=1 Uαi

. Thus, C is compact. �

Exercise 9.15: (Compactness is independent of subspace)

Let Y ⊂ X be a subspace. A subset C ⊂ Y is compact if and only if C is compact as a subspace
of X.

Proposition 9.16: (Closed in compact is compact)

Suppose X is a compact space, and C ⊂ X is closed. Then, C is compact.

Proof
Fix some cover {Uα} of C by open sets Uα ⊂ X. Now, C being closed, we have V := X \ C is
open. We have, X = V ∪

⋃
Uα. Since X is compact, there is a finite subcover. Without loss of

generality, X = V ∪
⋃k

i=1 Uαi
. Then, C ⊂

⋃k
i=1 Uαi

. Hence, C is compact. �

Example 9.17: (Compact need not be closed)

Let X be an indiscrete space. Then, any subset is compact, but there are non-closed subsets.

Proposition 9.18: (Compact in T2 is closed)

Let X be a T2 space. Then, any compact C ⊂ X is closed.

Proof
If C = X, then there is nothing to show. Otherwise, we show that any y ∈ X\C is an interior point.
For each c ∈ C, by T2, there is some open neighborhoods y ∈ Uc, c ∈ Vc, such that Uc ∩ Vc = ∅.
Now, C ⊂

⋃
c∈C Vc. Since C is compact, there are finitely many points, c1, . . . , ck, such that

C ⊂
k⋃

i=1

Vci .

Let us consider U :=
⋂k

i=1 Uci , which is an open neighborhood of y. Also, U ∩
(⋃k

i=1 Vci

)
= ∅ ⇒

U ∩ C = ∅ ⇒ U ⊂ X \ C. Thus, y ∈ int(X \ C). Since y was arbitrary, C is closed. �

Example 9.19: (Compact is not closed in T1)

Let X be an infinite set, equipped with the cofinite topology. Then, X is T1, but not T2.
Let C = X \ {x0} for some x0 ∈ X, which is clearly not closed.
Suppose C ⊂

⋃
α∈I Uα is some open covering. Choose some Uα0 . Now, Uα0 = X \ {x1, . . . , xk}

(if Uα0 = X, then there is nothing to show). For each 1 ≤ i ≤ k with xi ∈ C, choose some Uαi

such that xi ∈ Uαi
. If xi 6∈ C, choose Uαi

arbitrary. Then, C ⊂
⋃k

i=0 Uαi
. Thus, C is compact,

but not closed.
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