

Topology Course Notes (KSM1C03)

Day 9 : 10th September, 2025

path connectedness -- path component -- locally connected -- locally path connected -- compactness

9.1 Path connectedness (cont.)

Proposition 9.1: (Image of path connected set)

Let $f : X \rightarrow Y$ be continuous. Then, for any path connected subset $A \subset X$, we have $f(A) \subset Y$ path connected. In particular, if X is path connected, then so is $f(X)$.

Proof

Pick $x, y \in f(A)$. Then, $x = f(a)$ and $y = f(b)$ for some $a, b \in A$. Get a path $\gamma : [0, 1] \rightarrow A$ joining a to b . Then, $h = f \circ \gamma : [0, 1] \rightarrow f(A)$ is a path in $f(A)$ joining x to y . Thus, $f(A)$ is path connected. \square

Exercise 9.2: (Product of path connected)

Let $\{X_\alpha\}$ be a family of path connected spaces. Show that the product space $X = \prod X_\alpha$ is path connected. Give an example to show that X may not be path connected equipped with the box topology.

Definition 9.3: (Path component)

Given $x \in X$, the *path component* of X containing x is the largest possible path connected set of X containing x .

Proposition 9.4: (Existence of path component)

Given $x \in X$, the path component of X can be defined as

$$\mathcal{P}(x) := \{y \in X \mid \text{there is a path } f : [0, 1] \rightarrow X \text{ with } f(0) = x \text{ and } f(1) = y\}.$$

Equivalently,

$$\mathcal{P}(x) := \bigcup \{P \subset X \mid x \in P, P \text{ is path connected}\}.$$

Proof

Let us check the first part. Firstly, note that $\mathcal{P}(x)$ is path connected. Indeed, given any two $y, z \in \mathcal{P}(x)$, we have two paths $f : [0, 1] \rightarrow \mathcal{P}(x)$ and $g : [0, 1] \rightarrow \mathcal{P}(x)$ joining, respectively, x to

y and x to z . We can construct the concatenated path h as follows

$$h(t) = \begin{cases} f(1-2t), & 0 \leq t \leq \frac{1}{2}, \\ g(2t-1), & \frac{1}{2} \leq t \leq 1. \end{cases}$$

Check that h is continuous! Clearly, h is a then a path connecting y to z . Thus, $\mathcal{P}(x)$ is path connected.

Now, suppose A is the union of all path connected sets of X containing x . For any $y, z \in A$, we have $y \in P$ and $z \in Q$ for some path connected sets $x \in P, Q \subset X$. Then, we can get a path joining y to x and then from x to z , which is in $P \cup Q \subset A$. Thus, A is path connected, which is clearly the largest such set containing x . Hence, the second definition of $\mathcal{P}(x)$ is also true. \square

Exercise 9.5: (Path component equivalence relation)

Define a relation $x \sim y$ if and only if x, y are in the same path component. Check that \sim is an equivalence relation, and the equivalence classes are precisely the path components of X .

9.2 Locally connected and locally path connected spaces

Definition 9.6: (Locally connected)

A space X is called *locally connected at $x \in X$* if given any open neighborhood $x \in U$, there exists a (possibly smaller) open neighborhood $x \in V \subset U$, such that V is connected. The space is called *locally connected* if it is locally connected at every point $x \in X$.

Theorem 9.7

A space X is locally connected if and only if for all open set $U \subset X$, all the components of U are open.

Proof

Suppose X is locally connected. Pick some $U \subset X$ open, and a component $C \subset U$. Now, for any $x \in C \subset U$, by local connectedness, there is a connected open set $x \in V \subset U$. Since $x \in V \cap C$, we see that $V \cup C$ is connected. But C is the largest connected set containing x . Thus, $x \in V \subset C$, proving that $x \in \overset{\circ}{C}$. Thus, C is open.

Conversely, suppose for any open $U \subset X$, each component of U is open. Fix some x and some open neighborhood $x \in U$. Consider the component of x in U to be C . Then, C is open. Hence, X is locally connected. \square

Definition 9.8: (Locally path connected)

A space X is called *locally path connected at $x \in X$* if given any open neighborhood $x \in U$, there exists a (possibly smaller) open neighborhood $x \in V \subset U$, such that V is path connected. The space is called *locally path connected* if it is locally path connected at every point $x \in X$.

Theorem 9.9

A space X is locally path connected if and only if for all open set $U \subset X$, all the path components of U are open.

Theorem 9.10

The path components of X lies in a single component. If X is locally path connected, then the path components and the components coincide.

Proof

Suppose P is a path component, which is path connected, and hence, connected. But then P can only lie in a single component.

Suppose X is locally path connected. Then, every path components of X is open. Let C be a component. For some $x \in C$, consider P to be the path component of x . Then, $x \in P \subset C$. If $P \neq C$, then consider Q to be the union of every other path components of points of $C \setminus P$. Again, we have $Q \subset C$. Now, we have a separation $C = P \sqcup Q$ by nontrivial open sets, which contradicts the fact that C is connected. Hence, $P = C$. Thus, path components of X coincide with the components. \square

9.3 Compactness

Definition 9.11: (Covering)

Given a set X , a collection $\mathcal{A} \subset \mathcal{P}(X)$ of subsets of X is called a *covering* of X if we have $X = \bigcup_{A \in \mathcal{A}} A$. Given a topological space (X, \mathcal{T}) , we say \mathcal{A} is an *open cover* (of X) if \mathcal{A} is a covering of X and if each $A \in \mathcal{A}$ is an open set. A *sub-cover* of \mathcal{A} is a sub-collection $\mathcal{B} \subset \mathcal{A}$, which is again a covering, i.e., $X = \bigcup_{B \in \mathcal{B}} B$.

