
Topology Course Notes (KSM1C03)

Day 3 : 14th August, 2025
closure -- interior -- boundary -- subspaces -- continuous function

3.1 Limit points and closure

Definition 3.1: (Limit point)
Given a space X and a subset A ⊂ X, a point x ∈ X is called a limit point (or cluster point, or
point of accumulation) of A if for any open set U ⊂ X, with x ∈ U , we have A∩U contains a
point other than x.

Exercise 3.2

Show that if A is a closed set of X, then A contains all of its limit points. Give an example of
a space X and a subset A ⊂ X, such that

a) there is a limit point x of A which is not an element of A, and

b) there is an element a ∈ A which is not a limit point of A.

Definition 3.3: (Adherent and isolated points)
Given a subset A ⊂ X, a point x ∈ X is called an adherent point (or points of closure) if every
open neighborhood of x intersects A. An adherent point which is not a limit point is called an
isolated point of A (which is then necessarily an element of A).

Definition 3.4: (Closure of a set)
Given A ⊂ X, the closure of A, denoted Ā (or clA), is the smallest closed set of X that contains
A.

Exercise 3.5

Show that A ⊂ X is closed if and only if A = Ā.

Exercise 3.6

For any A ⊂ X, show that Ā is the intersection of all closed sets of X containing A. In particular,
A ⊂ Ā.
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Proposition 3.7

Given A ⊂ X, we have

Ā = {x ∈ X | x is an adherent point of A} .

Proof
Suppose x ∈ X is an adherent point of A. Let C ⊂ X be a closed set containing A. If possibly,
say x 6∈ C ⇒ x ∈ X \C. Now, X \C is an open set, and A∩ (X \C) = ∅. This contradicts that
x is an adherent point of A. Thus, x ∈ C. Since C was arbitrary, we get x ∈ Ā. Thus, Ā contains
all the adherent points of A.
Conversely, suppose x ∈ Ā. If possible, suppose x is not an adherent point of A. Then, there exists
some open set U such that x ∈ U and U ∩A = ∅. Now, A ⊂ (X \U), and X \U is a closed set.
So, Ā ⊂ X \ U ⇒ Ā ∩ U = ∅. This means, x 6∈ Ā, a contradiction. Thus, x must be an adherent
point of A. This concludes the claim. �

Exercise 3.8

Suppose A = {xn} ⊂ R is an infinite set.

a) If x = limn xn exists, then show that x is a limit point of A.

b) If x ∈ R is a limit point of A, then show that there is a subsequence {xnk
} with

x = limk xnk
.

Suppose,

xn =

1− 1
k
, n = 2k,

2 + 1
k
, n = 2k + 1.

What are the limit points of A = {xn | n ∈ N}?

Definition 3.9: (Locally finite)
Given any collection A of subsets of a space X, we say A is a locally finite collection if for each
x ∈ X, there exists an open neighborhood x ∈ U , such that U intersects only finitely many
subsets from A

Proposition 3.10: (Closure of locally finite collection)

Suppose A = {Aα}α∈I is a locally finite collection of subsets of X. Then,
⋃

αAα =
⋃

αAα.

Proof
We only show

⋃
α Aα ⊂

⋃
αAα. If possible, suppose x ∈

⋃
α Aα and x 6∈

⋃
Aα. By local finiteness,

we have some open neighborhood U of x, which only intersects, say, Aα1 , . . . , Aαn ∈ A (the list
can be empty as well). Now, consider the set V = U \

⋃n
i=1 Aαi

, which is open (check). Clearly
x ∈ V . But V ∩ (

⋃
Aα). This contradicts the fact that x is a closure point. �
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3.2 Interior
Definition 3.11: (Interior of a set)

Given A ⊂ X, the interior of A, denoted Å (or intA), is the largest open set contained in A.
A point x ∈ Å is called an interior point of A.

Exercise 3.12: (Interior of open sets)

For any A ⊂ X show that Å is the union of all open sets contained in A. In particular, show
that A ⊂ X is open if and only if A = Å.

