
Topology Course Notes (KSM1C03)

Day 2 : 13th August, 2025
metric space -- topological space -- basis -- subbasis

2.1 Metric Spaces

Definition 2.1: (Metric space)
Given a set X, a metric on it is a map d : X ×X → [0,∞) such that the following holds.

1) a. d(x, x) = 0 for all x ∈ X.

b. If x 6= y ∈ X, then d(x, y) > 0.

2) d(x, y) = d(y, x) for all x, y ∈ X

3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

The tuple (X, d) is called a metric space. The open ball of radius r, centered at some x ∈ X is
denoted as

Bd(x, r) := {y ∈ X | d(x, y) < r} .

Similarly, the closed ball is defined as

B̄d(x, r) := {y ∈ X | d(x, y) ≤ r} .

Definition 2.2: (Open set in metric space)
Given a metric space (X, d), a set U ⊂ X is called open if

for all x ∈ X, there exists some r > 0, such that Bd(x, r) ⊂ U.

Exercise 2.3: (Properties of open sets)

From the definition, verify the following.

i) ∅ and X are open sets.

ii) Given any collection {Uα ⊂ X} of open sets, the union
⋃

Uα is open in X.

iii) Given a finite collection {U1, . . . , Uk} of open sets, the intersection
⋂k

i=1 Ui is open in
X.
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Remark 2.4: (Which properties of metric are needed?!)

You should need 1a to show that x ∈ Bd(x, r), and hence, X is open. You should need 3

to show that
Bd(x,min {r1, r2}) ⊂ Bd(x, r1) ∩Bd(x, r2),

which is needed for the finite intersection.
In particular, 1b and 2 are not needed to verify the properties of open sets. Indeed, such
general “metric” exists, known as pseud-metric and asymmetric metric.

2.2 Topological Spaces

Definition 2.5: (Topology)
Given a set X, a topology on X is a collection T of subsets of X (i.e., T ⊂ P(X)), such that
the following holds.

a) ∅ ∈ T and X ∈ T .

b) T is closed under arbitrary unions. That is, for any collection of elements Uα ∈ T with
α ∈ I, an indexing set, we have

⋃
α∈I Uα ∈ T .

c) T is closed under finite intersections. That is, for any finite collection of elements
U1, . . . , Un ∈ T , we have

⋂n
i=1 Ui ∈ T .

The tuple (X, T ) is called a topological space.

Example 2.6

Given any set X we always have two standard topologies on it.

a) (Discrete Topology) T0 = P(X).

b) (Indiscrete Topology) T1 = {∅, X}.

They are distinct whenever X has at least 2 points.

Exercise 2.7

Given any set X, verify that both the discrete and the indiscrete topologies are indeed topologies,
that is, check that they satisfy the axioms.

Definition 2.8: (Metric topology)
Given a metric space (X, d), the collection of open sets in X form a topology, called the metric
topology (or the topology induced by the metric).
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Exercise 2.9: (Metric inducing discrete and indiscrete topology)

Given a set X, can you give a metric on it such that the induced topology on X is the discrete
topology? Can you do the same for indiscrete topology?

Exercise 2.10: (Topologies on 3-point set)

Suppose X = {a, b, c}. Note that

|P (P(X))| = 2|P(X)| = 22
|X|

= 22
3

= 256.

Thus, there are 256 possible collections of subsets of X. How many of them are topologies?
How many are distinct if you are allowed to permute the elements {a, b, c}?

Hint
The answers should be 29 and 9.

Definition 2.11: (Open and closed sets)
Given a topological space (X, T ), a subset U ⊂ X is called an open set if U ∈ T , and a subset
C ⊂ X is called a closed set if X \ C ∈ T (i.e., if X \ C is open).

Caution 2.12

Given (X, T ), a subset can be both open and closed! Think about the discrete topology. Such
subsets are sometimes called clopen sets.

Exercise 2.13: (Topology defined by closed sets)

Given X, suppose C ⊂ P(X) is a collection of subsets that satisfy the following.

a) ∅ ∈ C, X ∈ C.

b) C is closed under arbitrary intersections.

c) C is closed under finite unions.

Define the collection,
T := {U ⊂ X | X \ U ∈ C} .

Prove that T is a topology on X.

Exercise 2.14

On the real line R, consider the collection of subsets

T← := {∅,R}
⋃

{(−∞, a) | a ∈ R} .

Show that T← is a topology on R.
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2.3 Basis of a topology

Definition 2.15: (Basis of a topology)
Given a topological space (X, T ), a basis for it is a sub-collection B ⊂ T of open sets such that
every open set U ∈ T can be written as the union of some elements of B.

Example 2.16: (Usual topology on R)

The collection of all open intervals B = {(a, b) | a, b ∈ R} is a basis for the usual topology on
the real line R.

