
Topology Course Notes (KSM1C03)

Day 5 : 21th August, 2025
Hausdorff axiom -- T2, T1, T0 -- convergence of sequence -- sequential continuity
-- quotient space

5.1 Hausdorff Axiom
Definition 5.1: (Hausdorff space)
A space X is called Hausdorff (or a T2-space) if for any x, y ∈ X with x 6= y, there exists open
neighborhoods x ∈ Ux ⊂ X, y ∈ Uy ⊂ X, such that Ux ∩ Uy = ∅. In other words, any two
points of a Hausdorff space can be separated by open sets.

Exercise 5.2: (Product of T2-spaces)

Suppose {Xα} is a collection of T2-spaces. Show that X = ΠXα is T2 with respect to the
product topology (and hence, with respect to the box topology as well).

Being Hausdorff is a very desirable property of a space.

Exercise 5.3: (Metric spaces are Hausdorff)

If (X, d) is a metric space, then show that the metric topology is Hausdorff.

Proposition 5.4: (Points are closed in Hausdorff space)

Suppose X is a Hausdorff space. Then, {x} is a closed subset of X for any x ∈ X.

Proof
Suppose y 6= x. Then, by Hausdorff property, we have some open sets U and V such that x ∈
U, y ∈ V and U ∩ V = ∅. In particular, y is not a closure point of {x}. Thus, {x} is closed. �

Note that in the proof, the full strength of the Hausdorff property is not used.

Definition 5.5: (T1 space)
A space X is called a T1-space (or a Fréchet space) if for any x ∈ X, the subset {x} is a closed
set.

Exercise 5.6: (T1 but not T2 space)

Given an example of a space X which is T1 but not T2.
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Exercise 5.7: (T1-space equivalent definition)

Let X be a space. Show that the following are equivalent.

a) X is a T1 space.

b) For any x, y ∈ X with x 6= y, there exists open neighborhoods x ∈ Ux ⊂ X and
y ∈ Uy ⊂ X such that y 6∈ Ux and x 6∈ Uy.

c) Any A ⊂ X is the intersection of all open sets containing A.

d) For any A ⊂ X and x ∈ X, we have x is a limit point of A if and only every open
neighborhood of x contains infinitely many points of A. (What happens when X is
finite?!)

Definition 5.8: (T0-space)
A space X is called a T0-space (or a Kolmogorov space) if for any two points x 6= y ∈ X, there
exists an open set U ⊂ X which contains exactly one of x and y.

Remark 5.9: (Topolgoically distinguishable and separable)

Suppose x, y ∈ X are two points. Note the following hierarchy.

• (Distinct) If x 6= y, we say x, y are distinct.

• (Topologically distinguishable) If there is at least one open set that contains exactly one
of x and y, we say x, y are topologically distinguishable.

• (Separable) If there are two neighborhoods Ux, Uy of x, y respectively, which does not
contain the other, we say x, y are topologically separable.

• (Separated by opens) If there are two neighborhoods Ux, Uy of x, y respectively, such that
Ux ∩ Uy = ∅, we say x, y are separated by open sets.

Later, we shall see how this continues to points and closed sets as well.

Exercise 5.10: (T0 but not T1 space)

Given an example of a space X which is T0 but not T1. What about

Exercise 5.11: (Zariski topology)

Suppose F = R or C. Give it the topology T = {∅,F×,F}, where F× = F \ {0}. Consider the
family of polynomial functions F := {p : Fn → F}. The topology induced by F on Fn is known
as the Zariski topology . Determine whether it is T0, T1 or T2.
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5.2 Convergence of sequence

Definition 5.12: (Convergence of sequence)
Suppose {xn}n≥1 is a sequence of points in a space X (i.e, x : N → X is a function). We say
{xn} converges to a limit x ∈ X if for any open neighborhood U of x, there is a natural number
NU such that xn ∈ U for all n ≥ NU .

Exercise 5.13: (Convergence in metric)

Check that the notion of convergence in a metric space is equivalent to the usual notion (i.e,
xn → x if and only if d(xn, x) → 0). In particular, they are the same from real analysis.