Exercise 3.13: (Interior point)

Given A ⊂ X, show that a point x ∈ X is an interior point of A if and only if there exists some
open set U ⊂ X such that x ∈ U ⊂ A.

3.3 Boundary

Definition 3.14: (Boudary of a set)
Given A ⊂ X, the boundary of A, denoted ∂A (or bdA), is defined as

∂A = Ā ∩ (X \ A).

Clearly boundary of any set is always a closed set. Also, observe the following. Given any A ⊂ X,
a point x ∈ X can satisfy exactly one of the following.

a) There exists an open set U with x ∈ U ⊂ A (whence x is an interior point of A).

b) There exists an open set U with x ∈ U ⊂ X \ A (whence x is an interior point of X \ A).

c) For any open set U with x ∈ U , we have U ∩ A 6= ∅ and U ∩ (X \ A) = ∅ (whence x is a
boundary point of A).

Exercise 3.15

Given A ⊂ X, show that

∂A = {x ∈ X | for any U ⊂ X open, with x ∈ U , we have U ∩ A 6= ∅ 6= U ∩ (X \ A)}

Exercise 3.16

Find out the boundaries of A, when

a) A = {(x, y) | x2 + y2 < 1} ⊂ R2, and

b) A = {(x, y, z) | x2 + y2 < 1, z = 0} ⊂ R3.
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Caution 3.17

The above exercise shows that our intuitive notion of boundary of a disc may be misleading! In
order to justify our intuition that “the boundary of a disc is the circle”, one needs to treat it as
a ‘manifold with boundary’.

3.4 Subspaces

Definition 3.18: (Subspace topology)
Given a topological space (X, T ) and a subset A ⊂ X, the subspace topology on A is defined
as the collection

TA := {U ⊂ A | U = A ∩O for some O ∈ T } .

We say (A, TA) is a subspace of (X, T ).

Exercise 3.19

Suppose U ⊂ X is an open set. What are the open subsets of U in the subspace topology?
What are the closed sets?

Proposition 3.20: (Closure in subspace)

Let Y ⊂ X be a subspace. Then, a subset of Y is closed in Y if and only if it is the intersection
of Y with a closed set of X. Consequently, for any A ⊂ Y , the closure of A in the subspace
topology is given as ĀY = Ā ∩ Y .

Proof
For any C ⊂ Y , we have

C is closed in Y ⇔ Y \ C is open in Y (by definition of closed set)
⇔ Y \ C = Y ∩ U , for some U ⊂ X open (by definition of subspace topology).

Then,
C = Y \ (Y \ C) = Y \ (Y ∩ U) = Y \ U = Y ∩ (X \ U)︸ ︷︷ ︸

closed in X

.

On the other hand, for any closed set F ⊂ X, we have

Y \ (Y ∩ F ) = Y \ F = Y ∩ (X \ F )︸ ︷︷ ︸
open in X

,

which implies Y \ (Y ∩ F ) is open in F . But then Y ∩ F is closed in Y .

Now,

ĀY =
⋂

C ⊂ Y closed
A⊂C

C =
⋂

C ⊂ X closed
A⊂C

(Y ∩ C) = Y ∩

 ⋂
C ⊂ X closed

A⊂C

C

 = Y ∩ Ā.

This concludes the proof. �
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Exercise 3.21: (Interior and subspace)

Prove or disprove : Let Y ⊂ X be a subspace, and A ⊂ Y . Then, the interior of A in Y (with
respect the subspace topology) is Å ∩ Y .

Exercise 3.22: (Metric topology and subspace)

Suppose (X, d) is a metric space. Given any A ⊂ X, show that d restricts to a metric on A.
Show that the subspace topology on any A ⊂ X is the same as the metric topology for the
induced metric space (A, d).

3.5 Continuous function
Definition 3.23: (Continuous function)
Given two topological spaces (X, TX) and (Y, TY ), a function f : X → Y is said to be continuous
if f−1(U) ∈ TX for any U ∈ TY (i.e., pre-image of open sets are open).

Exercise 3.24: (Pre-image of closed set)

Show that f : X → Y is continuous if and only if preimage of closed sets of Y is closed in X.

