Topology Course Notes (KSM1C03)

Day 5 : 21 August, 2025

Hausdorff axiom -- 75,73,7, -- convergence of sequence -- sequential continuity

-- quotient space

5.1 Hausdorff Axiom
Definition 5.1: (Hausdorff space)

A space X is called Hausdorff (or a Ty-space) if for any z,y € X with = # v, there exists open
neighborhoods = € U, C X,y € U, C X, such that U, N U, = (. In other words, any two
points of a Hausdorff space can be separated by open sets.

Exercise 5.2: (Product of Ty-spaces)

Suppose {X,} is a collection of Ty-spaces. Show that X = II.X, is 7, with respect to the
product topology (and hence, with respect to the box topology as well).

Being Hausdorff is a very desirable property of a space.

Exercise 5.3: (Metric spaces are Hausdorff)

If (X,d) is a metric space, then show that the metric topology is Hausdorff.

Proposition 5.4: (Points are closed in Hausdorff space)

Suppose X is a Hausdorff space. Then, {x} is a closed subset of X for any x € X.

Proof
Suppose y # x. Then, by Hausdorff property, we have some open sets U and V such that = €

UyeVand UNV = 0. In particular, y is not a closure point of {z}. Thus, {2} is closed. [

Note that in the proof, the full strength of the Hausdorff property is not used.

Definition 5.5: (77 space)

A space X is called a T}-space (or a Fréchet space) if for any = € X, the subset {x} is a closed
set.

Exercise 5.6: (7 but not 75 space)

Given an example of a space X which is T} but not 7T5.




Exercise 5.7: (T'-space equivalent definition)

Let X be a space. Show that the following are equivalent.
a) X is a Ty space.

b) For any x,y € X with  # y, there exists open neighborhoods = € U, C X and
y € U, C X such thaty €U, and z ¢ U,.

c) Any A C X is the intersection of all open sets containing A.

d) For any A C X and = € X, we have z is a limit point of A if and only every open
neighborhood of z contains infinitely many points of A. (What happens when X is
finite?!)

Definition 5.8: (7;-space)

A space X is called a Tj-space (or a Kolmogorov space) if for any two points = # y € X, there
exists an open set U C X which contains exactly one of x and .

Remark 5.9: (Topolgoically distinguishable and separable)

Suppose x,y € X are two points. Note the following hierarchy.
= (Distinct) If x # y, we say z,y are distinct.

= (Topologically distinguishable) If there is at least one open set that contains exactly one
of x and y, we say z,y are topologically distinguishable.

= (Separable) If there are two neighborhoods U,, U, of z,y respectively, which does not
contain the other, we say x, y are topologically separable.

= (Separated by opens) If there are two neighborhoods U,, U, of z, y respectively, such that
U.NU, =0, we say z,y are separated by open sets.

Later, we shall see how this continues to points and closed sets as well.

Exercise 5.10: (7§ but not 7} space)

Given an example of a space X which is Tj but not 7. What about

Exercise 5.11: (Zariski topology)

Suppose F = R or C. Give it the topology 7 = {0, F*,F}, where F* =\ {0}. Consider the
family of polynomial functions F := {p : F" — F}. The topology induced by F on F"™ is known
as the Zariski topology. Determine whether it is Tq, 17 or T5.




5.2 Convergence of sequence

Definition 5.12: (Convergence of sequence)

Suppose {Z,},, is a sequence of points in a space X (i.e, z: N — X is a function). We say
{z,} converges to a limit x € X if for any open neighborhood U of z, there is a natural number
Ny such that x,, € U for all n > Ny.

~

Exercise 5.13: (Convergence in metric)

Check that the notion of convergence in a metric space is equivalent to the usual notion (i.e,
x, — « if and only if d(z,,z) — 0). In particular, they are the same from real analysis.

Example 5.14

Suppose X is an indiscrete space, with at least two distinct points z,y € X. Consider the

sequence
r, mnisodd,

Ty —
Yy, mnis even.

Observe that the sequence converges to both = and y. In fact, any sequence in X converges to
every point in the space X. Note that an indiscrete space is not even Tj.

Example 5.15

Suppose X = {0,1}, with topology 7 = {0,{0},{0,1}}. This space (X,T) is known as
Sierpiniski space. Clearly it is Ty, but not 77 since {0} is not closed. Now, consider the sequence

x, =0 for all n > 1. Then, {x,} converges to both 0 and 1.

Proposition 5.16: (Convergence in T3)

Suppose {z,} is a sequence in a Ty-space X. Then, {x,} can converge to at most one point in
X.

Proof
If possible, suppose {z,} converges to distinct point = # y. By Hausdorff property, we have

two open neighborhoods U,, U, of z,y respectively, such that U, N U, = (. We also have two
natural numbers Ny, Ny such that z, € U, for all n > N; and z,, € U, for all n > N,. Set
N = max { Ny, No}. Then,

z, €U, NU,, foralln>N.

