

Topology Course Notes (KSM1C03)

Day 1 : 12th August, 2025

basic set theory -- power set -- product of sets -- equivalence relation -- order relation

1.1 Power set

Given a set X , the *power set* is defined as

$$\mathcal{P}(X) := \{A \mid A \subset X\}.$$

Exercise 1.1

If X is a finite set, prove via induction that $|\mathcal{P}(X)| = 2^{|X|}$, where $|\cdot|$ denotes the cardinality.

Exercise 1.2

For any arbitrary set X , prove that there exists a natural bijection of $\mathcal{P}(X)$ with the set

$$\mathcal{F} := \{f : X \rightarrow \{0, 1\}\}$$

of all functions from X to the 2-point set $\{0, 1\}$.

Hint

How many functions $\{a, b, c\} \rightarrow \{0, 1\}$ can you define? Look at their inverse images.

Given two sets X, Y denote the set of all functions from X to Y as

$$Y^X := \{f : X \rightarrow Y\}.$$

Exercise 1.3

If X and Y are finite sets, then show that $|Y^X| = |Y|^{|X|}$. Use this to show $|\mathcal{P}(X)| = 2^{|X|}$.

Exercise 1.4: (Set exponential law)

Given three sets X, Y, Z , prove that there is a natural bijection

$$(Z^Y)^X = Z^{Y \times X}$$

Hint

Write down what the elements look like. Can you see the pattern? This bijection is also known as *Currying*.

1.2 Arbitrary union and intersection

Suppose \mathcal{A} is a collection of sets. Then, we have the *union*

$$\bigcup_{X \in \mathcal{A}} X := \{x \mid x \in X \text{ for some } X \in \mathcal{A}\},$$

and the *intersection*

$$\bigcap_{X \in \mathcal{A}} X := \{x \mid x \in X \text{ for all } X \in \mathcal{A}\}.$$

Exercise 1.5: (Empty union)

Suppose we have an *empty* collection \mathcal{A} of sets. From the definition, prove that

$$\bigcup_{X \in \mathcal{A}} X = \emptyset.$$

Exercise 1.6: (Empty intersection)

Suppose \mathcal{A} is a *nonempty* subset of the power set of some fixed set X . Show that

$$\bigcap_{A \in \mathcal{A}} = \{x \in X \mid x \in A \text{ for all } A \in \mathcal{A}\}.$$

If $\mathcal{A} \subset \mathcal{P}(X)$ is the *empty* collection, justify

$$\bigcap_{A \in \mathcal{A}} A = X$$

1.3 Cartesian product

Given two sets A, B , their *Cartesian product* (or simply, *product*) is defined as the set

$$A \times B := \{(a, b) \mid a \in A, b \in B\}$$

of ordered pairs. We have the two *projections*

$$\begin{aligned} \pi_A : A \times B &\rightarrow A & \pi_B : A \times B &\rightarrow B \\ (a, b) &\mapsto a, & (a, b) &\mapsto b. \end{aligned}$$

Exercise 1.7

Justify $A \times \emptyset = \emptyset$, where \emptyset is the empty set.

Remark 1.8: (A different product?)

Suppose A, B are given. Consider the set

$$C = \{(a, b, a) \mid a \in A, b \in B\}.$$

Clearly there is a natural bijection between C and $A \times B$. Also, we have maps $\pi_A : C \rightarrow A$ and $\pi_B : C \rightarrow B$.

Exercise 1.9: (Universal property of the product)

Suppose A, B are given sets, and $\pi_A : A \times B \rightarrow A, \pi_B : A \times B \rightarrow B$ be the projections.

a) Show that given any set C , and functions $f : C \rightarrow A, g : C \rightarrow B$, there exists a **unique** function $h : C \rightarrow A \times B$ such that the diagram commutes.

$$\begin{array}{ccc} C & \xrightarrow{f} & A \\ \exists! h \searrow & \nearrow g & \pi_A \downarrow \\ & A \times B & \rightarrow A \\ & \pi_B \downarrow & \\ & B & \end{array}$$

b) Suppose we are given a set P , along with two functions $p_A : P \rightarrow A$ and $p_B : P \rightarrow B$, which satisfies the following property : given any set C , and functions $f : C \rightarrow A, g : C \rightarrow B$, there exists a **unique** function $h : C \rightarrow P$ satisfying $f = p_A \circ h, g = p_B \circ h$.