Example 5.14

Suppose X is an indiscrete space, with at least two distinct points x, y ∈ X. Consider the
sequence

xn =

x, n is odd,
y, n is even.

Observe that the sequence converges to both x and y. In fact, any sequence in X converges to
every point in the space X. Note that an indiscrete space is not even T0.

Example 5.15

Suppose X = {0, 1}, with topology T = {∅, {0} , {0, 1}}. This space (X, T ) is known as
Sierpiński space. Clearly it is T0, but not T1 since {0} is not closed. Now, consider the sequence
xn = 0 for all n ≥ 1. Then, {xn} converges to both 0 and 1.

Proposition 5.16: (Convergence in T2)

Suppose {xn} is a sequence in a T2-space X. Then, {xn} can converge to at most one point in
X.

Proof
If possible, suppose {xn} converges to distinct point x 6= y. By Hausdorff property, we have
two open neighborhoods Ux, Uy of x, y respectively, such that Ux ∩ Uy = ∅. We also have two
natural numbers N1, N2 such that xn ∈ Ux for all n ≥ N1 and xn ∈ Uy for all n ≥ N2. Set
N = max {N1, N2}. Then,

xn ∈ Ux ∩ Uy, for all n ≥ N.

This is a contradiction. Thus, any sequence can converge to at most one point. �

5.3 Sequential Continuity

Definition 5.17: (Sequenttial continuity)
A function f : X → Y is said to be sequentially continuous if for any converging sequence
xn → x in X, we have f(xn) → f(x) in Y .
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Proposition 5.18: (Continuous functions are sequentially continuous)

Suppose f : X → Y is a continuous map. Then f is sequentially continuous.

Proof
Suppose xn → x is a converging sequence in X. Let f(x) ∈ U ⊂ Y be an arbitrary open
neighborhood. Then, it follows from continuity of f that f−1(U) ⊂ X is open. Clearly x ∈ f−1(U).
Hence, there is some N ≥ 1 such that xn ∈ f−1(U) for all n ≥ N . This implies f(xn) ∈ U for
all n ≥ N . Since U was arbitrary, we see that f(xn) → f(x). But this means f is sequentially
convergent. �

Proposition 5.19: (Sequential continuity in metric spaces)

Suppose (X, d) is a metric space with the metric topology, and Y be any space. Then, any
sequentially continuous map f : X → Y is a continuous map.

Proof
Let U ⊂ Y be open. In order to show f−1(U) ⊂ X is open, we show that any x ∈ f−1(U) is
an interior point of f−1(U). Consider the metric balls Bn := Bd

(
x, 1

n

)
⊂ X. If possible, suppose

Bn 6⊂ f−1(U) for any n. Pick points xn ∈ f−1(U)\Bn, and observe that xn → x (Check!). Then,
we have f(xn) → f(x). Since U is an open neighborhood of f(x), we have some N ≥ 1 such that
f(xn) ∈ U for all n ≥ N . But then xn ∈ f−1(U) for n ≥ N , which is a contradiction. Hence, we
must have that for some N0 ≥ 1 the metric ball BN0 ⊂ f−1(U). Thus, x is an interior point. Since
x is arbitrary, we get f−1(U) is open. Consequently, f is continuous. �

Caution 5.20: (Sequential conitinuity may not imply continuity)

In general, sequential continuity may not imply continuity! Consider X to be a space equipped
with the cocountable topology. Then, any convergent sequence in X is eventually constant.
That is, if xn → x in X, then for some N ≥ 1, we have xn = x for all n ≥ N . But then any
function f : X → Y is sequentially continuous (Why?). Assume X is uncountable, so that the
cocountable topology is not the discrete topology. Then, there are non-continuous maps on X.
For example, consider Y = X equipped with the discrete topology, and then look at the identity
map Id : X → Y .