This is a contradiction. Thus, any sequence can converge to at most one point. 0

5.3 Sequential Continuity

Definition 5.17: (Sequenttial continuity)

A function f : X — Y is said to be sequentially continuous if for any converging sequence
z, — x in X, we have f(z,) — f(z)inY.




Proposition 5.18: (Continuous functions are sequentially continuous)

Suppose f : X — Y is a continuous map. Then f is sequentially continuous.

Proof

Suppose z,, — x is a converging sequence in X. Let f(z) € U C Y be an arbitrary open
neighborhood. Then, it follows from continuity of f that f~*(U) C X is open. Clearly z € f~*(U).
Hence, there is some N > 1 such that x,, € f~!(U) for all n > N. This implies f(z,) € U for
all n > N. Since U was arbitrary, we see that f(x,) — f(z). But this means f is sequentially
convergent. [

Proposition 5.19: (Sequential continuity in metric spaces)

Suppose (X, d) is a metric space with the metric topology, and Y be any space. Then, any
sequentially continuous map f : X — Y is a continuous map.

Proof

Let U C Y be open. In order to show f~!}(U) C X is open, we show that any z € f~}(U) is
an interior point of f~!(U). Consider the metric balls B, := By (z,~) C X. If possible, suppose
B, ¢ f~Y(U) for any n. Pick points z,, € f~(U)\ B,, and observe that z,, — x (Check!). Then,
we have f(z,) — f(x). Since U is an open neighborhood of f(x), we have some N > 1 such that
f(x,) € U for all n > N. But then z,, € f~}(U) for n > N, which is a contradiction. Hence, we
must have that for some Ny > 1 the metric ball By, C f~'(U). Thus, x is an interior point. Since
x is arbitrary, we get f~!(U) is open. Consequently, f is continuous. O

Caution 5.20: (Sequential conitinuity may not imply continuity)

In general, sequential continuity may not imply continuity! Consider X to be a space equipped
with the cocountable topology. Then, any convergent sequence in X is eventually constant.
That is, if z, — x in X, then for some N > 1, we have x,, = x for all n > N. But then any
function f : X — Y is sequentially continuous (Why?). Assume X is uncountable, so that the
cocountable topology is not the discrete topology. Then, there are non-continuous maps on X.
For example, consider Y = X equipped with the discrete topology, and then look at the identity
map Id: X — Y.

5.4 Quotient space

Definition 5.21: (Quotient map)

Given a space (X,7) and a function f : X — Y to a set Y, the quotient topology on Y is
defined as

T; = {U | f1(U) e T}.

The map f: (X, T) — (Y, Ty) is called a quotient map. In other words, f is a quotient map if
U CY is open if and only if f~}(U) C X is open.




Proposition 5.22: (Quotient topology is topology)

The quotient topology 7 is indeed a topology on Y, and f: (X, 7T) — (Y, 7;) is continuous.

Proof
We check the axioms.

i) 0 €T;sinced=f10)eT.
i) YeTysinceX=[1'Y)eT.

iii) For any collection {U, € T;}, we have f~'(JU,) = f'(U,) € T. Thus, T; is cloes
under arbitrary union.

iv) For a finite collection {U;}¥_,, we have f~* (N U;) = (N f~'(U:) € T. Thus, T; is closed
under finite intersection.

Hence, 7; is a topology. By construction, f is then continuous. 0

Theorem 5.23: (Universal property of quotient topology)

Suppose (X, Tx) and (Y, Ty ) are given. Then, for any set function, ¢ : X — Y, the following
are equivalent.

1. Ty is the quotient topology induced by ¢ (in other words, ¢ is a quotient map).
2. Ty is the finest (i.e, largest) topology for which ¢ is continuous.

3. Ty is the unique topology having the following property :
X —5Y

N

for any space (Z,7Tz) and any set map f : Y — Z, we have f is continuous if and only if
f o q is continuous

Proof
Suppose ¢ is a quotient map. If possible, there is some topology Sy on Y such that 7y C Sy

and q : (X,Tx) — (Y,Sy) is continuous. Since Sy is strictly finer than 7y, there is some set
U € Sy \ Ty. But then ¢71(U) € Ty, as q is continuous. This implies U € calTy, a contradiction.
Hence, the quotient topology is the finest topology on Y making ¢ continuous.

Conversely, suppose Ty is the finest topology so that ¢ is continuous. Recall the quotient topology

IS

T,={U|q¢'(U) € Tx}

Since ¢ is continuous, for each U € Ty we have ¢~ '(U) € Tx. In particular, 7y C T,. Also,
q:(X,Tx) — (Y,7,) is continuous. Since Ty is the finest such topology, we must have Ty = T,.