Show that the exists a bijection from $\psi : A \times B \rightarrow P$, such that $p_A \circ \psi = \pi_A$ and $p_B \circ \psi = \pi_B$.

Hint

Look at the diagrams

$$\begin{array}{ccc} P & \xrightarrow{p_A} & A \\ \exists! \phi \searrow & \nearrow p_B & \pi_A \downarrow \\ & A \times B & \rightarrow A \\ & \pi_B \downarrow & \\ & B & \end{array} \quad \text{and} \quad \begin{array}{ccc} A \times B & \xrightarrow{\pi_A} & P \\ \exists! \psi \searrow & \nearrow \pi_B & p_A \downarrow \\ & P & \rightarrow A \\ & p_B \downarrow & \\ & B & \end{array}$$

Can you show that $\phi \circ \psi = \text{Id}_{A \times B}$ and $\psi \circ \phi = \text{Id}_P$? The uniqueness should be useful.

1.4 Equivalence relation

Definition 1.10: (Relation)

Given a set X , a *relation* on it is a subset $\mathcal{R} \subset X \times X$. We say \mathcal{R} is an *equivalence relation* if the following holds.

- (Reflexive)** For each $x \in X$ we have $(x, x) \in \mathcal{R}$.
- (Symmetric)** If $(x, y) \in \mathcal{R}$, then $(y, x) \in \mathcal{R}$.
- (Transitive)** If $(x, y) \in \mathcal{R}$ and $(y, z) \in \mathcal{R}$, then $(x, z) \in \mathcal{R}$.

For any $x \in X$, the *equivalence class* (with respect to the equivalence relation \mathcal{R}) is defined as the set

$$[x] := \{y \in X \mid (x, y) \in \mathcal{R}\}.$$

We shall denote $x \sim_{\mathcal{R}} y$ (sometimes also denoted $x\mathcal{R}y$, or simply $x \sim y$) whenever $(x, y) \in \mathcal{R}$. The collection of equivalence classes are sometimes denoted as X/\sim .

Exercise 1.11

Given an equivalence relation \mathcal{R} on X , check that any two equivalence classes are either disjoint or equal (i.e., they cannot have nontrivial intersection).

Exercise 1.12

Suppose X is a given set, and $A \subset X$ is a nonempty subset. Define the relation $\mathcal{R} \subset X \times X$ as follows.

$$\mathcal{R} := \{(x, x) \mid x \in X \setminus A\} \bigcup \{(a, b) \mid a, b \in A\}.$$

- Check that \mathcal{R} is an equivalence relation.
- Identify the equivalence classes. We shall denote the collection of equivalence classes as X/A .
- What is X/X ?

Exercise 1.13

Suppose G is a group and H is a subgroup. Define a relation

$$\mathcal{C} := \{(g_1, g_2) \mid g_1^{-1}g_2 \in H\} \subset G \times G.$$

- Show that \mathcal{C} is an equivalence relation.
- Identify the equivalence classes G/H .

Hint

Recall the definition of cosets.

Definition 1.14: Partition

Given a set X , a *partition of X* is a collection of subsets $X_\alpha \subset X$ for some indexing set $\alpha \in \mathcal{I}$, such that the following holds.

- $X_\alpha \cap X_\beta = \emptyset$ for any $\alpha, \beta \in \mathcal{I}$ with $\alpha \neq \beta$.
- $X = \bigcup_{\alpha \in \mathcal{I}} X_\alpha$.