Exercise 3.25: (Continuity of the identity)

Suppose X is equipped given topologies T1 and T2. Show that T1 is finer than T2 if and only if
Id : (X, T1) → (X, T2) is continuous.

Definition 3.26: (Open map)
Given two topological spaces (X, TX) and (Y, TY ), a function f : X → Y is said to be open if
f(U) ∈ TY for any U ∈ TX (i.e, image of opens sets are open).

Exercise 3.27: (Openness of the identity)

Suppose X is equipped given topologies T1 and T2. Show that T2 is finer than T1 if and only if
Id : (X, T1) → (X, T2) is open.

Exercise 3.28: (Openness of bijection)

Suppose f : X → Y is a bijection. Show that f is open if and only if f−1 is continuous.

Definition 3.29: (Homeomorphism)
Given two topological spaces (X, TX) and (Y, TY ), a function f : X → Y is said to be a
homeomorphism if the following holds.

a) f is bijective, with inverse f−1 : Y → X.

b) f is continuous.

c) f is open (or equivalently, f−1 is continuous).
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Exercise 3.30: (Continuous bijective map)

For 0 ≤ t < 1, consider f(t) = (cos 2πt, sin 2πt). Check that f : [0, 1) → R2 is a continuous,
injective map. Draw the image. Is it a homeomorphism onto the image (with the corresponding
subspace topologies)?

Caution 3.31: (Invariance of domain)

In general, a continuous bijection need not be a homeomorphism. However, there is a special
situation known as the Invariance of domain. Suppose U ⊂ Rn is an open set. Consider a
continuous injective map f : U → Rn. Denote V := f(U). Clearly, f : U → V is a continuous
bijection.
It is a very important theorem in topology that states : V is open and f : U → V is a
homeomorphism.

Definition 3.32: (Closed map)
Given two topological spaces (X, TX) and (Y, TY ), a function f : X → Y is said to be closed if
f(C) is closed in Y for any closed set C ⊂ X.

Exercise 3.33: (Open and closed map)

Give examples of continuous maps which are :

a) open, but not closed,

b) closed, but not open,

c) neither open nor closed,

d) both open and closed.

Hint

Consider f1(x, y) = x, f2(x) =

0, x < 0

x, x ≥ 0
, f3(x) = sin(x), and f4(x) = x.

Exercise 3.34: (Continuity is local)

Suppose X =
⋃

Uα, for some open sets Uα. Show that f : X → Y is continuous if and only if
f |Uα → Y is continuous for all α.

Theorem 3.35: (Pasting lemma)

Suppose X = A ∪ B, for some closed sets A,B ⊂ X. Let f : A → Y, g : B → Y be given
continuous maps, such that f(x) = g(x) for any x ∈ A ∩ B. Then, there exists a (unique)

continuous map h : X → Y such that h(x) =

f(x), x ∈ A

g(x), x ∈ B.
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Proof
Clearly, h is a well-defined function, and it is uniquely defined. We show that h is continuous. Let
C ⊂ Y be a closed set. Then,

h−1(C) = f−1(C) ∪ g−1(C).

Now, f−1(C) ⊂ A and g−1(C) ⊂ B are closed sets (in the subspace topology). But then they are
closed in X, since A,B are closed. Then, h−1(C) is closed. Since C was arbitrary, we have h is
continuous. �

Exercise 3.36: (Pasting lemma for finite collection)

Suppose X =
⋃n

i=1 Ci for some closed sets Ci ⊂ X. Let fi : Ci → Y be continuous functions
such that

fi(x) = fj(x), x ∈ Ci ∩ Cj, 1 ≤ i < j ≤ n.

Show that there exists a (unique) continuous function h : X → Y such that h(x) = fi(x)

whenever x ∈ Ci.

Caution 3.37: (Pasting lemma for infinite collection)

Pasting lemma need not hold true for infinite collection! Consider X to be the integers Z equipped
with the cofinite topology (i.e., open sets are either ∅ or complements of finite subsets). Check
that {n} ⊂ X is closed, and the inclusion map ι : X ↪→ R is continuous on each {n}. Finally,
check that ι is not continuous itself.
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