

Class Test 2 (Solution)

2nd September, 2025

Q1. Given any space X , consider the equivalence relation : $x \sim y$ if and only if x and y are in the same connected component.

a) X/\sim is a T_1 space.

Proof: For any $x \in X/\sim$, we have $q^{-1}(x)$ is a connected component of X , which is closed. But the $\{x\}$ is closed in the quotient topology. So, X/\sim is T_1 .

b) X/\sim is a T_2 space.

Counterexample: Consider the space

$$X = \{p = (0, 0), q = (0, 1)\} \cup \bigcup_{n \geq 1} \left\{ \frac{1}{n} \right\} \times [0, 1] \subset \mathbb{R}^2.$$

The connected components of X are

$$\{p\}, \{q\}, \left\{ \frac{1}{n} \right\} \times [0, 1], n \geq 1.$$

Now, for any *saturated* open sets $p \in U, q \in V$, it follows that infinitely many $\left\{ \frac{1}{n} \right\} \times [0, 1]$ are in the intersection $U \cap V$. Consequently, the equivalence classes $[\{p\}], [\{q\}] \in X/\sim$ cannot be separated by disjoint open sets. Hence, X/\sim is not T_2 .

Alternative counterexample: Consider the space

$$Y = \{a, b, x_1, x_2, \dots\},$$

with the topology

$$\begin{aligned} \mathcal{T} := & \{\emptyset, Y\} \cup \mathcal{P}(\{x_i\}_{i=1}^{\infty}) \\ & \{\{a\} \cup A \mid A \subset \{x_i\}_{i=1}^{\infty} \text{ is cofinite}\} \\ & \{\{b\} \cup B \mid B \subset \{x_i\}_{i=1}^{\infty} \text{ is cofinite}\} \\ & \{\{a, b\} \cup C \mid C \subset \{x_i\}_{i=1}^{\infty} \text{ is cofinite}\} \end{aligned}$$

Then, (Y, \mathcal{T}) is totally disconnected. Now, for the equivalence classes $[a]$ and $[b]$, observe that for any two open sets $[a] \in U \subset Y/\sim, [b] \in V \subset Y/\sim$, we have $q^{-1}(U) \cap q^{-1}(V) \neq \emptyset$ (in fact there are infinitely many elements). Hence, $U \cap V \neq \emptyset$. So Y/\sim is not T_2 .

c) If X/\sim is a discrete space, then X has finitely many connected components.

Counterexample: Consider X to be any infinite discrete space. Then, X is totally disconnected, and thus, have infinitely many components. Clearly, $X/\sim \cong X$ is again a discrete space.

d) If X/\sim is an indiscrete space, then X is connected.

Proof: Since X/\sim is T_1 , the only possibility is that X/\sim is a singleton. But then X is connected.

e) If X/\sim is a connected space, then X is connected.

Proof: Suppose X/\sim is connected but X is disconnected. We then have a surjective continuous map $f : X \rightarrow \{0, 1\}$. Now, for any connected component C , we must have $C \subset f^{-1}(0)$ or $C \subset f^{-1}(1)$. Then, we have a well-defined induced map $\tilde{f} : X \rightarrow \{0, 1\}$, satisfying $\tilde{f} \circ q = f$, which is continuous by the property of the quotient topology. Since f is surjective, so is \tilde{f} . But this contradicts that X/\sim is connected. Hence, X must be connected.

f) If X is totally disconnected, then the quotient map $q : X \rightarrow X/\sim$ is a homeomorphism.

Proof: By the definition of totally disconnected, it follows that q is a bijection. q is a continuous map, as it is a quotient map. For any $U \subset X$ open, it follows that $U = q^{-1}(q(U))$, and hence, $q(U)$ is open in X/\sim . Thus, q is a homeomorphism.