Exercise 1.15: (Partitions and equivalence relations)

Given an equivalence relation \mathcal{R} on a set X , show that the collection of equivalence classes is a partition of X . Conversely, given any partition of X , show that there exists a unique equivalence relation which gives that partition.

1.5 Order relation

Definition 1.16: (Linear order)

A relation $\mathcal{O} \subset X \times X$ on X is called an *order relation* (also known as *linear order* or *simple order*) if the following holds.

- a) **(Non-reflexive)** $(x, x) \notin \mathcal{O}$ for all $x \in X$.
- b) **(Transitive)** If $(x, y) \in \mathcal{O}$ and $(y, z) \in \mathcal{O}$, then $(x, z) \in \mathcal{O}$.
- c) **(Comparable)** For $x, y \in X$ with $x \neq y$, either $(x, y) \in \mathcal{O}$ or $(y, x) \in \mathcal{O}$.

We shall denote $x <_{\mathcal{O}} y$ (or even simply $x < y$) whenever $(x, y) \in \mathcal{O}$. If either $x <_{\mathcal{O}} y$ or $x = y$ holds, then we shall denote $x \leq_{\mathcal{O}} y$ (or $x \leq y$). Given $x, y \in X$, we have the interval

$$(x, y) := \{z \in X \mid x < z \text{ and } z < y\}.$$

Exercise 1.17

Given an ordered set $(X, <)$, define the intervals $[x, y]$, $[x, y)$, $(x, y]$ for some $x, y \in X$. What happens when $x = y$?

Definition 1.18: (Order preserving function)

Given two ordered set $(X_1, <_1)$ and $(X_2, <_2)$, a function $f : X_1 \rightarrow X_2$ is said to *order preserving* if

$$x <_1 y \Rightarrow f(x) <_2 f(y), \quad \forall x, y \in X_1.$$

Definition 1.19: (Total order)

A relation $\mathcal{O} \subset X \times X$ on a set X is called a *total order* if the following holds.

- a) **(Reflexive)** $(x, x) \in \mathcal{O}$ for all $x \in X$.
- b) **(Transitive)** If $(x, y) \in \mathcal{O}$ and $(y, z) \in \mathcal{O}$, then $(x, z) \in \mathcal{O}$.
- c) **(Total)** For $x, y \in X$ either $(x, y) \in \mathcal{O}$ or $(y, x) \in \mathcal{O}$

d) **(Antisymmetric)** If $(x, y) \in \mathcal{O}$ and $(y, x) \in \mathcal{O}$, then $x = y$.

We shall denote $x \leq_{\mathcal{O}} y$ (or even simply $x \leq y$) whenever $(x, y) \in \mathcal{O}$.

Definition 1.20: (Dictionary order)

Given X, Y two totally ordered sets the *dictionary order* (or *lexicographic order*) on the product $X \times Y$ is defined as

$(x_1, y_1) < (x_2, y_2)$ if and only if $\{x_1 < x_2\}$ or $\{x_1 = x_2, \text{ and } y_1 < y_2\}$,

for any $(x_1, y_1), (x_2, y_2) \in X \times Y$.

Exercise 1.21

Let X, Y be totally ordered sets.

- a) Check that the dictionary order on $X \times Y$ is indeed a total ordering.
- b) Check that the projection maps $\pi_X : X \times Y \rightarrow X$ and $\pi_Y : X \times Y \rightarrow Y$ are order preserving maps.
- c) Suppose Z is another totally ordered set. Let $f : Z \rightarrow X$ and $g : Z \rightarrow Y$ be two order preserving maps. Show that there exists a unique order preserving map $h : Z \rightarrow X \times Y$ such that $\pi_X \circ h = f$ and $\pi_Y \circ h = g$.
- d) Let us define a new relation $(x_1, y_1) \preceq (x_2, y_2)$ if and only $x_1 \leq x_2$ and $y_1 \leq y_2$. Is \preceq a total order on $X \times Y$?