Topology Course Notes (KSM1C03)

Day 3 : 14 August, 2025
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3.1 Limit points and closure

Definition 3.1: (Limit point)

Given a space X and a subset A C X, a point x € X is called a limit point (or cluster point, or
point of accumulation) of A if for any open set U C X, with x € U, we have AN U contains a
point other than z.

Show that if A is a closed set of X, then A contains all of its limit points. Give an example of
a space X and a subset A C X, such that

a) there is a limit point x of A which is not an element of A, and
b) there is an element a € A which is not a limit point of A.

Definition 3.3: (Adherent and isolated points)

Given a subset A C X, a point € X is called an adherent point (or points of closure) if every

open neighborhood of x intersects A. An adherent point which is not a limit point is called an
isolated point of A (which is then necessarily an element of A).

Definition 3.4: (Closure of a set)

Given A C X, the closure of A, denoted A (or cl A), is the smallest closed set of X that contains
A.

Show that A C X is closed if and only if A = A.

For any A C X, show that A is the intersection of all closed sets of X containing A. In particular,
AcCA.




Proposition 3.7

Given A C X, we have

A= {z € X |z is an adherent point of A}.

Proof
Suppose = € X is an adherent point of A. Let C' C X be a closed set containing A. If possibly,

sayr € C =2 € X\ C.Now, X\ C isanopenset, and AN (X \ C) = 0. This contradicts that
x is an adherent point of A. Thus, € C. Since C' was arbitrary, we get € A. Thus, A contains
all the adherent points of A.

Conversely, suppose = € A. If possible, suppose « is not an adherent point of A. Then, there exists
some open set U such that z € U and UN A = (. Now, A C (X \U), and X \ U is a closed set.
So, AC X\U = ANU = (). This means, x ¢ A, a contradiction. Thus, x must be an adherent
point of A. This concludes the claim. O

Exercise 3.8

Suppose A = {x,} C R is an infinite set.
a) If x = lim, x,, exists, then show that x is a limit point of A.

b) If x € R is a limit point of A, then show that there is a subsequence {z,,} with

x = limy 2, .

Suppose,
1-— %, n = 2k,

Ty =
243, n=2k+1.

What are the limit points of A = {z,, | n € N}?

Definition 3.9: (Locally finite)

Given any collection A of subsets of a space X, we say A is a locally finite collection if for each

x € X, there exists an open neighborhood x € U, such that U intersects only finitely many
subsets from A

Proposition 3.10: (Closure of locally finite collection)

Suppose A = {A,}, .7 is a locally finite collection of subsets of X. Then, |J, Aa = U, Aa-

Proof
We only show |, Ao C U, Aa. If possible, suppose = € |J,, A, and z & |J A,. By local finiteness,
we have some open neighborhood U of z, which only intersects, say, A,,,..., A, € A (the list

can be empty as well). Now, consider the set V = U \ |J__, A,,, which is open (check). Clearly
z € V.But VN (JA.). This contradicts the fact that x is a closure point. O



3.2 Interior

Definition 3.11: (Interior of a set)

Given A C X, the interior of A, denoted A (or int A), is the largest open set contained in A.
A point x € A is called an interior point of A.

Exercise 3.12: (Interior of open sets)

For any A C X show that A is the union of all open sets contained in A. In particular, show
that A C X is open if and only if A = A.

Exercise 3.13: (Interior point)

Given A C X, show that a point x € X is an interior point of A if and only if there exists some
open set U C X such that z € U C A.

3.3 Boundary

Definition 3.14: (Boudary of a set)
Given A C X, the boundary of A, denoted OA (or bd A), is defined as

0A=AN(X\A.

Clearly boundary of any set is always a closed set. Also, observe the following. Given any A C X,
a point © € X can satisfy exactly one of the following.

a) There exists an open set U with 2 € U C A (whence z is an interior point of A).

b) There exists an open set U with x € U C X \ A (whence x is an interior point of X \ A).

c) For any open set U with x € U, we have UN A # ) and U N (X \ A) = () (whence x is a
boundary point of A).

Given A C X, show that

0A ={x € X |forany U C X open, withz € U, wehave UNA# D AUN(X\ A)}

Exercise 3.16

Find out the boundaries of A, when
a) A={(z,y) | 2 +y? <1} C R? and

b) A= {(z,y,2) | 2> +y* <1, 2 =0} C R,




The above exercise shows that our intuitive notion of boundary of a disc may be misleading! In

order to justify our intuition that “the boundary of a disc is the circle”, one needs to treat it as
a ‘manifold with boundary’.

3.4 Subspaces

Definition 3.18: (Subspace topology)

Given a topological space (X,7) and a subset A C X, the subspace topology on A is defined

as the collection
Ta={UCA|U=ANO forsome O € T}.

We say (A, T4) is a subspace of (X, 7).

Exercise 3.19

Suppose U C X is an open set. What are the open subsets of U in the subspace topology?
What are the closed sets?

Proposition 3.20: (Closure in subspace)

Let Y C X be a subspace. Then, a subset of Y is closed in Y if and only if it is the intersection
of Y with a closed set of X. Consequently, for any A C Y, the closure of A in the subspace
topology is given as AY = ANY.