5.4 Quotient space

Definition 5.21: (Quotient map)
Given a space (X, T ) and a function f : X → Y to a set Y , the quotient topology on Y is
defined as

Tf :=
{
U

∣∣ f−1(U) ∈ T
}
.

The map f : (X, T ) → (Y, Tf ) is called a quotient map. In other words, f is a quotient map if
U ⊂ Y is open if and only if f−1(U) ⊂ X is open.
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Proposition 5.22: (Quotient topology is topology)

The quotient topology Tf is indeed a topology on Y , and f : (X, T ) → (Y, Tf ) is continuous.

Proof
We check the axioms.

i) ∅ ∈ Tf since ∅ = f−1(∅) ∈ T .

ii) Y ∈ Tf since X = f−1(Y ) ∈ T .

iii) For any collection {Uα ∈ Tf}, we have f−1(
⋃

Uα) =
⋃

f−1(Uα) ∈ T . Thus, Tf is cloes
under arbitrary union.

iv) For a finite collection {Ui}ki=1, we have f−1 (
⋂
Ui) =

⋂
f−1(Ui) ∈ T . Thus, Tf is closed

under finite intersection.

Hence, Tf is a topology. By construction, f is then continuous. �

Theorem 5.23: (Universal property of quotient topology)

Suppose (X, TX) and (Y, TY ) are given. Then, for any set function, q : X → Y , the following
are equivalent.

1. TY is the quotient topology induced by q (in other words, q is a quotient map).

2. TY is the finest (i.e, largest) topology for which q is continuous.

3. TY is the unique topology having the following property :

X Y

Z

q

f◦q

f

for any space (Z, TZ) and any set map f : Y → Z, we have f is continuous if and only if
f ◦ q is continuous

Proof
Suppose q is a quotient map. If possible, there is some topology SY on Y such that TY ( SY

and q : (X, TX) → (Y,SY ) is continuous. Since SY is strictly finer than TY , there is some set
U ∈ SY \TY . But then q−1(U) ∈ TX , as q is continuous. This implies U ∈ calTY , a contradiction.
Hence, the quotient topology is the finest topology on Y making q continuous.

Conversely, suppose TY is the finest topology so that q is continuous. Recall the quotient topology
is

Tq =
{
U

∣∣ q−1(U) ∈ TX

}
Since q is continuous, for each U ∈ TY we have q−1(U) ∈ TX . In particular, TY ⊂ Tq. Also,
q : (X, TX) → (Y, Tq) is continuous. Since TY is the finest such topology, we must have TY = Tq.
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Next, suppose TY is the quotient topology. Let us choose some space (Z, TZ) and set map f :

Y → Z. If f is continuous, then we have f−1(U) ∈ TY for all U ∈ TZ . Then,

(f ◦ q)−1 (U) = q−1
(
f−1(U)

)
∈ TX ,

by the definition of quotient topology. Thus, f ◦ q is continuous. On the other hand, suppose
f ◦ q is continuous. Then, for any U ◦ TZ , we have q−1 (f−1(U)) ∈ TX . But then again by the
definition of quotient topology, we have f−1(U) ∈ TY , which shows that f is continuous. Thus,
TY satisfies the property. If possible, suppose SY is another topology on Y satisfying the property.
Let us take Z = (Y, TY ) and f = IdY : (Y,SY ) → (Y, TY ). Then, we have f is continuous if and
only if f ◦ q is continuous. But, f ◦ q = q : (X, TX) → (Y, TY ), which is continuous being the
quotient map. Hence, f is continuous. This implies TY ⊂ SY . But TY is the finest topology for
which q is continuous, and hence, TY = SY . This proves the uniqueness.

Finally, suppose TY is the unique topology satisfying the property above. We show that the quotient
topology Tq satisfies the property. Suppose (Z, TZ) is some space, and f : Y → Z is a set map. If
f : (Y, Tq) → (Z, TZ) is continuous, then for any U ∈ TZ we have

(f ◦ q)−1(U) = q−1(f−1(U)) ∈ TX ,

since f−1(U) ∈ Tq. On the other hand, if f ◦ q is continuous, then for any U ∈ TZ we have
q−1 (f−1(U)) ∈ TX , which implies, f−1(U) ∈ Tq. Thus, f is continuous. In particular, Tq satisfies
the property, and hence, TY is the quotient topology by uniqueness.

