
Topology Course Notes (KSM1C03)

Day 6 : 27th August, 2025
connectedness -- components

6.1 Connectedness
Definition 6.1: (Connected space)
A space X is called connected if the only clopen sets (i.e., simultaneously open and closed
sets) of X are ∅ and X itself. If there is a nontrivial clopen set ∅ ( U ( X, then X is called
disconnected .

Proposition 6.2: (Disconnected space)

For a space X, the following are equivalent.

1) X is disconnected.

2) X can be written as the disjoint union of two open sets X = U t V , such that,
∅ ( U ( X and ∅ ( V ( X.

3) X can be written as the disjoint union of two closed sets X = F t G, such that,
∅ ( F ( X and ∅ ( G ( X.

4) There is a surjective continuous map X → {0, 1}, where {0, 1} is given the discrete
topology.

Proof
The equivalence of 1, 2, 3 follows from the definition. Suppose f : X → {0, 1} is a surjective
continuous map. Then, X can be written as the disjoint union X = f−1(0) t f−1(1), each of
which are non-trivial open sets. Conversely, if X = U t V for some nontrivial open sets, then
f : X → {0, 1} defined by f(U) = 0 and f(V ) = 1 is a surjective continuous map. �

Theorem 6.3: (Image of connected set)

Suppose f : X → Y is a continuous map. Then, for any connected A ⊂ X, we have f(A) ⊂ Y

is connected. In particular, if X is connected, then so is f(X).
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Proof
Suppose f(A) ⊂ Y is disconnected. Then, there is a surjective continuous map g : f(A) → {0, 1}.
But then, h := g ◦ f : A → {0, 1} is a surjective continuous map, a contradiction. Hence, f(A) is
connected. �

Definition 6.4: (Connected component)
Given x ∈ X, the connected component of X containing x is the largest possible connected
subset containing x.

Proposition 6.5: (Existence of connected component)

Given x ∈ X, the connected component of X containing X is defined as the

C(x) :=
⋃

{A | x ∈ A ⊂ X,A is connected} .

Proof
Observe that {x} is a connected set, and hence, the family is non-empty. Let us check C(x) is
connected. If not, then there exists open sets U, V ⊂ X such that

• ∅ ( C(x) ∩ U ( C(x),

• ∅ ( C(x) ∩ V ( C(x), and

• C(x) = (C(x) ∩ U) t (C(x) ∩ V ).

Now, for any connected set A containing x, we have

A = (A ∩ U) t (A ∩ V ).

Then, both
∅ ( A ∩ U ( A, and ∅ ( A ∩ V ( A

cannot appear simultaneously. Hence, either A ⊂ U or A ⊂ V . Thus, we can define the two
collections

U := {A | x ∈ A ⊂ X, A is connected, A ⊂ U} ,V := {A | x ∈ A ⊂ X, A is connected, A ⊂ V } .

Since x ∈ A for all such A, we must have either U = ∅ or V = ∅. Without loss of generality, assume
V = ∅. But then, C(x)∩V = ∅, a contradiction. Hence, C(x) is connected. By construction, it is the
largest such connected set which contains x. Thus, C(x) is the connected component containing
x. �

Exercise 6.6: (Hyperbola and axes)

Suppose
A = {(x, y) | xy = 1} ∪ {(x, y) | xy = 0} ⊂ R.

Show that A has three connected components.
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Theorem 6.7: (Closure is connected)

If A ⊂ X is a connected set, then for any subset B satisfying A ⊂ B ⊂ Ā, we have B is
connected. In particular, Ā is connected.

Proof
Suppose, we have B = U tV for some open sets ∅ ( U, V ( B. Since A ⊂ B, we have A ⊂ U or
A ⊂ V (otherwise, A = (A ∩ U) t (A ∩ V ) will be a separation of A). Without loss of generality,
say, A ⊂ U ⇒ ĀB ⊂ ŪB. Now, U ⊂ B is closed (in B), as B\U = V is open (in B). In particular,
ŪB = U . On the other hand, ĀB = Ā ∩ B ⊃ B ⇒ B ⊂ ĀB ⊂ ŪB = U . This contradicts that
∅ ( V ( B. Hence, B is connected. �

Example 6.8: (Discrete space)

In a discrete space X, every singleton {x} is a connected component. Any subset with at least
two elements is then disconnected.

Definition 6.9: (Totally disconnected space)
A space X is called totally disconnected if the only connected components of x are precisely the
singletons.

Note that totally disconnected spaces need not be discrete.
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