Next, suppose Ty is the quotient topology. Let us choose some space (Z,7T) and set map f :
Y — Z. If f is continuous, then we have f~1(U) € Ty for all U € T;. Then,

(foq) ' (U)=q " (f1(U)) € Tx,

by the definition of quotient topology. Thus, f o ¢ is continuous. On the other hand, suppose
f o q is continuous. Then, for any U o T, we have ¢~! (f~1(U)) € Tx. But then again by the
definition of quotient topology, we have f~!(U) € Ty, which shows that f is continuous. Thus,
Ty satisfies the property. If possible, suppose Sy is another topology on Y satisfying the property.
Let us take Z = (Y, Ty ) and f =1dy : (Y,Sy) — (Y, Ty ). Then, we have f is continuous if and
only if f oq is continuous. But, foq = q: (X,7x) — (Y, Ty), which is continuous being the
quotient map. Hence, f is continuous. This implies 7y C Sy. But 7y is the finest topology for
which ¢ is continuous, and hence, 7y = Sy. This proves the uniqueness.

Finally, suppose Ty is the unique topology satisfying the property above. We show that the quotient
topology 7, satisfies the property. Suppose (Z, T) is some space, and f : Y — Z is a set map. If
f:(Y,T,) = (Z,Tz) is continuous, then for any U € T we have

(foq)™(U)=¢ ' (f71(U)) € Tx,

since f~1(U) € T,. On the other hand, if f o ¢ is continuous, then for any U € Tz we have
¢t (fY(U)) € Tx, which implies, f~*(U) € T,. Thus, f is continuous. In particular, 7, satisfies
the property, and hence, Ty is the quotient topology by uniqueness.

This concludes the proof. 0]

Remark 5.24: (Quotient map and surjectivity)

Suppose f : X — Y is a quotient map. Assume that f is not surjective. Then, for any y € Y\ f(X)
we have f~!(y) = ) C X open, and hence, {y} is open in Y. In other words, Y\ f(X) has the
discrete topology. Also, f(X) C Y is both an open and closed set. Hence, the open and closed
sets of f(X) in the subspace topology are precisely the same in the actual (quotient) topology on
Y. For these reasons, we can (and usually we do) assume that a quotient map is surjective.

Remark 5.25: (Surjective map and equivalence relation)

Suppose f : X — Y is a surjective map. Then, the collection |_|er f~(y) is a partition on X, and
hence, induces an equivalence relation. Indeed, we can define z; ~ x5 if and only if f(x;) = f(x2).
Conversely, given any equivalence relation ~ on X, we see that ¢ : X — X/, is a surjective map,
where X/ is the collection of all equivalence classes under the relation ~.

Givenaset map f : X — Y, asubset S C X is called saturated (or f-saturated) if S = f~(f(9))
holds.



Exercise 5.26: (Saturated open set)

Given a quotient map ¢ : X — Y, aset U C X is g-saturated if and only if it is the union of
the equivalence classes of its elements (i.e, U = |,/ [*]).

Definition 5.27: (ldentification topology)

Given an equivalence relation ~ on a space X, the identification topology on the set Y = X/
of all equivalence classes is the quotient topology induced by the map ¢ : X — Y, which sends
x +— [z]. The quotient map ¢ is called the identification map.

Proposition 5.28: [0,1]/0,1 is S*

Consider {0,1} C [0,1], and let X = [0, 1]/{01} be the identification space. Then, X is home-
omorphic to the circle S* := {(z,y) | 2* + y* = 1} C R%

Proof
Consider the map f : [0,1] — S* given by f(t) = (cos(2wt),sin(2nt)). Clearly, f is continuous
and surjective. Also, f(0) = (1,0) = f(1).

Oll j

Passing to the quotient X = [0,1]/{0,1}, we get a map f : X — S" defined by f ([z]) = f(z).
It is easy to see that f is well-defined, and hence, by the property of the quotient topology, f is
continuous. Now, f is surjective (as f was), and moreover, it is injective.

In order to show f is open, we consider the two cases.

i) Suppose V' C X is an open set, such that [0] = [1] = {0,1} &€ V. Then, ¢~*(V) C [0, 1]
is an open set, which is actually contained in (0,1). In particular, ¢~!(V') is a union of
open intervals. Observe that (by drawing picture or otherwise) f maps such open intervals
to open arcs of S (which are open in S). Then, f(V) = f (¢ '(V)) is open.

ii) Suppose V' C X is an open set, such that [0] = [1] = {0,1} € V. Then, ¢~'(V) is the
union of open intervals of (0, 1), as well as, [0, €;)U(1—¢€g, 1] for some €7, €5 > 0. We have
already seen that any open intervals get mapped to open arcs. Also, f ([0, €1) U (1 — €3,2])
is another open arc in S containing the point (0,1). Thus, f(V) = f (¢ '(V)) is open
in S1.

Hence, f : X — S'is a homeomorphism. O

Exercise 5.29: (R/Z is S*)

Consider the quotient space X = R/Z, where the equivalence relation is given as a ~ b if and
only a — b € Z. Show that X is homeomorphic to the circle S*.