This concludes the proof. �

Remark 5.24: (Quotient map and surjectivity)

Suppose f : X → Y is a quotient map. Assume that f is not surjective. Then, for any y ∈ Y \f(X)

we have f−1(y) = ∅ ⊂ X open, and hence, {y} is open in Y . In other words, Y \ f(X) has the
discrete topology. Also, f(X) ⊂ Y is both an open and closed set. Hence, the open and closed
sets of f(X) in the subspace topology are precisely the same in the actual (quotient) topology on
Y . For these reasons, we can (and usually we do) assume that a quotient map is surjective.

Remark 5.25: (Surjective map and equivalence relation)

Suppose f : X → Y is a surjective map. Then, the collection
⊔

y∈Y f−1(y) is a partition on X, and
hence, induces an equivalence relation. Indeed, we can define x1 ∼ x2 if and only if f(x1) = f(x2).
Conversely, given any equivalence relation ∼ on X, we see that q : X → X/∼, is a surjective map,
where X/∼ is the collection of all equivalence classes under the relation ∼.

Given a set map f : X → Y , a subset S ⊂ X is called saturated (or f -saturated) if S = f−1(f(S))

holds.
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Exercise 5.26: (Saturated open set)

Given a quotient map q : X → Y , a set U ⊂ X is q-saturated if and only if it is the union of
the equivalence classes of its elements (i.e, U =

⋃
x∈U [x]).

Definition 5.27: (Identification topology)
Given an equivalence relation ∼ on a space X, the identification topology on the set Y = X/∼
of all equivalence classes is the quotient topology induced by the map q : X → Y , which sends
x 7→ [x]. The quotient map q is called the identification map.

Proposition 5.28: [0, 1]/0, 1 is S1

Consider {0, 1} ⊂ [0, 1], and let X = [0, 1]/{0,1} be the identification space. Then, X is home-
omorphic to the circle S1 := {(x, y) | x2 + y2 = 1} ⊂ R2.

Proof
Consider the map f : [0, 1] → S1 given by f(t) = (cos(2πt), sin(2πt)). Clearly, f is continuous
and surjective. Also, f(0) = (1, 0) = f(1).

[0, 1] S1

X

f

q

f̃

Passing to the quotient X = [0, 1]/ {0, 1}, we get a map f̃ : X → S1 defined by f̃ ([x]) = f(x).
It is easy to see that f̃ is well-defined, and hence, by the property of the quotient topology, f̃ is
continuous. Now, f̃ is surjective (as f was), and moreover, it is injective.
In order to show f̃ is open, we consider the two cases.

i) Suppose V ⊂ X is an open set, such that [0] = [1] = {0, 1} 6∈ V . Then, q−1(V ) ⊂ [0, 1]

is an open set, which is actually contained in (0, 1). In particular, q−1(V ) is a union of
open intervals. Observe that (by drawing picture or otherwise) f maps such open intervals
to open arcs of S1 (which are open in S1). Then, f̃(V ) = f (q−1(V )) is open.

ii) Suppose V ⊂ X is an open set, such that [0] = [1] = {0, 1} ∈ V . Then, q−1(V ) is the
union of open intervals of (0, 1), as well as, [0, ε1)∪(1−ε2, 1] for some ε1, ε2 > 0. We have
already seen that any open intervals get mapped to open arcs. Also, f ([0, ε1) ∪ (1− ε2, 2])

is another open arc in S1 containing the point (0, 1). Thus, f̃(V ) = f (q−1(V )) is open
in S1.

Hence, f̃ : X → S1 is a homeomorphism. �

Exercise 5.29: (R/Z is S1)

Consider the quotient space X = R/Z, where the equivalence relation is given as a ∼ b if and
only a− b ∈ Z. Show that X is homeomorphic to the circle S1.
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