Proposition 2.17: (Necessary condition for basis)

Suppose (X, T ) is a topological space, and consider a basis B ⊂ T . Then, the following holds.

(B1) For any x ∈ X, there exists some U ∈ B such that x ∈ U .

(B2) For any U, V ∈ B and any element x ∈ U ∩ V , there exists some W ∈ B such that
x ∈ W ⊂ U ∩ V .

Proof
Suppose B is a basis of (X, T ). Since X is open in X, we have X =

⋃
O∈B O, which implies (B1).

Now, for any U, V ∈ B, we have U ∩V is open as well. Thus, U ∩V is the union of some elements
of B, which implies (B2). �

Example 2.18

Consider the collection
B = {(a,∞) | a ∈ R} .

This is a subcollection of open sets of R (in the usual topology), and moreover, B satisfies both
B1 and B2 (Check!). But B is not a basis for the usual topology on R. Thus, B1 and B2 is
not a sufficient condition for B to be a basis.

Exercise 2.19: (Topology generated by a basis)

Suppose B ⊂ P(X) is a collection of subsets of X satisfying (B1) and (B2). Consider T to be
the collection of all possible unions of elements of B. Show that T is a topology on X and B is
a basis for it.

Exercise 2.20: (Basis for metric topology)

Suppose (X, d) is a metric space. Consider the collection

B := {Br(x) | x ∈ X, r > 0} ,

where Br(x) := {y | d(x, y) < r} is the ball of radius r, centered at x. Show that B is a basis
for a topology on X, known as the metric topology induced by the metric d.
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Exercise 2.21: (Closed discs generate discrete topology)

Let (X, d) be a metric space, and B̄r(x) = {y ∈ X | d(x, y) ≤ r} be the closed ball of radius r
centered at x. Show that the collection

B :=
{
B̄r(x)

∣∣ x ∈ X, r ≥ 0
}

is a basis for the discrete topology on X.

Exercise 2.22: (Usual topology on R2)

Consider the following collections of subsets of the plane R2.

a) B1 be the collection of all open discs with all possible radii and center at any point.

b) B2 be the collection of all open discs with radius less than 1, and center at any point.

c) B3 be the collection of all open squares (i.e, only the insides, not the boundary) with
sides parallel to the two axes.

Show that all three are bases for the usual topology on R2.

Hint
Draw pictures!

2.4 Subbasis of a topology

Definition 2.23: (Subbasis of a topology)
Given a topological space (X, T ), a subbasis is a collection of subsets S ⊂ T such that T is
the smallest topology on X containing S.

Proposition 2.24: (Topology generated by subbasis)

Let X be a set, and S be any collection of subsets of X (i.e, S ⊂ P(X)). Then, S is a subbasis
for a (unique) topology on X (called the topology generated S).

Proof
Consider the collection

T := {T ⊂ P(X) | T is a topology and S ⊂ T } .

Note that it is a nonempty collection, as P(X) ∈ T. Denote T0 =
⋂
T ∈T T . Then T0 is a topology,

and by definition, it is the smallest one containing S. �

Explicitly, an open set of the topology generated by a subbasis S can be (non-uniquely) written as
an arbitrary union of finite intersections of elements of S.
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Exercise 2.25: (Trivial subbases)

Given any set X, figure out the topologies generated by the following sub-bases :

S1 = ∅, S2 = {∅} , S3 = {X} , S4 = {∅, X} .

Exercise 2.26

Given the plane R2 consider the collection

S :=
{
B1(x)

∣∣ x ∈ R2
}
,

where B1(x) is the unit open disc centered at x. Show that

a) S is not a basis for any topology on R2, but

b) the topology generated by S is the usual metric topology.

Hint
Place 4 unit discs with centers at the four corners of a square, with side length strictly less
than 2. Look at the intersection!

2.5 Fine and coarse topology

Definition 2.27: (Fine and coarse topology)
Given two topologies T1, T2 on a set X, we say that T1 is finer than T2 (and T2 is said to be
coarser than T1) if T1 ⊃ T2.

Caution 2.28

One way to remember the terminology is to think of each open set as small pebbles. If you crush
each pebble in to finer pebbles, then you get more of it! Thus, the finer collection is larger (has
more open sets), and the coarser collection is smaller (has less number of open sets).

Exercise 2.29

Check that the discrete topology on a set X is the finest, i.e., finer than any other topology that
can be given on X. Dually, the indiscrete topology is the coarsest topology.

Caution 2.30

Not all topologies on a set are comparable to each other! Can you construct such examples on
{a, b, c}?

Exercise 2.31

Show that the lower limit topology Rl is stictly finer than the usual topology on R.
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