Definition 9.12: (Compact space)

A space X is called *compact* if every open cover of X has a finite sub-cover. A subset $C \subset X$ is called compact if C is compact as a subspace.

Example 9.13: (Finite space is compact)

Any finite topological space is compact, since there can be at most finitely many open sets in X . An infinite discrete space is not compact.

Proposition 9.14: (Compact subspace)

A subset $C \subset X$ is compact if and only if given any collection $\mathcal{A} = \{A_\alpha\}$ of open sets of X , with $C \subset \bigcup A_\alpha$, we have a finite sub-collection $\{A_{\alpha_1}, \dots, A_{\alpha_k}\}$ such that $C \subset \bigcup_{i=1}^k A_{\alpha_i}$.

Proof

Suppose C is compact (as a subspace). Consider a cover $\mathcal{A} = \{A_\alpha\}$ of C by opens of X . Then, $\mathcal{A}' = \{A_\alpha \cap C\}$ is an open cover of C in the subspace topology. Since C is compact, we have a finite sub-cover, say, $\{A_{\alpha_1} \cap C, \dots, A_{\alpha_k} \cap C\}$. But then $C \subset \bigcup_{i=1}^k A_{\alpha_i}$.

Conversely, suppose given any cover of C by open sets of X , we have a finite sub-cover. Choose any open cover of C (in the subspace topology), say, $\mathcal{U} = \{U_\alpha \subset C\}$. Now, each $U_\alpha = C \cap V_\alpha$ for some open $V_\alpha \subset X$. Then, $C \subset \bigcup V_\alpha$ is a cover, which has finite sub-cover, $C \subset \bigcup_{i=1}^k V_{\alpha_i}$. Clearly, $C = \bigcup_{i=1}^k C \cap V_{\alpha_i} = \bigcup_{i=1}^k U_{\alpha_i}$. Thus, C is compact. \square

Exercise 9.15: (Compactness is independent of subspace)

Let $Y \subset X$ be a subspace. A subset $C \subset Y$ is compact if and only if C is compact as a subspace of X .

Proposition 9.16: (Closed in compact is compact)

Suppose X is a compact space, and $C \subset X$ is closed. Then, C is compact.

Proof

Fix some cover $\{U_\alpha\}$ of C by open sets $U_\alpha \subset X$. Now, C being closed, we have $V := X \setminus C$ is open. We have, $X = V \cup \bigcup U_\alpha$. Since X is compact, there is a finite subcover. Without loss of generality, $X = V \cup \bigcup_{i=1}^k U_{\alpha_i}$. Then, $C \subset \bigcup_{i=1}^k U_{\alpha_i}$. Hence, C is compact. \square

Example 9.17: (Compact need not be closed)

Let X be an indiscrete space. Then, any subset is compact, but there are non-closed subsets.

Proposition 9.18: (Compact in T_2 is closed)

Let X be a T_2 space. Then, any compact $C \subset X$ is closed.

Proof

If $C = X$, then there is nothing to show. Otherwise, we show that any $y \in X \setminus C$ is an interior point. For each $c \in C$, by T_2 , there is some open neighborhoods $y \in U_c, c \in V_c$, such that $U_c \cap V_c = \emptyset$. Now, $C \subset \bigcup_{c \in C} V_c$. Since C is compact, there are finitely many points, c_1, \dots, c_k , such that

$$C \subset \bigcup_{i=1}^k V_{c_i}.$$

Let us consider $U := \bigcap_{i=1}^k U_{c_i}$, which is an open neighborhood of y . Also, $U \cap \left(\bigcup_{i=1}^k V_{c_i} \right) = \emptyset \Rightarrow U \cap C = \emptyset \Rightarrow U \subset X \setminus C$. Thus, $y \in \text{int}(X \setminus C)$. Since y was arbitrary, C is closed. \square

Example 9.19: (Compact is not closed in T_1)

Let X be an infinite set, equipped with the cofinite topology. Then, X is T_1 , but not T_2 .

Let $C = X \setminus \{x_0\}$ for some $x_0 \in X$, which is clearly not closed.

Suppose $C \subset \bigcup_{\alpha \in I} U_\alpha$ is some open covering. Choose some U_{α_0} . Now, $U_{\alpha_0} = X \setminus \{x_1, \dots, x_k\}$ (if $U_{\alpha_0} = X$, then there is nothing to show). For each $1 \leq i \leq k$ with $x_i \in C$, choose some U_{α_i} such that $x_i \in U_{\alpha_i}$. If $x_i \notin C$, choose U_{α_i} arbitrary. Then, $C \subset \bigcup_{i=0}^k U_{\alpha_i}$. Thus, C is compact, but not closed.