Proof
For any C' C Y, we have

C'is closed in Y < Y \ Cis open in Y (by definition of closed set)
<Y \C=YnNU, for some U C X open (by definition of subspace topology).

Then,

C=Y\(Y\O)=Y\(YNU)=Y\U=YN(X\U).
——

closed in X

On the other hand, for any closed set F' C X, we have

YN(YNF)=Y\F=Yn(X\F),
in X

which implies Y\ (Y N F') is open in F'. But then Y N F'is closed in Y.

Now,
A= [ ¢c= () owno=vyn| [ C|=vnA
C CY closed C C X closed C C X closed
AcC AcC AcC
This concludes the proof. 0



Exercise 3.21: (Interior and subspace)

Prove or disprove : Let Y C X be a subspace, and A C Y. Then, the interior of A in Y (with
respect the subspace topology) is Any.

Exercise 3.22: (Metric topology and subspace)

Suppose (X, d) is a metric space. Given any A C X, show that d restricts to a metric on A.
Show that the subspace topology on any A C X is the same as the metric topology for the
induced metric space (A, d).

3.5 Continuous function

Definition 3.23: (Continuous function)

Given two topological spaces (X, Tx) and (Y, Ty ), a function f : X — Y is said to be continuous
if f71(U) € Tx for any U € Ty (i.e., pre-image of open sets are open).

Exercise 3.24: (Pre-image of closed set)

Show that f : X — Y is continuous if and only if preimage of closed sets of Y is closed in X.

Exercise 3.25: (Continuity of the identity)

Suppose X is equipped given topologies 71 and 75. Show that 7; is finer than 75 if and only if
Id: (X,71) — (X, Tz) is continuous.

Definition 3.26: (Open map)

Given two topological spaces (X, Tx) and (Y, 7y), a function f : X — Y is said to be open if
f(U) € Ty for any U € Tx (i.e, image of opens sets are open).

Exercise 3.27: (Openness of the identity)

Suppose X is equipped given topologies 7; and 7T5. Show that 75 is finer than 77 if and only if
Id: (X,71) = (X, 7Tz) is open.

Exercise 3.28: (Openness of bijection)

Suppose f : X — Y is a bijection. Show that f is open if and only if f~! is continuous.

Definition 3.29: (Homeomorphism)

Given two topological spaces (X,7x) and (Y,7y), a function f : X — Y is said to be a
homeomorphism if the following holds.

a) f is bijective, with inverse f1: Y — X.

b) f is continuous.

c) f is open (or equivalently, f~! is continuous).




Exercise 3.30: (Continuous bijective map)

For 0 <t < 1, consider f(t) = (cos 2xt,sin2nt). Check that f : [0,1) — R? is a continuous,
injective map. Draw the image. Is it a homeomorphism onto the image (with the corresponding
subspace topologies)?

Caution 3.31: (Invariance of domain)

In general, a continuous bijection need not be a homeomorphism. However, there is a special
situation known as the /nvariance of domain. Suppose U C R" is an open set. Consider a
continuous injective map f : U — R™. Denote V := f(U). Clearly, f : U — V is a continuous
bijection.

It is a very important theorem in topology that states : V is open and f : U — V is a
homeomorphism.

Definition 3.32: (Closed map)

Given two topological spaces (X, 7Tx) and (Y, 7y ), a function f : X — Y is said to be closed if
f(C) is closed in Y for any closed set C' C X.

Exercise 3.33: (Open and closed map)

Give examples of continuous maps which are :
a) open, but not closed,

(@

)

b) closed, but not open,
) neither open nor closed,
)

d

both open and closed.

Consider fi(z,y) =z, fo(x) = 0, = i(()) , f3(z) =sin(x), and fy(z) = .
T, x>

Exercise 3.34: (Continuity is local)

Suppose X = |J U, for some open sets U,. Show that f : X — Y is continuous if and only if

flu., — Y is continuous for all a.

Theorem 3.35: (Pasting lemma)

Suppose X = AU B, for some closed sets A,B C X. Let f: A— Y,g: B — Y be given
continuous maps, such that f(z) = g(z) for any x € AN B. Then, there exists a (unique)
f(z), z€A

continuous map h : X — Y such that h(x) =
g(x), =z €B.




Proof
Clearly, h is a well-defined function, and it is uniquely defined. We show that A is continuous. Let

C' CY be aclosed set. Then,
hH(C) = fHC)ug™H(O).

Now, f~1(C) C A and g~ (C) C B are closed sets (in the subspace topology). But then they are
closed in X, since A, B are closed. Then, hfl(C’) is closed. Since C' was arbitrary, we have h is

continuous. O

Exercise 3.36: (Pasting lemma for finite collection)

Suppose X = U?Zl C; for some closed sets C; C X. Let f; : C; — Y be continuous functions
such that
fl(l'):fj(l’), iUGCiﬂOj, 1<i<j<n.

Show that there exists a (unique) continuous function h : X — Y such that h(z) = fi(x)
whenever © € C;.

Caution 3.37: (Pasting lemma for infinite collection)

Pasting lemma need not hold true for infinite collection! Consider X to be the integers Z equipped
with the cofinite topology (i.e., open sets are either () or complements of finite subsets). Check
that {n} C X is closed, and the inclusion map ¢ : X < R is continuous on each {n}. Finally,
check that ¢ is not continuous itself.




